Changes:
* 84afdd36cd0b5e727fd6478c335bdef6cfc19930 Merge pull request 257 from SURGroup/Development
* 943a6504e14c11726a560f1d43ec3a58aa6171c2 Merge pull request 258 from SURGroup/feature/scientific_machine_learning
* cd631a6b88279a9319a715480a995bab2c515adc Update azure-pipelines.yml
* 35c14add84968190d0566b917885884c262a800b Update azure-pipelines.yml
* 23d7c3783d4f33cd28f14577412df3805335c546 Update azure-pipelines.yml
* 308ca0503224e716e5bf10852eca223732db30f6 Maximizes the Azure Pipeline job timeout
* c4fbf68152feb32394343437496231f533847923 Merge branch 'Development' into feature/scientific_machine_learning
* 31317de24e25e1db84667fb2448fae1b41579b6b added integration tests
* 19725d0b53e0f1d2f361ff7707c3083056220b2b corrected history logging
* af400c201816d7379e8e869ab4d246c646e47ea5 applied black formatting
<details><summary><b>See More</b></summary>
* 16fb0a28e6eee994fa4a42e60192dbd5a6e5351e fixed extra_repr for correct string representation
* 925433f721e8e91a3141445a7508974e7424c305 added tests to improve code coverage
* f327c7434b083719e1b61081063b92fdde2b6828 removed unused file
* 654d2a5da0fd45f09fd10533ccaa3590ebec2bc0 improved comparison operators
* 0935992518106f801184913083b6f483fcd9881b deleted unused code
* 98f98b31058677d89cc7dc28370930382c50ddb9 Update azure-pipelines.yml
* 4b17b0288e1c12e5c03bb7ae0ccab3a08a5821ab Merge branch 'master' into Development
* 96ad4832021af7740aec5fd55c114aa457c01bc3 Merge pull request 249 from SURGroup/feature/scientific_machine_learning
* f6a3e50a197e736a9b663599547ee6acf2614141 set all hypothesis tests to have max_example=1
* af0bdef219525b76e7574e743fd9b8a1b66e3146 reduce hypothesis parameters for simpler tests
* 272d69cc9dd9fa7d668c8ccbee334ee70505ca89 reduce hypothesis parameters for simpler tests
* f7867a90ecf9a46edfbc298982f4a1d97c574302 fixed failing tests
* dae7248e6692b7d29f0c49182ae111b25780c5a1 fixed grammar in documentation
* bbf09a5a31bab7a23773edee5d3cf1369c183bfc fixed device testing so it works on a cpu
* f4bb367d9b8456641ece775305eac5e1c39f0260 reduced hypothesis parameters to save time during PyTest on azure pipelines
* c29b95f0666f06ace6f408758c47242fcd25b3ad reduced max_examples in hypothesis to save time during PyTest on azure pipelines
* 6fd405d5a9e0717d5fe92fc6aa1107e5aea27dc3 reduced max_examples in hypothesis to save time during PyTest on azure pipelines
* 36123a25a006cb5916476e3df09089fa0b7935f4 removed slowest SciML tests to decrease azure pipeline runtime
* bad113a48300c4012e108fc8de3da3a2ae4c76c9 gave unique filenames to integration tests
* 0657866bb21f694142bb8ea9583d066bb790b2d4 gave unique filenames to functional tests
* d3b3dd9e9167d24a4233b4c617a39c5f734c8643 removed unused files
* eaed7818156bdef49421e735f1bc09c553cb4805 Merge remote-tracking branch 'origin/feature/scientific_machine_learning' into feature/scientific_machine_learning
* dc924f3ba2eb8bfe2c7188aabb30cc5e1f7e3d7f added hypothesis package to testing environment
* 5f1b0a5716bc6f5e3f37bd3e71f074b438281c75 Merge branch 'Development' into feature/scientific_machine_learning
* 3c0639d8e276395cfbe3ed4e41157225231535d5 removed unused files
* 716abccc0b707dacf6228a7a714735eb9415b782 added torch to ignored-modules and disabled E1102: torch.fft.rfft is not callable caused by the torch package
* 36f1f332c4a467dd2ea2a8e959d7be4916f926b2 improved docstring
* ef9ed1be29759b70691c786bfe41130b32ee93b5 finalized hmc example
* 9ad77bdecfc3abbe685d59ed868f12ba38d917d6 cleaned up and finalized FNO example for sphinx
* 000d4ed1c8279dc9da1a815f505d8cbe368a8632 updated HMC example
* 9f9b4268a27445570c836edaf5a3a793f58ebfb9 added FNO example
* fe363d2b04725ab85432f509865055bf64b9bfc5 added deterministic FNO example
* 785495a198290ce66a50a6dcf42f1e9015861165 removing old and unused HMC
