* Fix inheritance order in housing custom model wrapper * Add R2 metrics
0.1.14
Change logs:
* Simplify custom model wrapper API, now it can be specified in pipeline config * Move tests and examples folder to tabml folder * Use safe_load in yaml parser * Code cleanup
0.1.13.1
Small fixes:
* Replace config paths ending with `.pb` by `.yaml`
* clean up unused function * Replace os.path by pathlib.Path * Explicitly use params instead of config in main components * Load datasets if they exist in local, download otherwise * Move load_transformers to ModelInference initialization in inference.py
0.1.12
Change logs:
* Merge Trainer to ModelWrapper * Migrate all configs to yaml, configs are now validated by [pydantic](https://pydantic-docs.helpmanual.io/). This way users have more flexibility to defined parameters. * Miscs: - Allow users to specify `transformers.pickle` path. - Clean unused codes and packages
0.1.10
Change logs:
* Support xgboost and catboost * integrated with SHAP * remove old feature_importance (now replaced by SHAP feature_importance) * allow analyzing model on a subset of training data * miscs: clean up test datasets, reuse .isort.cfg, log model_type in mlflow