Txtai

Latest version: v8.4.0

Safety actively analyzes 723685 Python packages for vulnerabilities to keep your Python projects secure.

Scan your dependencies

Page 2 of 9

8.0.0

🎉 We're excited to announce the release of txtai 8.0 🎉

_If you like txtai, please remember to give it a ⭐!_

7.5.1

This release adds the following new features, improvements and bug fixes.

Bug Fixes
--------------------------
- Update translation pipeline to use hf_hub_download for language detection (803)

7.5.0

**This release adds Speech to Speech RAG, new TTS models and Generative Audio features**

See below for full details on the new features, improvements and bug fixes.

New Features
--------------------------
- Add Speech to Speech example notebook (789)
- Add streaming speech generation (784)
- Add a microphone pipeline (785)
- Add an audio playback pipeline (786)
- Add Text to Audio pipeline (792)
- Add support for SpeechT5 ONNX exports with Text to Speech pipeline (793)
- Add audio signal processing and mixing methods (795)
- Add Generative Audio example notebook (798)
- Add example notebook covering open data access (782)

Improvements
--------------------------
- Issue with Language Specific Transcription Using txtai and Whisper (593)
- Update TextToSpeech pipeline to support speaker parameter (787)
- Update Text to Speech Generation Notebook (790)
- Update hf_hub_download methods to use cached_file (794)
- Require Python >= 3.9 (796)
- Upgrade pylint and black (797)

7.4.0

**This release adds the SQLite ANN, new text extraction features and a programming language neutral embeddings index format**

See below for full details on the new features, improvements and bug fixes.

New Features
--------------------------
- Add SQLite ANN (780)
- Enhance markdown support for Textractor (758)
- Update txtai index format to remove Python-specific serialization (769)
- Add new functionality to RAG application (753)
- Add bm25s library to benchmarks (757) Thank you a0346f102085fe9f!
- Add serialization package for handling supported data serialization methods (770)
- Add MessagePack serialization as a top level dependency (771)

Improvements
--------------------------
- Support `<pre>` blocks with Textractor (749)
- Update HF LLM to reduce noisy warnings (752)
- Update NLTK model downloads (760)
- Refactor benchmarks script (761)
- Update documentation to use base imports (765)
- Update examples to use RAG pipeline instead of Extractor when paired with LLMs (766)
- Modify NumPy and Torch ANN components to use np.load/np.save (772)
- Persist Embeddings index ids (only used when content storage is disabled) with MessagePack (773)
- Persist Reducer component with skops library (774)
- Persist NetworkX graph component with MessagePack (775)
- Persist Scoring component metadata with MessagePack (776)
- Modify vector transforms to load/save data using np.load/np.save (777)
- Refactor embeddings configuration into separate component (778)
- Document txtai index format (779)

Bug Fixes
--------------------------
- Translation: AttributeError: 'ModelInfo' object has no attribute 'modelId' (750)
- Change RAGTask to RagTask (763)
- Notebook 42 error (768)

7.3.0

**This release adds a new RAG front-end application template, streaming LLM and streaming RAG support along with significant text extraction improvements**

See below for full details on the new features, improvements and bug fixes.

New Features
--------------------------
- Add support for streaming LLM generation (680)
- Add RAG API endpoint (735)
- Add RAG deepdive notebook (737)
- Add RAG example application (743)

Improvements
--------------------------
- Improve textractor pipeline (748)
- Can't specify embedding model via API? (632)
- Configuration documentation update request (705)
- RAG alias for Extractor (732)
- Rename Extractor pipeline to RAG (736)
- Support max_seq_length parameter with model pooling (746)

Bug Fixes
--------------------------
- Fix issue with max tokens for llama.cpp components (733)
- Fix issue with loading non-transformer LLM models in Extractor/RAG pipeline (734)
- Fix issue with setting quantize=False in HFTrainer pipeline (747)

7.2.0

**This release adds Postgres integration for all components, LLM Chat Messages and vectorization with llama.cpp/LiteLLM**

See below for full details on the new features, improvements and bug fixes.

New Features
--------------------------
- Add pgvector ANN backend (698)
- Add RDBMS Graph (699)
- Add notebook covering txtai integration with Postgres (701)
- Add Postgres Full Text Scoring (713)
- Add support for chat messages in LLM pipeline (718)
- Add support for LiteLLM vector backend (725)
- Add support for llama.cpp vector backend (726)
- Add notebook showing to run RAG with llama.cpp and LiteLLM (728)

Improvements
--------------------------
- Split similarity extras install (696)
- Ensure config.path = None and config.path missing mean the same thing (704)
- Add close methods to ANN and Graph (711)
- Update finalizers to check object attributes haven't already been cleared (722)
- Update LLM pipeline to support GPU parameter with llama.cpp backend (724)
- Refactor vector module to support additional backends (727)

Bug Fixes
--------------------------
- Fix issue with database.search and empty scores (712)
- Update HFOnnx pipeline to default to opset 14 (719)
- Fix incompatibility with ONNX models and transformers>=4.41.0 (720)
- Fix incompatibility between latest skl2onnx and txtai (729)

Page 2 of 9

© 2025 Safety CLI Cybersecurity Inc. All Rights Reserved.