* ff0b9f4779dcc840e24c29f6c4ba57ffd8ee68a2 Merge branch 'feature/scientific_machine_learning' of https://github.com/SURGroup/UQpy into feature/scientific_machine_learning
* 09e5e9bf66aa8d35fd415b78d925e062e7002215 Modified pyro example with HMC, not working yet
* 174d72a97899fd1e63049f495b279e2768c59a35 ignored torch module from PyLint
* a67b7adb4cef210d837a158feb206f0cffedc318 initialize history attribute with tensors to fix PyLint error
* c26ff82c4cb4850a3e5f4528b250f8b0e9f25e74 corrected variable in extra_repr
* 441394c54eb2b925747a43ba12c9533efcf39ef4 added torch and torchinfo
* 07d4578eca756fe8f8a30d3bfa2290fd241f4d46 merged commits from development branch
* d1c8a51a96819fb8793bb73a73a8091280df632d fixed typos in documentation
* 2b8a1dbeda7ace132230ec26330b17c2f6322a2e added scientific machine learning citations
* f137b260000ed3a65882e4d060a0e87de37a668d removed unused file
* 07432a4a3d3c03ab5f97e3ce98315fd3cb2b1c04 Merge branch 'feature/scientific_machine_learning' of https://github.com/SURGroup/UQpy into feature/scientific_machine_learning
* 1ae1c44405d95db07951ce64ec8a282c87472e7d - Added Unet example and data
* 1a5e67947eb5dac9c727a74fab5b89df13c06609 cleaned data loading in deeponet examples
* b70570d1a969fdeda945adb9ca412d0a83de93c3 cleaned data loading in deeponet examples
* 783b21e705a5cb8db86cbb1998ff573e50fc40a1 corrected deeponet elasticity examples
* 1756e07d9c1218edbe9afdc2171717457ac52379 corrected deeponet elasticity examples
* 1f2de4cc5337b9a7234adf1f511a4482558f70dd applied black formatting
* a9f40b3d8e33b03322a2ec64647f24b9f39467d6 added examples
* 1dd6cd60d795982185f5613930002f726f80cd5b Update azure-pipelines.yml
* 10178e62235901a8619362786f986c829a0e6a03 Update azure-pipelines.yml
* b3ad35147545a6da4dc30869b16292014fc64def Update azure-pipelines.yml
* 0b22cb3ff9cee955a36d4437ce408721b465902a Merge pull request 247 from SURGroup/feature/CI_improvements
* bc7de26ac304b3d2f9c0341159915d306a5f0e7e specific package versions for consistency with requirements.txt
* cbb634e23756db62e35887b7c119849abafeb57c cleaned up examples
* 63065cd45a63d9bf6cad6e0385895ac7b84cc5cf removed unused examples
* ae3fe832758869fa4216780a13c3472b2c8c7e5f fixed minor warnings
* 07a7cdc4e99a6addb521843679575bf3cf7d7830 disabled plotting in ReadTheDocs to save on compute time and memory
* 171a6d0e45eb1d1b2451dfcd9ad08117059bbf76 applied black formatting
* ce25471d07161e10d2ffd322827336d8bcd3c9b7 improved documentation
* 4308f6306480574ae3b77edfb8d7304517acbdfe Fixes SonarCloud PR target
* fa76c5727a73ed23e22421e9ba2eabac63269362 Removes deprecated custom conda channel commands and disables Sonarqube for PRs to Development
* b135b0b081ad3871836f48d6090f347bcf2a11b8 corrected test for new class architecture
* 4cf3560f7b58b6bb645a8253d99645ab5d56000b removed unused class
* 45c167e037ac39943ae706053665677425e6cc5c reformatted documentation for consistency
* bd550c12a876a241b6db6eadee7084f3bbc8c595 improved documentation and associated examples
* 44c9c604d71246dd55be794ef945e6cbabbb9664 Small modification to the description and documentation of the Unet class
* 9999ec7d800cf6d036e4c21499ff5d5aeded5244 Updated Unet class description and documentation
* 4221ff74d53ce0f6ab5a806c8c4b0797b33dc14c corrected naming convention
* bdde45c588457c05879b8578a2e191e739f922e5 fixed documentation typo
* a45c663daff44c5c9c1128b960c8f3cd61a55e3b fixed documentation typo
* bfe848694607b35f2500ac10d7b8bb6e0b47c2e9 removed unused class
* c1c611102a2145638c8603b63ec0ec5384fdf4fc unet improvements
* d3cf2c3788e3d3a74d02b5b9075e997377d2301f Added comments on the Unet neural code and documentation
* 828e5bbfcd2c3fdb5c9ca21f8609f9f9ce4aa253 pull to commit
* 0b31f4bd7363114905a09ab9a22044fa03b8e370 improved test
* ccd717de4e0bce18cd12caa9dc63f0a2a9ff57b8 improved documentation
