Synapseml

Latest version: v1.0.9

Safety actively analyzes 701625 Python packages for vulnerabilities to keep your Python projects secure.

Scan your dependencies

Page 3 of 5

0.18.1

Acknowledgements
We would like to acknowledge the developers and contributors, both internal and external who helped create this version of MMLSpark.

Ilya Matiach, Markus Cozowicz

Changes:

* 62946d1adf7baa4817f54f6c166db38cea9900db chore: bump version number
* d518b8aa3aae7ace6608742271f7873decb76b84 fix: fix lightgbm stuck in multiclass scenario and added stratified repartition transformer (618)
* 85fb3fc4fa60de7dbe2c20aeb05c4712f0c48d38 fix: fix schema issue with databricks e2e tests (653)
* 258cafbd74727b9eed1b7ae66d07e7f85b7b07a6 fix: update VW dependency to 8.7.0.2 built on CentOS and optimized for portability (652)
* 376cc6a86e43a2c50d9fee2adb92c34193ebd606 build: add proper secrets to publishing step (650)
* 0be08e91cd6c3cc20bd22e98a0f65061df88dbcf docs: Remove script action section

This list of changes was [auto generated](https://msazure.visualstudio.com/Cognitive%20Services/_build/results?buildId=24368418&view=logs).</details>

mmlspark-v0.18.0

<a name="v0.18.0"></a>
![](https://mmlspark.blob.core.windows.net/graphics/emails/mmlspark_v0.18_banner.jpeg)

0.18.0

Highlights
| <img width="800" src="https://mmlspark.blob.core.windows.net/graphics/emails/vw-blue-dark-orange.svg"> |<img width="800" src="https://mmlspark.blob.core.windows.net/graphics/emails/devops_recolor_2.svg"> | <img width="800" src="https://mmlspark.blob.core.windows.net/graphics/emails/lightgbm_on_spark.svg"> | <img width="800" src="https://mmlspark.blob.core.windows.net/graphics/emails/speech_to_text_2.svg"> |
|:--:|:--:|:--:|:--:|
| **Vowpal Wabbit on Spark** | **Quality and Build Refactor** | **LightGBM Ranking and More** | **Anomaly Detection and Speech To Text** |
| Fast, Sparse, and Scalable Text Analytics | New Azure Pipelines build with Code Coverage, CICD, and an organized package structure. | Barrier Execution mode, performance improvements, increased parameter coverage | New cognitive services on Spark |

New Features

Vowpal Wabbit on Spark: Fast and Sparse Text Analytics
- VW on Spark is a new collaboration between the [Vowpal Wabbit library](https://github.com/VowpalWabbit/vowpal_wabbit) and the Apache Spark community
- For full documentation check out the [VW on Spark Docs](https://github.com/Azure/mmlspark/blob/master/docs/vw.md)
- Added `VowpalWabbitClassifier` and `VowpalWabbitRegressor`
- Added [Vowpal Wabbit - Quantile Regression for Drug Discovery.ipynb](https://github.com/Azure/mmlspark/blob/master/notebooks/samples/Vowpal%20Wabbit%20-%20Quantile%20Regression%20for%20Drug%20Discovery.ipynb)

LightGBM on Spark
- Now supports barrier execution mode
- Added the `LightGBMRanker`
- Added `is_provide_training_metric` to LightGBMRanker.
- Enabled continued training with init score column
- Added batch training support
- Reduced memory usage
- Fixed issues with frozen jobs
- Fixes for multiclass classification
- Fixed issue where multiclass classification hangs due to partitions without all classes

HTTP on Spark
- Added `AnomalyDetector` and `SimpleAnomalyDetector` APIs
- Added `SpeechToText` transformer
- Improved service concurrency
- Added robustness to socket timeouts

Miscellaneous
- Codegen support for wrapping `Ranker` classes
- Notebooks now leverage public blob for faster execution
- Fixed summarize data column handling
- Better compute model statistics error messages
- Upgraded to Spark 2.4.3
- Added Spark on Kubernetes Helm Charts
- Added `StratifiedRepartition` transformer for ensuring partitions contain all classes
- Fixed issue where `ImageFeaturizer` could not be executed on Databricks 2.4.3

Build, Quality, and Infrastructure Refactor

Azure Pipelines Integration
- Tests parallelized on Azure Pipelines. Builds now take ~25min vs ~90min!
- Serverless Builds: Queue as many builds as needed with no machine maintenance costs
- Test results, error messages, and time are viewable from github PR section
- Individual Tests can be re-queued from the GitHub PR Page
- Builds can be queued using the pull request comment: `/azp run`.
- Full details can be seen by typing `/azp help`
- CI pipeline entirely specified in small .yaml file in git repo

<img width="600" src="https://mmlspark.blob.core.windows.net/graphics/emails/build.jpg">

Local Developer Support
- Dramatically simpler developer setup (all through SBT)
- Local developer setup now works on any platform including windows!
- Local setup no longer needs VM, Vagrant, or 30 min to import the library
- All build stages are SBT tasks and can be done locally for rapid testing
- This includes publishing maven packages to local repositories and the MMLSpark maven repo
- All secrets now managed by centralized Azure Key Vault
- IntelliJ will pick up on all scalastyle rules for editor-level style feedback while typing

Code Quality Gates
- Code Coverage now supported for every PR and reported in the comments and badge
- Coverage is now a check-in gate to never decrease
- Test coverage increased and dead code removed from the library
- Custom and auto-generated Python tests now supported
- CODEOWNERS file for better code reviews and maintenance
- Codacy integration for automated PR reviews

<img width="600" src="https://mmlspark.blob.core.windows.net/graphics/emails/codecov_2.gif">

Streamlined Library Structure
- MMLSpark now supports a true Scala/Java idiomatic package hierarchy
- Namespace hierarchy also reflected in PySpark code
- **Note: This will require changes to existing MMLSpark Programs. For Support in migrating please contact `mmlspark-supportmicrosoft.com`**

Maintainability and Community Management
- Issue and PR templates
- Gitter channel
- Welcome bot to greet new contributors
- Semantic Commits for autogenerating release notes
- Badges to display current and master versions in the README

Migration Support:
- For those that already have MMLSpark developer setups please read the new developer guide to reconfigure.
- For those that have standing PRs that need rebasing assistance please reach out to `mmlspark-supportmicrosoft.com`
- Please report any bugs or feedback!

Acknowledgements

We would like to acknowledge the developers and contributors, both internal and external who helped create this version of MMLSpark.

