This release introduces the distinction between the `Estimator()` classes, which provides the `.fit()`, `.update()`, `.predict()` methods and the `EstimationMethod()` classes, which do the actual fitting of $X$, $y$ to coefficients / weights / betas. This gives
- easier integration of new estimation methods
- easier handling of default parameters for methods
- easier handling of non-default parameters for methods, _especially for non-standard parameters like bounds, regularization strengths, etc.._
- much cleaner code in `OnlineGamlss()`
Breaking change: This change gets rid of the `estimation_kwargs` parameter in `OnlineGamlss()` which was cumbersome and poorly documented anyways.
Furthermore, we
- align the API of `OnlineGamlss()` and `OnlineLinearModel()` and derive the `OnlineLasso()` from `OnlineLinearModel()` to show the flexibility of the new approach.
- Introduce a verbosity parameter for `OnlineGamlss()` to print information to the user.
- Add some properties to (slowly) align more to the `sklearn` API
- Some minor fixes like fixing 36
- Add a lot of documentation