* 72c869ef7489e62ed493064c2fbab35a311aca01 fixed test
* f68410b357db0828b58fb1003e7ec3cfee1f45b8 renamed lamda to beta
* 192d61aa6762540e5124377c73bf1ab320487bb9 deleted unused loss
* 9dd1115442d24b5c80047a24c840cee3e2cf8f5d Merge branch 'feature/scientific_machine_learning' of https://github.com/SURGroup/UQpy into feature/scientific_machine_learning
* 521733630b6476ba00380070308913d6103078dc Merge remote-tracking branch 'origin/feature/scientific_machine_learning' into feature/scientific_machine_learning
* ee6f3a66e0f5be7354c626fcc65abef098a09053 simplified the valid input/output shapes
* 83d8881c48e4895a97c17a590c3ff78e651fac06 implemented and standardized n_samples parameter in monte carlo sampling
* 4a4b203c0d1b0795f6e3b20953c831e925b70afb Renamed KL weighting from beta to lamda
* 8101468c76445eedfc33bf5d34f6aac6ae75f7a3 improved handling of tensor shapes and documentation
* 05d1a2f83e133d839ad77faefbe0b6c76758bb84 deleted code that is out of scope
* 42b1bf676c6ee2b59d7a8564682ea340f1c4c058 fixed typos
* 9a906246d2561a27606bd240daa76cf10a2cdba8 corrected typo in latex
* 67842a4d03942386b7a7944a7fdbc9cd17473ad5 added examples to documentation
* 3078833702c7e432b92ef50b52c3edd804d40a7d added example for feed forward neural network
* b551e6ec5f1ecbf3dbc16e6477750543c6003033 corrected extra_repr function to work with new keywords for prior and posterior distributions
* 3d9a9e303ea13219f44743fcedec4c8a43c1b603 improved documentation
* e3742a8c9b9cfe04ae3b5d6302a90c9d0d9ded3b fixed documentation formatting
* 072493f1ae13ef2f9591ee5398c7d42cf464711c added formula to documentation
* 8a1993204abb9749133a2650086f4269254cb049 fixed documentation formatting
* 0b15cca0e2872abdc3a1da5509817a70edcb560f added tests and documentation for LpLoss.py
* 768aaebda49cc7476300cc6d5d93f5ce2d7e925a fixed documentation
* 2641ca287e500a4df8666fb2bf5caa1bb16c3671 fixed documentation formatting
* 3d1b0f85874623eeb61bdfa3c7b923659508b4a1 fixed documentation typo
* 9b441402586dffdd4e19b0b84b4669a77a32326e Merge remote-tracking branch 'origin/feature/scientific_machine_learning' into feature/scientific_machine_learning
* 7a9135ba960e9a7b45f154d6f631895ec714da56 replace dictionary of prior and initial posterior distributions with keyword inputs
* 5b08065ee8a98e29a67180a3c9fe4a1121af5f53 updated Modules for changes to relevant functional calls
* 2777744f00e8ca43b9544ca7401ed8fc74269eda updated Modules for changes to relevant functional calls
* 0af954fc8fc0da760cb8726193e60e9a2eb8e6b2 improved documentation
* 131a93674cf8ca3312dff3cb0f4cf0b87f8910e2 typed hinting alpha
* 48c149dd19ac77f4263bce25f1cec0d9df0ce460 updated references
* 10ccaecf28a673a42614c6715736740fa828f550 improved documentation
* 7cdded4080ceb4f6a7e9f09a2551e7f48bc3f0b8 improved documentation
* 8cc5259d2c85387e486bf7bb3f71929c9fd07858 removed tests referring to deleted classes
* 0e42a4927ed2f21246cbce3c0f83dfdbd6a7c188 added Torch6DComplexTensor for use in spectral convolutions
* 094b441f8e79541a6af1b2928c81a5afb928eee5 cleaned up documentation
* dbec99ab15269bba5aa40f0e3ebb6c03fb6a7543 combined weights for spectral convolution into a single tensor
* bd89a66a499135d99e99f04a9afaa61121d2711b renamed parent BayesianLayer to NormalBayesianLayer
* e05eefa96e944f66152f2f0a9a9351237a0ebd0c renamed dropout to ProbabilisticDropout to prevent naming conflicts with Torch
* a5c2a877bb45a950c810ce73fc3f8b5d4e6ad874 simplified documentation hierarchy
* c9c05f272445641ce56d90d5ac8cb92479dd27e2 fixed typos in documentation
* c02ae4352df0e612d9c6c039e2c5e85c28edf95a added beartype
* 711235b096ba56f8a324630be535cdb7ec747166 corrected typos in documentation
* 566b453595ae31404bb3b8bcf6959b3c793d5e92 moved all activations to layers. deleted all references to activations.