- Ilya Matiach, Markus Cozowicz, Scott Graham, Daniel Ciborowski, Christina Lee, Dalitso Banda, Shaochen Shi, Sudarshan Raghunathan, Anand Raman, Eli Barzilay, Nick Gonsalves, Tao Wu, Jeremy Reynolds, Miguel Fierro, Robert Alexander, AI CAT Team, Azure Search Team

Contributions, Collaborations, and Feedback Welcome!

|<img width="200" src="https://mmlspark.blob.core.windows.net/graphics/emails/spark.svg"> | <img width="500" src="https://mmlspark.blob.core.windows.net/graphics/emails/spacer.jpg"> | <img width="200" src="https://upload.wikimedia.org/wikipedia/commons/thumb/9/96/Microsoft_logo_%282012%29.svg/800px-Microsoft_logo_%282012%29.svg.png"> |
|:--:|:--:|:--:|





Changes:

* 3bb48b8400e92d660355c10c9c6770f5d37f681a chore: bump version number
* b0797b37929968063a860ff8bc16900732c624a9 docs: Improve cog services on spark docs
* 8e966b3c098e6a6170221620638479fb7ec561c3 docs: Docs for Cognitive Services (647)
* eb0a421c360835b22dfefced8a841d0d39c10db8 docs: Improve VW on Spark Docs
* 54dbcadb21a5b4bc5147f61803a975436d7126ba docs: add VowpalWabbit documentation
* fb5b79f460dd3c57a19c6b658cb60ee64db0c949 docs: fix vw on spark description
* c0d5786aee8d41dda3361a5e5111a88275592327 docs: update readme badges and icons
* 071b6b0ab0ada8f3c1720949a6f3f84a16c2da87 docs: Add gitter badge
* 5c343567003af3546e3b62183b901429889edf76 docs: Add VW on Spark to table
* 1bdcdbfb4314d1e464c566b27806dace14a7bc20 chore: ignore .github folder for CI
<details><summary><b>See more</b></summary>

