============================
Version 0.2.0a1 is a pre-release.
To try it, you have to install it manually using::
pip install --pre dirty_cat==0.2.0a1
or from the GitHub repository::
pip install git+https://github.com/dirty-cat/dirty_cat.git
Major changes
-------------
* Bump minimum dependencies:
- Python (>= 3.6)
- NumPy (>= 1.16)
- SciPy (>= 1.2)
- scikit-learn (>= 0.20.0)
* :class:`TableVectorizer`: Added automatic transform through the
:class:`TableVectorizer` class. It transforms
columns automatically based on their type. It provides a replacement
for scikit-learn's :class:`~sklearn.compose.ColumnTransformer` simpler to use on heterogeneous
pandas DataFrame. :pr:`167` by :user:`Lilian Boulard <LilianBoulard>`
* **Backward incompatible change to** :class:`GapEncoder`: The :class:`GapEncoder` now only
supports two-dimensional inputs of shape (n_samples, n_features).
Internally, features are encoded by independent :class:`GapEncoder` models,
and are then concatenated into a single matrix.
:pr:`185` by :user:`Lilian Boulard <LilianBoulard>` and :user:`Alexis Cvetkov <alexis-cvetkov>`.
Bug-fixes
---------
* Fix `get_feature_names` for scikit-learn > 0.21. :pr:`216` by :user:`Alexis Cvetkov <alexis-cvetkov>`