* 22636815066df8ef26fe5b21d9acaf948a5ddfd8 moved all activations to layers
* f7b2ba61eb9f06d551f20cda5bf6a1391023c17d simplified methods and improved documentation
* 48b01434a697de4e0d85e4278ca63ee0d7369dc0 Merge branch 'feature/scientific_machine_learning' of https://github.com/SURGroup/UQpy into feature/scientific_machine_learning
* f815d8dbfca9162396558361b069742ad98ecc9c commit to pull
* 3d8a3c17ad7e9d02c90bc3517f0017f3a2a86bd4 replaced deprecated torch.norm with stable torch.linalg.vector_norm
* b87b7b5f7e41a508f3ea5cc0130d3835ee47afe9 improved documentation and simplifed class methods
* 35ea09c263dee45476c53f7da0c9a5ff0a6a0296 added input to specify which dimensions to reduce over
* 34efb202e365475d472b5e7b7acd8c9a79d71c8b fixed and added tests for bias=False in Bayesian layers
* 0cf78d8557aedee8e42c6d04e8280ffb48dd89e0 improved existing test, added device test
* 98b65f0b54ee8ab20fec9025b0467bcb69bd0fc6 deleted tests from unused class
* 050f0c43dac4471ef5d084f62e20090b2720cb0a improved documentation
* 4f1321d73aa090c4203759e15f82597293c65ddc improved documentation and added device support
* aa74b54b8ede160e60d3891f67009a1d84067a21 improved extra_repr
* bb350e66d631d332757af31eac17a5755f670812 added typehints and device support
* a7c9f7a3f88260f3f10209e8fc3eb5a194795f84 fixed typos
* 55cc7875be14a567d95095cef0617801d2abea3c removed unused FourierNeuralOperator.py code
* faa9025d701c3bb7344e0e75053151aeb479dca5 attempt at rewriting HMC trainer
* 011fb9cae44a41296f6b126428e3a2b8f96973b3 improved naming conventions and docstrings
* 2c73d13765e3af3071dfb7b58eda469f55e9f0da improved docstring
* 11aba5e4372ef03b746dfdcdfa7241f491774683 minor changes, many to-dos
* bb1056e12b4199ffa354c56b35048fd005bb1569 improved docstring
* 830b8a38e123b92f4a174697ebdbd012673fe0f9 deleted incorrect class
* aa1007ff5f76c28f22d60cac77d1a4340485e331 corrected device implementation
* 8812ce51e4b397887857742704c6c4bb2286e498 fixed spelling
* 5a4ccb55e42c8fb995582123300cb7bb4a81744f cleaned up example
* f4024748dd7e4b139454def74d3f1211ea3aee20 added pairplot
* b19568f66f952b841d7ea338f058f1599f087049 corrected einsum to handle multiple outputs
* a25344ee463b22abc9110c82fa0e05cba3ac5ed0 added new histogram, improved print statements, added commentary
* 437b0207e7e10680fd68d796db52141056b01e1c alphabetized
* 5805c7d195ba1a82381ca800a4ff510a07da70eb improved documentation
* 93f1dc49626a9a572e7bab626f3b98735d2edc7d improved documentation
* dc636f299808006c81a785de6aae4d3b235b491a improved documentation
* 8a931c22bf838c62d464ca0706c57078eaba8aa1 improved documentation
* 4f5b12aafe56025bcad5addb7945db0282844c79 improved documentation and spelling
* 64eb8b602e72f2d7f903e1bba17cba2de6fc656b improved documentation and spelling
* b0b06e0d20820501009ee63fca6a797a07e76a53 Pulled for updates
* 57d0c282ef4b5af384db843e948871153ca262a9 updated tests
* df0c807355e5fcd1b3cbe356f0358b027528698d applied formatting
* 6766838081bb5d5e7f1f3a937ef72f10c8f4d71f deleted gaussianJS, replaced it with GeneralizedJensonShannonDivergence.py
* fcbcab4af91e2f609565502f2bee9af2022ba4c5 Merge remote-tracking branch 'origin/feature/scientific_machine_learning' into feature/scientific_machine_learning