* 01d498c2f7c18bb57a3ecd2327482fc9696acd46 build: add sonatype publishing
* 8fab72d2662ed933d5fe551b1394a711b6145797 build: make e2e cancellable
* ddc7a4f910d391cb7b1b2d500fe37c48f3ecbc87 build: remove broken codecov flags (will reinstate when codecov fixes their service_
* 188cbdbf5a6d74e00e2351dfe78b994708bb0270 chore: Update issue templates
* f67b16aba8133cffeda350cd7be37577e64175a8 chore: fix welcome bot indenting
* eeb7eba1e0b3eda3996ed7a47451d1aa24b2286f fix: Fix logistic regression error when passing "--link logistic" (644)
* b6a4f9320697c264bf73b19879ca15c1e59b75f3 fix: fix socket timeout error (640)
* 856db6d5619ad30368576b6ee55577d24e91e030 build: add mcr publishing
* c6e44f95d96d3adc403e21985404e8527cebd6bf fix: fix issue with socket timeout in advanced handler
* 2425b7adbb7cc5f5a0ae56b19c864ebcc7445dc4 fix: update detect anomaly suite to make anomaly more pronounced
* 07c7fecf78af53d56f66565dd9b5033019eb71b1 style: run markdown through markdown linter
* a0e85f5a98ce01c14a3cf3ffca856282a3029822 build: increase setup timeouts
* 5c190f8eecd158fe32a318325ddd9f8fb94eb15d style: Fix style issues
* 4bf6f712fa64d43af0efd759813faaae94cf37a5 build: Add build cancel timeouts
* 915d68334eaeac2ed2fa8022bb5b4b3a3dadb039 build: add release job to Azure Pipelines
* e48f9cbea3c446888cf2005c129f8ede9cf513db build: Add github version badges
* 73581cbf19558df899cc909cb7e1aee3d7e5c72e build: fix flaky codecov upload
* ce1e66d3b17ca035a71dae9148d3adce611e1c37 build: fix e2e notebook cluster check
* 19aeb8037e3589fb6dbd25fe5840b54b2378ed98 build: Add behavior bot
* 72ccae226876f57f71cb8ff8e388b34ce05b7031 build: Make task retry part of bash script
* 16dd7f4eb55d7fa740c83d776599fb94598e361c Update formatting
* 3fe4db5934552edd34cc9f025faec0c5b2526a64 adding vagrant doc and fixing indentation in vagrantfile
* d58d6f41909ecafa057a5327374c1825331f66ce Vowpal Wabbit on Spark
* 95dc73464714793997dffa8050451e1e50cae4dc adding vagrant file back in, updated for sbt (622)
* 605c98f914a51661eb868a9d83adeaac3b6e2e37 Add flaky test retry
* 4ebbb41a08e73f731d556d97cf76a2df52a75b42 remove brittle dataset downloading from demos
* e572a9aa584616d249652a23f8bc218e3b64ebe6 try to Fix codecov upload
* fac542e2f6f80e51d8c62b5886b5804cc7481873 Add codecov to python tests
* b6ba62f4c6ae6d2e9a1d0df7bd9c3bf4e1c4cc52 Add test publishing tobuild
* 5cada6f78fee649adf2e7c413684b431edc8be23 Increase coverage and remove dead code
* ae191a6cb777ee7dde9572ff1bdf80e366a29a70 Fix build summary
* e18ec2e9cdf2af07c40682b5c228fb876001e8d5 leverage codecov.io's coverage capabilities
* 8e7626332f5da8757a12d2614ffb27b87ff3746f Improve noisy neighbor problems for e2e tests
* 6ab8916cc236dfc81c2d9b4d912f2903248083b8 add codecov file
* 70881b2930321019c48b175e38ed9b7998bdf9d4 improve test coverage
* 41da2b7af2bace4ce0715b50a1db050cd67207e3 improve flakiness
* aa3c98f22f26ea6f02eebaeea2ffa5a8d8e42cfe improve coverage
* 237d38821e9dbf23d6d187aa33b0de106066a724 Add Code Coverage badge
* 7146b9bc2af6da655b2c3061d9cf7edfcfdc517d Add unit test timeout
* fa87e427996ac270a9763b844d62411c610d48e6 Fix noisy neighbor search index tests
* 0f98f7df3169e4e648c5d01ecc54173baf8d8f10 add codeowners file
* 43218097e2b787b4b9009074b20a042e20367292 add codeowners file
* 80aecab8321423fb20c2d5bbc23362d514180472 Add upload to codecov.io
* 66db39fbed3e9660b9cdbf90afb065db9ce581d5 Split LGBM tests for speed
* a6998ec6b0fe068f064ad9600fa204c349b932b0 Update README.md
* 027e6d72f5473b8d570ca40385aad4019b39d15c Remove unused code
* 0205b7e692b70433775617e8013f665642df791e Squash with partition fix
* dc1554f00e0ed2829e65d0414da847ad59094e45 Add r package upload
* 2fbd81cacfcf5eaf526ca4f9f7332446c88836fe Fix pipeline retry
* 0fde5941b96e2993576a2453748fdca6bb6cb878 attempt to fix partition consolidator flakiness
* 7940967acb21c6fc77a05537c6cbdeb9db55da42 Add codecov
* 7e8225f7e34f7efa5bc44aa0e6731ab087424725 fix retry logic
* d8c0eb49080193aaa5ca36d0b39c9e65b9a4056e Increase timeout for e2e notebook tests
* ff059a310ef48aa408d1c01909526880376947d8 Add ability to retry pipeline
* 8cf91cabb166796726de86e81f64f0734a23c25a Simplify build pipeline
* 5c8c9032986138964f0d9d0acb6533ce3b8b8004 Delete runme
* 210b522324e93824bcf6e81897c81eb31d87a9b4 Update CNTK code in README
* da6e4977c1a1eb93495ec23ca97de18e34e6369a Update pipeline.yaml for Azure Pipelines
* e94631885c63de61b33dda7229902469e7d6bc12 Add build status bar
* 37d36af2acf66a46a1c44eec4ae403543061064f Enable PR builds
* 6c56326c1a5d78460052f51150ccaf70fd3b1f4c transition to new build system
* fb3e99e53d46ef5536dd2fa765e25b3d7ded07d8 Update dockerfile
* 637df9d34f508cd1c83542a69e922bc342b1fe0d Update documentation for new build
* e9ef538cdf75de1e243a21fb4a46e473d5f138a0 Improve test robustness
* d34f9d173d6f5cb0fbaa93a078bc339c28618549 Remove unused build scripts
* 4034a4fc9eeef54fac4f3710fdc738a904e026a7 Add doc publishing to build
* 36d8c3bd53686e94a8a054faf3f2efd161aa85eb Fixup after rebase
* 7c5e7b676974c21486704e71a3fa793d08f25d1c Get e2e tests working
* 07316a8c7db982f7f7b9cf9bc6793001c8cf9dbd Fix serialization fuzzing error
* f6df90771e93a209c4a846c462141de494c379ed Make recomendation tests faster
* dd99937b6eb3c023d2955a91f58e7133ca4bf248 Add python tests
* 02a8ac6c46acd0261c5b6bafa8a7ab4a05b14949 Add publish task
* 3a526c8c6ac0720e15ca22a7e0faeb24cac08bb6 Fix Test Errors and Improve Reliability
* 4a696c5548be2e505411b39a64af2bc669640a96 Parallelize Tests
* 2b75b62b8bd50239564ff5d1f50a94b003881bd2 Make build windows compatible
* 94e9b218a4bc1d6fc9134987d583924f4a83b983 Add developer-readme.md
* 5659287842bc09710076efe5fc5af2dcc82229a4 Fix python testing
* 987c7c49b9e10f9c3aa20f47c69fb133067387c9 Get python codegen to work
* 90089fa36a41260f8366d7ecce0cc24c06081f47 Add scalastyle and unidoc
* 79d41102fae2dd6e20f4aeafd77bdc9336ad1a24 Add secrets
* 5742c0e164d54f3b87e2e9007c249d45944f61ec Refactor build
* 77d7cb4f3c7f0c5eaf46883980754f9149d5d851 Move library into a single package
* 29c15cb52055d2598f25bd2249a738d0f2261c3d add barrier execution mode
* aac05361c454e4a4d383ca4f551f3a4051f1b35c fix default value for double array param in codegen
* 2bd2faf1295c8ffae43c9f528e676ddb2f0909ba fix wrapper generator for ranker models
* 6885ef5ea42942b6e134a341cd9f6f008e20e156 added lightgbm ranker model pyspark api
* 08b308585eefeebffb48df5857be1579bc6c5364 fix summarize data columns
* 044d0b5698fd99d30c874e3328a6b24cbda55acc reduce memory usage, fix frozen jobs, add more debug logging
* 45c91f98c7ed425beefec23bcd436690e1540dd7 defer lightgbm probability calculation to native core to fix multiclass bug in some scenarios (578)
* 44735200184151e180a3188fa315fa15a7fd18fa squish runs together
* 00ebf64bb34148d1cdc17f6108f31d471ec279c4 use right python version
* 216abea6317115d4a168cd533c1212ac2063bff3 updated readme. more mini images
* 3232d848d8de65a23a77908213ee9667f2c3a7a5 Fix flakey test
* e9a612bb803a346e8b3d3cbfdd18cc8f36653d39 Fix Entity Detector Suite
* ba3dbd0ea6eb654beb130bc79b9527ac62c2ef0e Improve service concurrency
* 75819a51fe88a16126e71bcb8f3376a8d8c4837e Add simple Anamoly Detector
* 17a765e6747dca6ab0f28cce047c7068bd3c31f2 Add `is_provide_training_metric` to LightGBMRanker.
* ceb52918c125ad844cf27fb812f30e9bcb5077ac Print metrics of validation data as well.
* b54363c9f78308505a25d0826c989326312b2c9a Implement `is_provide_training_metric` in Scala codes through JNI.
* c7e31e61fb93f198128a5777a5c786cdb9d8458f fix query column to support long type
* 6a6d57f40ecd25a23efae29b2d18671647dbdb3f Poke Build System
* 11fe799a3e6142c0788ec5a314d83e2c4f8cb1ee Fixing Cog Service Test
* 6eba0b6f4d612a35e4464bd955859efdf45eb803 ignore flaky test
* 53c4b9e0fd917b91cd7fb195ebe44822cdd212ee adding LightGBMRanker
* fa7785734a54c5e45c98c66196846be3e4682dbf add init score column for continued training
* 32ac35348312e57599c9275fcdba800765efc638 Add anomaly detection and speech to text services
* 06273b252d753be61c353a15a2a20455c92e3af2 improved compute model statistics error message
* e7a309c3d9ea0462cfd055e2d794cae7dfbe5fca pass through slot names to native structure
* b295dae1a53c7fe127a498e974554f854b316075 add batch training support in lightgbm classifier and regressor

