==================
new features
------------
- `builder.trained_networks` jwst_cal.zip includes updated (v2) `img3_reg` and new `spec3_reg` predictive models for image and spectroscopic data [58]
- `preprocessor.ingest.JwstCalIngest` class and cmdline script for automated training data ingest [57]
- `extractor.radio.JwstCalRadio` subclass for scraping datasets from MAST using ASN metadata [51]
- `extractor.scrape.FitsScraper.scrape_dataframe` method added for scraping Fits data from dataframe [52]
enhancements
------------
- `skopes.jwst.cal.predict` generates predictions for spectrosopic datasets in addition to image data. This update also allows further customization of user arguments: [58]
- `obs` to specify selection of a program ID + observation number
- `input_path` accepts either a directory (default) or a filename. If filename, the script will try to find any input exposures that belong to the same program and observation number as that file.
- `sfx` attribute is now customizable on instantiation of the class object (default is '_uncal.fits')
- `architect.builder.Builder.save_model` uses preferred keras archive format by default [50]
- `preprocessor.transform.SkyTransformer` set offsets to 0 for gs/targ fiducial NaN values; custom filename for tx_file [54]
- `preprocessor.prep.JwstCalPrep` updates in preparation for preprocessing spectroscopic data [55]
- revise spectroscopic data columns
- save tx_file name with "-{expmode}" to differentiate between image and spec normalization params
- rename target attributes: y_img_train, y_img_test to y_reg_train, y_reg_test
- `preprocessor.scrub.JwstCalScrubber` more sophisticated exposure grouping and L3 product naming [56]
bug fixes
---------
- `preprocessor.encode.PairEncoder.handle_unknowns` create single new encoding value per unidentified variable [53]