* 21211745f1aa4559e44b9d6264032dd9942e2e4f simplified keywords and for loop, added device
* 20c889a1bced42e2946fa3d27342369de4c9a775 simplified keywords and for loop
* f7b7aec87a36bd29f78336bcb53f99591269e7f1 changed spectral weights to torch.float and convert to complex as needed
* 6628b06d2c249d3eaedcdced1b5309cf43446df3 Added loss function to evaluate Geometric JS divergence
* 98ec870ccee3208757be809c0015e0c90982d4e2 Added loss function to evaluate Geometric JS divergence
* 34f1b043f3b44c88124f1d88f1b95797b775094d added self.bias attribute
* 54cf6a85885120e4e7eec09721de538ef8c4b922 changed keywords
* 60f16ab8a084ea958d022ac837e7f80ce0b26b6b added tests
* 787330612dbdab3bed72d9111cf948286fb724f7 improved docstrings
* fdecc4bb0aa56d41319249536a792cdf9024843e added attributes to docstrings
* 7a62a716766165b45b6f4c0ca0bd41ab2cb8f766 fixed typos
* 248df4fdec0c7e92a0ec6fd50b8f014c50464a23 improved docstrings
* d0d567fa765a662f64a801ff603e76bb21fb2e33 fixed typos
* 62e24adc94959e348a0d84b48a3242a1da7bf49b improved tests
* 4bed62602e70b64ad71f309733d0a86ed8a909a2 moved to folder
* eee6624fc3c055832fd4f3021dcc8a456bc36159 made divegences consistent with BayesianLayer design
* b7f59bf62c1925684934860fc0986441b30c800b Merge remote-tracking branch 'origin/feature/scientific_machine_learning' into feature/scientific_machine_learning
* 97cdf6aac88bef1440b3f732e80ce72dadb928a4 switched naming conventions for consistency with Pytorch
* 88096e55a2007809c8deb50db6dcae463aa141f6 improved documentation
* b9f2fbeb48f3fcfcd3552877e43b8724295a9049 overhauled for new BayesianLayer implementation
* e75eafaa39cdc4fff839125651cd92a86463fb13 updated for new BayesianLayer implementation
* 3b1b202ff7bcbacaada73357275532841b8e4b33 improved documentation
* cc3c861bb44ffb80aabd3b32e9b16338b70471e1 Added loss function for Monte Carlo KL evaluation
* 98b63620bd1445d604059d419060c13e37c5aa04 Added loss function for Monte Carlo KL evaluation
* bdddd7425ce691490873eba7eb63654c41e52aae Added loss function for Monte Carlo KL evaluation
* bbb8b875033c75a8d3c0689e502360b8e4385c2d optimized MC computation
* 4c49c9400f4329b6680c8189fc04372522b53e75 renamed test for clarity
* bc8763def0ad3b26d203d576f24bbf7a2ec6a47b Corrected naming convention in parameters (sigma to rho)
* 2d0d8bf5d7d1ba1d8b1ab9d45f77ae32d5be4dd4 Computing KL with Monte Carlo samples
* f0d04553f1a9a7c017444560ceb19c83c570db3b Initial commit of BayesianConv3d.py
* 2069024870e10b6332b07b12a9b7f349aa49142e Initial commit of BayesianConv3d.py
* decc4f250a7e202547f9d7a9b531ff37b1057def Merge branch 'feature/scientific_machine_learning' of https://github.com/SURGroup/UQpy into feature/scientific_machine_learning
* 5247c2a5fb6705b841ba450c3794b4c61e13d09c improved tests
* bf17f5d78f361a00f5b20f0b7003f3ce357bdae4 improved init of parameters via reset_parameters
* 6888bbff0ccfdf8406c2b00cb2bef7054e08f4ee added bias to convolution, improved init of parameters
* 1e85f0236030054b5801a99849b81345ea48c851 added reset_parameters for standardization
* fedac57aab7d00354c47932a27b7291e37c377c1 cleaned up docstrings
* 55186e2c2070c01284edcd9222069dfd83128621 added bias to convolution and standardized parameter initialization