This list of changes was [auto generated](https://msazure.visualstudio.com/Cognitive%20Services/_build/results?buildId=24338255&view=logs).</details>

mmlspark-v0.17
Highlights

- LightGBM evaluation 3-4x faster!
- Spark Serving v2
- LightGBM training supports early stopping and regularization
- LIME on Spark significantly faster

New Features

Spark Serving v2:

- Both Microbatch and Continuous mode have sub-millisecond latency
- Supports fault tolerance
- Can reply from anywhere in the pipeline
- Fail fast modes for warning callers of bad JSON parsing
- Fully based on DataSource API v2

LightGBM:

- 3-4x evaluation performance improvement
- Add early stopping capabilities
- Added L1 and L2 Regularization parameters
- Made network init more robust
- Fixed bug caused by empty partitions

LIME on Spark:

- LIME Parallelization significantly faster for large datasets
- Tabular Lime now supported

Other:

- Added UnicodeNormalizer for working with complex text
- Recognize Text exposes parameters for its polling handlers

Acknowledgements

We would like to acknowledge the developers and contributors, both internal and external who helped create this version of MMLSpark.

- Ilya Matiach, Markus Cozowicz, Scott Graham, Daniel Ciborowski, Jeremy Reynolds, Miguel Fierro, Robert Alexander, Tao Wu, Sudarshan Raghunathan, Anand Raman,Casey Hong, Karthik Rajendran, Dalitso Banda, Manon Knoertzer, Lars Ahlfors, The Microsoft AI Development Acceleration Program, Cognitive Search Team, Azure Search Team

mmlspark-v0.16
New Features
- Added the `AzureSearchWriter` for integrating Spark with [Azure Search](https://azure.microsoft.com/en-us/services/search/)
- Added the [Smart Adaptive Recommender (SAR)](https://github.com/Azure/mmlspark/blob/master/docs/SAR.md) for better recommendations in SparkML
- Added [Named Entity Recognition Cognitive Service](https://azure.microsoft.com/en-us/services/cognitive-services/text-analytics/) on Spark
- Several new [LightGBM features](LightGBM-on-Spark) (Multiclass Classification, Windows Support, Class Balancing, Custom Boosting, etc.)
- Added Ranking Train Validation Splitter for easy ranking experiments
- All Computer Vision Services can now send binary data or URLs to Cognitive Services


New Examples
- Learn how to use the Azure Search writer to create a visual search system for The Metropolitan Museum of Art with: [AzureSearchIndex - Met Artworks.ipynb](https://github.com/Azure/mmlspark/blob/master/notebooks/samples/AzureSearchIndex%20-%20Met%20Artworks.ipynb)

Updates and Improvements

General
- MMLSpark Image Schema now unified with Spark Core
- Now supports Query pushdown and [Deep Learning Pipelines](https://github.com/databricks/spark-deep-learning)
- Bugfixes for Text Analytics services
- `PageSplitter` now propagates nulls
- HTTP on Spark now supports socket and read timeouts
- `HyperparamBuilder` python wrappers now return idiomatic python objects

LightGBM on Spark
- Added multiclass classification
- Added multiple types of boosting (Gradient Boosting Decision Tree, Random Forest, Dropout meet Multiple Additive Regression Trees, Gradient-based One-Side Sampling)
- Added windows OS support/bugfix
- LightGBM version bumped to `2.2.200`
- Added native support for categorical columns, either through Spark's StringIndexer, MMLSpark's ValueIndexer or list of indexes/slot names parameter
- `isUnbalance` parameter for unbalanced datasets
- Added boost from average parameter


Acknowledgements
We would like to acknowledge the developers and contributors, both internal and external who helped create this version of MMLSpark.

- Ilya Matiach, Casey Hong, Daniel Ciborowski, Karthik Rajendran, Dalitso Banda, Manon Knoertzer, Sudarshan Raghunathan, Anand Raman,Markus Cozowicz, The Microsoft AI Development Acceleration Program, Cognitive Search Team, Azure Search Team

mmlspark-v0.15
New Features
- Add the `TagImage` and `DescribeImage` services
- Add Ranking Cross Validator and Evaluator

New Examples
- Learn how to use HTTP on Spark to work with arbitrary web services at scale in [HttpOnSpark - Working with Arbitrary Web APIs.ipynb](https://github.com/Azure/mmlspark/blob/master/notebooks/samples/HttpOnSpark%20-%20Working%20with%20Arbitrary%20Web%20APIs.ipynb)

Updates and Improvements

LightGBM
- Fix issue with `raw2probabilityInPlace`
- Add weight column
- Add `getModel` API to `TrainClassifier` and `TrainRegressor`
- Improve robustness of getting executor cores

HTTP on Spark and Spark Serving
- Improve robustness of Gateway creation and management
- Imrpove Gateway documentation

Version Bumps
- Updated to Spark 2.4.0
- LightGBM version update to 2.1.250

Misc
- Fix Flaky Tests
- Remove autogeneration of scalastyle
- Increase training dataset size in snow leopard example

Acknowledgements
We would like to acknowledge the developers and contributors, both internal and external who helped create this version of MMLSpark.

- Ilya Matiach, Casey Hong, Karthik Rajendran, Daniel Ciborowski, Sebastien Thomas, Eli Barzilay, Sudarshan Raghunathan, flybywind, wentongxin, haal


mmlspark-v0.14
New Features

- The Cognitive Services on Spark: A simple and scalable integration between the Microsoft Cognitive Services and SparkML
- Bing Image Search
- Computer Vision: OCR, Recognize Text, Recognize Domain Specific Content,
Analyze Image, Generate Thumbnails
- Text Analytics: Language Detector, Entity Detector, Key Phrase Extractor,
Sentiment Detector, Named Entity Recognition
- Face: Detect, Find Similar, Identify, Group, Verify
- Added distributed model interpretability with LIME on Spark
- **100x** lower latencies (\<1ms) with Spark Serving
- Expanded Spark Serving to cover the full HTTP protocol
- Added the `SuperpixelTransformer` for segmenting images
- Added a Fluent API, `mlTransform` and `mlFit`, for composing pipelines more elegantly


New Examples
- Chain together cognitive services to understand the feelings of your favorite celebrities with `CognitiveServices - Celebrity Quote Analysis.ipynb`
- Explore how you can use Bing Image Search and Distributed Model Interpretability to get an Object Detection system without labeling any data in `ModelInterpretation - Snow Leopard Detection.ipynb`
- See how to deploy *any* spark computation as a Web service on *any* Spark platform with the `SparkServing - Deploying a Classifier.ipynb` notebook


