โ See also: [tsflex v0.2.2](https://github.com/predict-idlab/tsflex/releases/tag/v0.2.2) which is even more ๐ฅ than this one
New features
๐ Next to the [tsfresh integrations](https://predict-idlab.github.io/tsflex/features/integrations.html#tsflex.features.integrations.tsfresh_settings_wrapper), tsflex's feature extraction now fully integrates with [seglearn](https://predict-idlab.github.io/tsflex/features/integrations.html#tsflex.features.integrations.seglearn_wrapper) and [tsfel](https://predict-idlab.github.io/tsflex/features/integrations.html#tsflex.features.integrations.tsfel_feature_dict_wrapper) โฌ๏ธ
python
from seglearn.feature_functions import base_features
from tsfel.feature_extraction import get_features_by_domain
from tsflex.features import FeatureCollection, MultipleFeatureDescriptors
from tsflex.features.integrations import seglearn_feature_dict_wrapper, tsfel_feature_dict_wrapper
from tsflex.utils.data import load_empatica_data
Load sequence-indexed data (in this case a time-index)
df_tmp, df_acc = load_empatica_data(['tmp', 'acc'])
Construct your feature extraction configuration & extract features
fc = FeatureCollection(
MultipleFeatureDescriptors(
functions=[
*seglearn_feature_dict_wrapper(base_features()),
*tsfel_feature_dict_wrapper(get_features_by_domain('statistical')),
],
series_names=["TMP", "ACC_x", "ACC_y"],
windows=["5min", "15min"],
strides="5min"
)
)
fc.calculate(data=[df_tmp, df_acc], return_df=True)
Changes
๐ The `FeatureCollection.calculcate` it's feauture-DataFrame output now has a determenistic column order see - 40