* 3b8a6bf7b8a870f04c4662f06b3f94a926a36be5 updated attribute names
* bc8cd2eb1d6ccc08828e8ff648a8b30aad98f455 improved tests
* bcb8603a6da763f2cd50b47ed3aa2122f9a39fd2 Moved sampling and dropping attributes to child class, BayesianLayer
* 0b66ab653eea09014cc5e8675551c74616ec364b added arbitrary number of Bayesian parameters to BayesianLayer.py, implemented calls in all child classes
* 467e146ce65bc6f23b483a37ca85b0e9f620dc87 updated tests
* 15136c9d4161a86b0f9488daa66519154631a4d7 removed kwargs on init
* 4bda97d30d8931a9feb72d8425ef282075f88796 changed default tolerance, minor tweak to training loop
* 29929fed4f2892c4404c2d4cad9a22c017afd963 added device test
* a83bd7ba27f04c942a660f5e07c6ae699606c2bf improved device and dtype tests
* c23058bddf2583f6904ec258437b99174c27f4bb added device as init argument
* 8db5ff7540261f4d66523e6b7b2b6ceabc8989a9 added device as init argument
* 98ded0dbe68496b3d10f15865244945783c25a53 removed outdated tests
* f29c604396439365185673978c8da1fa847e7685 added test to standardize sampling, dropping, and training
* e6e85e9a21eb62718f1adb6032edc1313b1d9c1b changed to standard imports
* c692fb9d4650c73b511647a887fce63b41e44998 standardized sampling, dropping, and training on init
* 288edb492a42df6c84744df07e88cde1f22f7bf6 added markdown
* 29eb27ebdde1a797cd0d7c7efe54dc8c63e45b34 added initialization arguments for device and dtype
* 285f3efbb5afe14c70de1b72b6e26c6fedd1e1fa added markdown
* 02a9e7b3a9883f8d2937abfd6a8d86418370db39 improved scheduler to handle reduce on plateau
* 0e14bc97e3d1e8474a4704de8ac4cb987eb1190c removed todo
* fae5fd45d49525e336ea1a6813fb5b53f4f48778 added bayesian quickstart examples
* 88bb9dad307d68631891ecb850114cf5a3dab9d4 updated scheduler code to handle ReduceLROnPlateau
* bf9b2d4d7224d8fce50d6d14ec5a42ff5a78bd38 fixed docstring typo
* 7f6b57ef35bc757c859db34d85bcd01a550995fb fixed warning caused by docstring
* cf0a335b4585ce413a20925219a128a5ccd01c1b removed dependency on self.training. Now only sampling matters
* 4ef0b27d4f2f0e7309c857279db3ccdfadd60335 tried unpacking operator in forward
* 6d841beadce6d704021b335022a71c8c9ef6e440 changed default reduction="sum"
* 78ee75a6e02e72ef973c1fe39314ae8e5703f8a3 improved tests
* 998f3d31b562391ef93a1116e7eca886ac8e95d3 improved tests
* 429d31ecbc94b6066773eb997d8f6c6af6dad26e improved tests
* 8f4720dd53e631530220fa313fffb667d55cf604 improved docstring, added shape and example
* 3497d4d7b250c105e46ada1fc1c739f599af8627 improved docstring
* 8da781420b89b3bbad8c4297301de4a7a819dbc8 cleaned up extra_repr
* b5bcb0c33e54dd33557276b94ad3bf1fced9c685 fixed method return
* 5cf9dd818f1ede92a24654690206f0bb69b2c346 cleaned up docstring
* a6bd92c7cd3f508982e53909f481ee39dc110064 cleaned up docstring
* 9aa940f7cb8b890c1d875db7109b1bd9a13ccd7c added shape and example placeholder in docstring
* 89d54e8e28ce93d1035f1dc24203bbad27fdc661 cleaned up file structure
* 93ec3357c5ae2f37dcf8d5ebc1a6fa9b57af8d14 removed unneeded standalone spectral layers
* 421fde9e0834ea6dffbf8947b7866cd9d2bedd5f standard normalizer implementation and documentation
This list of changes was [auto generated](https://dev.azure.com/UQpy/UQpy/_build/results?buildId=1442&view=logs).</details>