Updates and Improvements

LightGBM
- More APIs for loading LightGBM Native Models
- LightGBM training checkpointing and continuation
- Added tweedie variance power to LightGBM
- Added early stopping to lightGBM
- Added feature importances to LightGBM
- Added a PMML exporter for LightGBM on Spark

HTTP on Spark
- Added the `VectorizableParam` for creating column parameterizable inputs
- Added `handler` parameter added to HTTP services
- HTTP on Spark now propagates nulls robustly

Version Bumps
- Updated to Spark 2.3.1
- LightGBM version update to 2.1.250

Misc
- Added Vagrantfile for easy windows developer setup
- Improved Image Reader fault tolerance
- Reorganized Examples into Topics
- Generalized Image Featurizer and other Image based code to handle Binary Files as well as Spark Images
- Added `ModelDownloader` R wrapper
- Added `getBestModel` and `getBestModelInfo` to `TuneHyperparameters`
- Expanded Binary File Reading APIs
- Added `Explode` and `Lambda` transformers
- Added `SparkBindings` trait for automating spark binding creation
- Added retries and timeouts to `ModelDownloader`
- Added `ResizeImageTransformer` to remove `ImageFeaturizer` dependence on OpenCV


Acknowledgements
We would like to acknowledge the developers and contributors, both internal and external who helped create this version of MMLSpark. (In alphabetical order)

- Abhiram Eswaran, Anand Raman, Ari Green, Arvind Krishnaa Jagannathan, Ben Brodsky, Casey Hong, Courtney Cochrane, Henrik Frystyk Nielsen, Ilya Matiach, Janhavi Suresh Mahajan, Jaya Susan Mathew, Karthik Rajendran, Mario Inchiosa, Minsoo Thigpen, Soundar Srinivasan, Sudarshan Raghunathan, terrytangyuan


mmlspark-v0.13
New Functionality:

* Export trained LightGBM models for evaluation outside of Spark

* LightGBM on Spark supports multiple cores per executor

* `CNTKModel` works with multi-input multi-output models of any CNTK
datatype

* Added Minibatching and Flattening transformers for adding flexible
batching logic to pipelines, deep networks, and web clients.

* Added `Benchmark` test API for tracking model performance across
versions

* Added `PartitionConsolidator` function for aggregating streaming data
onto one partition per executor (for use with connection/rate-limited
HTTP services)


Updates and Improvements:

* Updated to Spark 2.3.0

* Added Databricks notebook tests to build system

* `CNTKModel` uses significantly less memory

* Simplified example notebooks

* Simplified APIs for MMLSpark Serving

* Simplified APIs for CNTK on Spark

* LightGBM stability improvements

* `ComputeModelStatistics` stability improvements


Acknowledgements:

We would like to acknowledge the external contributors who helped create
this version of MMLSpark (in order of commit history):

* 严伟, terrytangyuan, ywskycn, dvanasseldonk, Jilong Liao,
chappers, ekaterina-sereda-rf


mmlspark-v0.11
New functionality:

* TuneHyperparameters: parallel distributed randomized grid search for
SparkML and TrainClassifier/TrainRegressor parameters. Sample
notebook and python wrappers will be added in the near future.

* Added `PowerBIWriter` for writing and streaming data frames to
[PowerBI](http://powerbi.microsoft.com/).

* Expanded image reading and writing capabilities, including using
images with Spark Structured Streaming. Images can be read from and
written to paths specified in a dataframe.

* New functionality for convenient plotting in Python.

* UDF transformer and additional UDFs.

* Expanded pipeline support for arbitrary user code and libraries such
as NLTK through UDFTransformer.

* Refactored fuzzing system and added test coverage.

* GPU training supports multiple VMs.

Updates:

* Updated to Conda 4.3.31, which comes with Python 3.6.3.

* Also updated SBT and JVM.

Improvements:

* Additional bugfixes, stability, and notebook improvements.


mmlspark-v0.10
New functionality:

* We now provide initial support for training on a GPU VM, and an ARM
template to deploy an HDI Cluster with an associated GPU machine. See
`docs/gpu-setup.md` for instructions on setting this up.

* New auto-generated R wrappers for estimators and transformers. To
import them into R, you can use devtools to import from the uploaded
zip file. Tests and sample notebooks to come.

* A new `RenameColumn` transformer for renaming columns within a
pipeline.

New notebooks:

* Notebook 104: An experiment to demonstrate regression models to
predict automobile prices. This notebook demonstrates the use of
`Pipeline` stages, `CleanMissingData`, and
`ComputePerInstanceStatistics`.

* Notebook 105: Demonstrates `DataConversion` to make some columns Categorical.

* There us a 401 notebook in `notebooks/gpu` which demonstrates CNTK
training when using a GPU VM. (It is not shown with the rest of the
notebooks yet.)

Updates:

* Updated to use CNTK 2.2. Note that this version of CNTK depends on
libpng12 and libjasper1 -- which are included in our docker images.
(This should get resolved in the upcoming CNTK 2.3 release.)

Improvements:

* Local builds will always use a "0.0" version instead of a version
based on the git repository. This should simplify the build process
for developers and avoid hard-to-resolve update issues.

* The `TextPreprocessor` transformer can be used to find and replace all
key value pairs in an input map.

* Fixed a regression in the image reader where zip files with images no
longer displayed the full path to the image inside a zip file.

* Additional minor bug and stability fixes.


mmlspark-v0.9
New functionality:

* Refactor `ImageReader` and `BinaryFileReader` to support streaming
images, including a Python API. Also improved performance of the
readers. Check the 302 notebook for usage example.

* Add `ClassBalancer` estimator for improving classification performance
on highly imbalanced datasets.

* Create an infrastructure for automated fuzzing, serialization, and
python wrapper tests.

* Added a `DropColumns` pipeline stage.

New notebooks:

* 305: A Flowers sample notebook demonstrating deep transfer learning
with `ImageFeaturizer`.

Updates:

* Our main build is now based on Spark 2.2.

Improvements:

* Enable streaming through the `EnsembleByKey` transformer.

* ImageReader, HDFS issue, etc.


mmlspark-v0.8
New functionality:

* We are now uploading MMLSpark as a `Azure/mmlspark` spark package.
Use `--packages Azure:mmlspark:0.8` with the Spark command-line tools.

* Add a bi-directional LSTM medical entity extractor to the
`ModelDownloader`, and new jupyter notebook for medical entity
extraction using NLTK, PubMed Word embeddings, and the Bi-LSTM.

* Add `ImageSetAugmenter` for easy dataset augmentation within image
processing pipelines.

Improvements:

* Optimize the performance of `CNTKModel`. It now broadcasts a loaded
model to workers and shares model weights between partitions on the
same worker. Minibatch padding (an internal workaround of a CNTK bug)
is now no longer used, eliminating excess computations when there is a
mismatch between the partition size and minibatch size.

* Bugfix: CNTKModel can work with models with unnamed outputs.

Docker image improvements:

* Environment variables are now part of the docker image (in addition to
being set in bash).

* New docker images:
- `microsoft/mmlspark:latest`: plain image, as always,
- `microsoft/mmlspark:gpu`: GPU variant based on an `nvidia/cuda` image.
- `microsoft/mmlspark:plus` and `microsoft/mmlspark:plus-gpu`: these
images contain additional packages for internal use; they will
probably be based on an older Conda version too in future releases.

Updates:

* The Conda environment now includes NLTK.

* Updated Java and SBT versions.


mmlspark-v0.7
New functionality:

* New transforms: `EnsembleByKey`, `Cacher` `Timer`; see the documentation.

Updates:

* Miniconda version 4.3.21, including Python 3.6.

* CNTK version 2.1, using Maven Central.

* Use OpenCV from the OpenPnP project from Maven Central.

Improvements:

* Spark's `binaryFiles` function had a regression in version 2.1 from
version 2.0 which would lead to performance issues; work around that
for now. Data frame operations after a use of `BinaryFileReader` (eg,
reading images) are significantly faster with this.

* The Spark installation is now patched with `hadoop-azure` and
`azure-storage`.

* Includes additional bug fixes and improvements.


mmlspark-v0.6
New functionality:

* Similar to Spark's `StringIndexer`, we have a `ValueIndexer` that can
be used for indexing any type of values instead of only strings. Not
only can it index these values, we also provide a reverse mapping via
`IndexToValue`, similar to Spark's `IndexToString` transform.

* A new "clean missing" data estimator, example:

val cmd = new CleanMissingData()
.setInputCols(Array("some-column"))
.setOutputCols(Array("some-column"))
.setCleaningMode(CleanMissingData.customOpt)
.setCustomValue(someCustomValue)
val cmdModel = cmd.fit(dataset)
val result = cmdModel.transform(dataset)

* New default featurization for date and timestamp spark types and our
internal image type. For featurization of date columns, convert
column to double features: year, day of week, month, day of month.
For featurization of timestamp columns, same as date and in addition:
hour of day, minute of hour, second of minute. For featurization of
image columns, use image data converted to double with width and
height info.

* Starting the docker image without an `ACCEPT_EULA` variable setting
would throw an error. Instead, we now start a tiny web server that
shows the EULA and replaces itself with the Jupyter interface when you
click the `AGREE` button.


Breaking changes:

* Renamed `ImageTransform` to `ImageTransformer`.

Notable bug fixes and other changes:

* Improved sample notebooks, and a new one: "303 - Transfer Learning by
DNN Featurization - Airplane or Automobile".

* Fix serialization bugs in generated python `PipelineStage`s.


Acknowledgments

Thanks to Ali Zaidi for some notebook beautifications.


mmlspark-v0.5
Initial release.

0.11.4

Acknowledgements
We would like to acknowledge the developers and contributors, both internal and external who helped create this version of SynapseML.\n



v0.11.4-spark3.4


v0.11.4-spark3.3


v0.11.3-spark3.4


v0.11.3-spark3.3

0.11.3

Acknowledgements
We would like to acknowledge the developers and contributors, both internal and external who helped create this version of SynapseML.\n



Changes:

* 6ac187db38feff9bf455c9ef2b2e6f1b8983b5e7 chore: bump version to v0.11.3(2084)
* acfc39101cae8f5260da3c4f3dada9dd42901dc0 chore: add Esrp release (2083)
* eb05959be6901ee21ac2e140f77d238ec98e96a4 fix geospatial tests (2081)
* b8942a79ef569b027e0ef12b6ccf8a0f58696d87 chore: Add more redirect links to website (2079)
* b0bac727365dde27de7744969b2cfc94067d71aa chore: refactor telemetry system (2047)
* f7a0af54eec436c6dc3d4a534e8efcaa17370c29 build: bump actions/upload-artifact from 3.1.2 to 3.1.3 (2067)
* bef5518a4065f8c26e6837f8e86be06e93d17a87 feat: support using mwc token for fabric openai transformer (2070)
* e3c48f8210b6efebefc7e68c832afb732872f9ac chore: Add .trunk to gitignore (2078)
* f2a4047e82f5e060431b5be49a028a4988e1a6e3 chore: fix mlflow error in build (2077)
* 5a5e84876f6a8fbcf59f080b9be2b3483cbbacb9 chore: Add missing redirects to website (2076)
<details><summary><b>See More</b></summary>

* 17fddae285e9d16d902daab09beced9048b732b8 chore: turn off barrier exec mode in VW generic sample (2072)
* dd7ba7c34c67033335ba1b7aee3459729dec4ad8 chore: fix some of the failing build issues (2071)
* 3d1a7fc4c4a3e7177f4863c930e4595859bf5413 fix: updated gpt-review to version 0.9.5 to fix break (2069)
* d494f6e5814eb39233a3eb4f8056eba962bb28f8 feat: add Azure Cognitive Search vector store (2041)
* 111823d168519c030bc42e4e83250211b7227b3e build: bump actions/checkout from 3 to 4 (2065)
* 7e9b0d1e3c6fa5e79ed141315f85d4da9b141b7d fix: fixed broken link to developer readme (2049)
* ebecbe04ee9e1de7b7e9fb4f5955e19852e49373 chore: fix daily midnight build chronjob
* 0836e40efd9c48424e91aa10c8aa3fbf0de39f31 Fix problem with empty partition assigned to validation data (2059)
* c6d58829435d8e2ab2cdc1cb1b6a9e0c5d4771b2 chore: remove secret scanner (2048)
* 8f794c896dad5b790356671ac56590fbb4f36eaf feat: Support langchain transformer on fabric (2036)
* 149c634005a935aef90226bc823c541934245568 docs: add badges to readme
* f6328b5dbe2a0721e12fdacd12a975a9c89c2494 fix: improve docgen (2043)
* 33807625edcf678461c2916086a63fe91cf045a6 docs: fix small error in docgen docs
* 9eff35f5465269a16f2e936fdc069c6107536805 docs: initial POC of Jessica's fabric doc generator (2023)
* fa497f09b58a462a4ca47c14cbe4bfd12231f1b2 docs: fix broken links (2042)
* cde68347a44b6556ed4e6f6ab57bf6b4968cc6b2 fix: Improve LGBM exception and logging (2037)
* db6386c6d6a133eb55fbec640012ad82bb526c94 fix: Fix ONNX link (2035)
* 8be8fe3e61837dbe96a28189fd436e0b684f8ed2 docs: fix variable formatting for QandA nb (2033)
* 072c9c9631d2c8c498677356dd2c152efd3cf51c chore: remove exclusions from pipeline.yml
* 495c9a9f297a31f05645324014e1ae738336d7eb chore: remove build exclusions from pipeline.yaml
* 0d8e613bc6e79f81795ab2b6f7cb9931cf66a864 build: bump actions/checkout from 2 to 3 (2030)
* 4841ddb70cae5e6b8cf76d77bd2fed9d486b5471 docs: add QandA notebook. (2029)
* d9b5d03e60f4e40323cace5a947732f43fa4454c docs: fix broken link (2032)
* df2712afeb211003bd13e622239c9ae09c15615a docs: fix broken links (2027)
* 81a36bd2457ccca5a526071c1cc7d06cafa7f807 docs: continue fixing broken links (2026)
* 1c4c5b388edfa9cdffbf2a91fcb893a82e02c561 docs: fix broken links (2025)
* 1f3a2bf9afcc45153b576eeb86c5d4ccaa92226e docs: add dead link checker (2022)
* c4d077ad7f97bf5d08f1d329d6e866010c3889d0 chore: bump databricks e2e timeout (2024)
* 09269384bbabf04d2532534b455263b172d32e9c docs: Refactor docs and docgen framework (2021)
* ea60f56baf27d30e34e8f9fb7936a0e9227a098e docs: fix docker link (2019)
* 094c180c3e884cfe9564abbc81986c3ccfb1737b docs: update notebooks - bring back fabric reviewers changes. (1979)
* 46a56e1c8f9d1ed5e750892dc439964f817755fe docs: add prerequisites - openai and cognitive services resources (2008)
* 8f79525f047ec19d6baad62a0e7f96cecb94892b build: bump semver from 5.7.1 to 5.7.2 in /website (2012)
* 25c458223a8369baaaf67313a4d67803d640121b fix: modified the search engine in the demo notebook to bing (2013)
* f7e8d80a96f12beb3fd1be0bb58590ef3646587c docs: remove pre-commit from docs
* 0c1c84b3bf8fcc3cf4dd079115020200dc94c61f chore: no-op PR to avoid double publishing

This list of changes was [auto generated](https://msdata.visualstudio.com/A365/_build/results?buildId=105973453&view=logs).</details>

v0.11.2-spark3.4
What's Changed
* fix: modified the search engine in the demo notebook to bing by sherylZhaoCode in https://github.com/microsoft/SynapseML/pull/2013
* build: bump semver from 5.7.1 to 5.7.2 in /website by dependabot in https://github.com/microsoft/SynapseML/pull/2012
* docs: add prerequisites - openai and cognitive services resources by JessicaXYWang in https://github.com/microsoft/SynapseML/pull/2008
* docs: update notebooks - bring back fabric reviewers changes. by JessicaXYWang in https://github.com/microsoft/SynapseML/pull/1979
* fix: docker link by niehaus59 in https://github.com/microsoft/SynapseML/pull/2019
* docs: Refactor docs and docgen framework by mhamilton723 in https://github.com/microsoft/SynapseML/pull/2021
* chore: bump databricks e2e timeout by mhamilton723 in https://github.com/microsoft/SynapseML/pull/2024
* docs: add dead link checker by mhamilton723 in https://github.com/microsoft/SynapseML/pull/2022
* docs: fix broken links by mhamilton723 in https://github.com/microsoft/SynapseML/pull/2025
* docs: continue fixing broken links by mhamilton723 in https://github.com/microsoft/SynapseML/pull/2026
* docs: fix broken links by mhamilton723 in https://github.com/microsoft/SynapseML/pull/2027
* docs: fix broken link by mhamilton723 in https://github.com/microsoft/SynapseML/pull/2032
* docs: add QandA notebook. by aydan-at-microsoft in https://github.com/microsoft/SynapseML/pull/2029
* build: bump actions/checkout from 2 to 3 by dependabot in https://github.com/microsoft/SynapseML/pull/2030
* docs: variable formatting for QandA nb by aydan-at-microsoft in https://github.com/microsoft/SynapseML/pull/2033
* fix: Fix ONNX link by iemejia in https://github.com/microsoft/SynapseML/pull/2035
* fix: Improve LGBM exception and logging by svotaw in https://github.com/microsoft/SynapseML/pull/2037
* docs: fix broken links by JessicaXYWang in https://github.com/microsoft/SynapseML/pull/2042
* docs: initial POC of Jessica's fabric doc generator by mhamilton723 in https://github.com/microsoft/SynapseML/pull/2023
* fix: improve docgen by eisber in https://github.com/microsoft/SynapseML/pull/2043
* feat: Support langchain transformer on fabric by lhrotk in https://github.com/microsoft/SynapseML/pull/2036
* chore: remove secret scanner by mhamilton723 in https://github.com/microsoft/SynapseML/pull/2048
* fix: Fix problem with empty partition assigned to validation data by svotaw in https://github.com/microsoft/SynapseML/pull/2059
* chore: Adding Spark34 support by KeerthiYandaOS in https://github.com/microsoft/SynapseML/pull/2052

New Contributors
* aydan-at-microsoft made their first contribution in https://github.com/microsoft/SynapseML/pull/2029

**Full Changelog**: https://github.com/microsoft/SynapseML/compare/v0.11.2...v0.11.2-spark3.4

0.11.2

Acknowledgements
We would like to acknowledge the developers and contributors, both internal and external who helped create this version of SynapseML.\n



v0.11.2-spark3.3


v0.11.1-spark3.3

0.11.1

Changes:

* 866261c212441a92c4c5dfa14d0f16ce71be510f chore: bump to v0.11.1 (1933)
* 3c097027eeba8896724d979ae50d50f432934ef6 chore: Adding telemetry for the dataset metadata. This one is specially for … (1917)
* 0d0d10c7cdedca17bc7cb85d039c5c42ae954721 feat: add streaming API for MVAD (1893)
* 1b71c1dadef393ce8173144230e1165a1fc651e4 chore: fix r tests (1927)
* 0df97ad230e6ce7f2f90132b1117d1e39d0f1cb7 chore: fix build issues (1916)
* 78695fb03b56e4eb8b179cccd91dd655fefda2f8 Update Regression - Vowpal Wabbit vs. LightGBM vs. Linear Regressor.ipynb (1922)
* 87d5bc5391e5c4a2b04ae86ebf987a2c5c8dc10d docs: Fix installation instruction in the webpage for the build.sbt file (1921)
* 8320b2baa84e5963ea5539b3d8aafd8fcebb2ec3 fix: set default values for aadToken & url for internal Synapse (1918)
* 4912ae49c51fe7c335b4ad634d3496e03b0c23f7 chore: disable test until Synapse is fixed (1915)
* 469445b7880b336c605fdb5f6bec570989134d27 fix: ONNX model shape inference cannot handle batch with shape [-1] (1906)
<details><summary><b>See More</b></summary>

* 3fa001e129c914b7f315a015434a4bb4462d8836 build: bump peter-evans/create-or-update-comment from 2 to 3 (1907)
* f51327e236d09483247b64ee99c7de40c5f245c0 Update LightGBM version to 3.3.5 (1910)
* b1e584ecd7e2b600043e218856bf5e5b3110a888 fix: forgot to add getPValue to python side (1909)
* a09a6f775e3a21875eace9c6c710d88a533a014c docs: note discrete treatment data type (1905)
* 0fa3f2a6647a16053b970f7e2e240bee9fc5436a fix: generate random dir for each test (1908)
* 736c3172dea00c7116989959dd37bb8bb68e8d0a fix: add back diagnosticsInfo for MVAD (1892)
* 13afff6ba89ec7951fd9d47739214ef6e4e57d52 fix: DML run get timeout if big dataset has more feature columns (Workaround Synapse Spark optimizer issue) (1903)
* 7546e7fe9f4c14f396f3e99806df4b4e783105d7 build: bump ossf/scorecard-action from 2.1.2 to 2.1.3 (1898)
* f227f02496c51f500a5d82bbe7ee1a9a8e2e9acb fix: fix date parsing in FaceSuite test (1896)
* 0f02626eec3a23b5e5d21b880589b95f0045bb39 fix: fix Build pipeline (1904)
* ce9fe41031e790b694a63056decb4642dfe249b9 chore: add .bloop to .gitignore (1897)
* 7ffa970f56b31794b59765cd5f4fe4fdd82db483 chore: clean up old/missed search indexes in SearchWriterSuite (1901)
* 9a6cf0358a45d16ff20d458ffc6dcdcb88ccf5d9 chore: Add utility to clean azure search indexes
* 52919ce40042ad19a9ca6834d49776d6c88ff595 fix: Retry OnnxHub call to improve test reliability (1889)
* 979c62911f1d79fe19e337855a8bd0cf57a77390 feat: [DistributionBalanceMeasure] Add implementation + unit tests for custom reference distribution (1885)
* 412620a88ceac095cd34f8a73ad90df5b3da6f82 docs: add custom chatbot creation to form demo (1888)
* 9f634a62070d52775ef9df86afd7d04d4f6e9c7f feat: Add ChatGPT through the `OpenAIChatCompletion` transformer (1887)
* 76570894b4108ab6e5d44ce8f790ee49485636b6 fix: Normalize line-endings (1883)
* c1567920acc05d54dab96c8c30c55dc89eb2225a feat: support new api version of form recognizer (1882)
* ed842a5f84e101862df5d85c7d9de1eacf763b85 docs: add overview page for simple DNN and fix some typos (1879)
* 87e1c78611345d048bac3337cfa849f0dca7eb77 fix: Remove case matching for erased generic type (1880)
* cd72bc921ebbb4e624142e5245d6241f0e382bc3 build: bump amannn/action-semantic-pull-request from 5.1.0 to 5.2.0 (1878)
* 564d04756a514d69ed43edd338f17e84e605a8a1 fix: fix bug 1869, DML .setFitIntercept should be set to true (1876)
* 392dbbf3583037d46f7b03e5cdf59323b5bead42 chore: update website docs to point to correct developer API docs (1877)
* 129abdebb384457fe07d48c591f96278b517c255 build: bump sideway/formula from 3.0.0 to 3.0.1 in /website (1874)
* 4d1c560d57bd25786516124924a7eb2bdaecd5a6 build: bump webpack from 5.75.0 to 5.76.1 in /website (1870)
* 62c79d84d9999a618a596a03bab12dfad05114ce docs: Fix a typo in installation docs
* 1f63dab87586607f774d6240718a6b59f1b8546f feat: Add a new function to DMLModel, getPValue (1863)
* 83f8260df14b15cd3260e087706aee494a1824e2 fix: Remove extraneous "Foo" type from Py codegen (1867)
* a5bec4577b305d19131e439a80bdaba8d46b1110 fix: Allow variable size in ONNX inputs (1851)
* 23c9b0ac7f49e2eb6c537b57490fd485b5b0e029 chore: Update pipeline.yaml for Azure Pipelines (1866)
* dedcbdac6ba10c9782106f04900e35678821e957 docs: fix link issue in CONTRIBUTING.md (1864)
* a7f31d552cc3d42896455d4f84810306928836d2 fix: Abstain from CodeQL for markdown-only changes (1865)
* a5f38b1732c089330457dd3d303f0608cf466a8f Update DoubleMLEstimator test CI verification (1862)
* a44f917d211acc1593632a710cd476e93419ea82 fix: fix style
* cc931aff41fb733473e49a533e91862f65b4e428 fix: update OpenAIEmbedding internalServiceType
* 424d586e2782593da988d3d917ca81d3ab1465bc feat: update default internal endpoint for cog services (1859)
* e4a0e2c381fd4b0638a47981e874046f74ae6f74 docs: fix a few issues in cognitive service demo (1861)
* 8a216cedea99f40d71a88ef9e8f3b0f6ea815abf chore: make sure nightly build has new commit

This list of changes was [auto generated](https://msdata.visualstudio.com/A365/_build/results?buildId=90675099&view=logs).</details>

Page 3 of 5

© 2025 Safety CLI Cybersecurity Inc. All Rights Reserved.