Apache-beam

Latest version: v2.64.0

Safety actively analyzes 723158 Python packages for vulnerabilities to keep your Python projects secure.

Scan your dependencies

Page 7 of 9

2.31.0

Not secure
I/Os

* Fixed bug in ReadFromBigQuery when a RuntimeValueProvider is used as value of table argument (Python) ([BEAM-12514](https://issues.apache.org/jira/browse/BEAM-12514)).

New Features / Improvements

* `CREATE FUNCTION` DDL statement added to Calcite SQL syntax. `JAR` and `AGGREGATE` are now reserved keywords. ([BEAM-12339](https://issues.apache.org/jira/browse/BEAM-12339)).
* Flink 1.13 is now supported by the Flink runner ([BEAM-12277](https://issues.apache.org/jira/browse/BEAM-12277)).
* Python `TriggerFn` has a new `may_lose_data` method to signal potential data loss. Default behavior assumes safe (necessary for backwards compatibility). See Deprecations for potential impact of overriding this. ([BEAM-9487](https://issues.apache.org/jira/browse/BEAM-9487)).

Breaking Changes

* Python Row objects are now sensitive to field order. So `Row(x=3, y=4)` is no
longer considered equal to `Row(y=4, x=3)` (BEAM-11929).
* Kafka Beam SQL tables now ascribe meaning to the LOCATION field; previously
it was ignored if provided.
* `TopCombineFn` disallow `compare` as its argument (Python) ([BEAM-7372](https://issues.apache.org/jira/browse/BEAM-7372)).
* Drop support for Flink 1.10 ([BEAM-12281](https://issues.apache.org/jira/browse/BEAM-12281)).

Deprecations

* Python GBK will stop supporting unbounded PCollections that have global windowing and a default trigger in Beam 2.33. This can be overriden with `--allow_unsafe_triggers`. ([BEAM-9487](https://issues.apache.org/jira/browse/BEAM-9487)).
* Python GBK will start requiring safe triggers or the `--allow_unsafe_triggers` flag starting with Beam 2.33. ([BEAM-9487](https://issues.apache.org/jira/browse/BEAM-9487)).

2.30.0

Not secure
I/Os

* Allow splitting apart document serialization and IO for ElasticsearchIO
* Support Bulk API request size optimization through addition of ElasticsearchIO.Write.withStatefulBatches

New Features / Improvements

* Added capability to declare resource hints in Java and Python SDKs ([BEAM-2085](https://issues.apache.org/jira/browse/BEAM-2085)).
* Added Spanner IO Performance tests for read and write. (Python) ([BEAM-10029](https://issues.apache.org/jira/browse/BEAM-10029)).
* Added support for accessing GCP PubSub Message ordering keys, message IDs and message publish timestamp (Python) ([BEAM-7819](https://issues.apache.org/jira/browse/BEAM-7819)).
* DataFrame API: Added support for collecting DataFrame objects in interactive Beam ([BEAM-11855](https://issues.apache.org/jira/browse/BEAM-11855))
* DataFrame API: Added [apache_beam.examples.dataframe](https://github.com/apache/beam/tree/master/sdks/python/apache_beam/examples/dataframe) module ([BEAM-12024](https://issues.apache.org/jira/browse/BEAM-12024))
* Upgraded the GCP Libraries BOM version to 20.0.0 ([BEAM-11205](https://issues.apache.org/jira/browse/BEAM-11205)).
For Google Cloud client library versions set by this BOM, see [this table](https://storage.googleapis.com/cloud-opensource-java-dashboard/com.google.cloud/libraries-bom/20.0.0/artifact_details.html).

Breaking Changes

* Drop support for Flink 1.8 and 1.9 ([BEAM-11948](https://issues.apache.org/jira/browse/BEAM-11948)).
* MongoDbIO: Read.withFilter() and Read.withProjection() are removed since they are deprecated since
Beam 2.12.0 ([BEAM-12217](https://issues.apache.org/jira/browse/BEAM-12217)).
* RedisIO.readAll() was removed since it was deprecated since Beam 2.13.0. Please use
RedisIO.readKeyPatterns() for the equivalent functionality.
([BEAM-12214](https://issues.apache.org/jira/browse/BEAM-12214)).
* MqttIO.create() with clientId constructor removed because it was deprecated since Beam
2.13.0 ([BEAM-12216](https://issues.apache.org/jira/browse/BEAM-12216)).

2.29.0

Not secure
Highlights

* Spark Classic and Portable runners officially support Spark 3 ([BEAM-7093](https://issues.apache.org/jira/browse/BEAM-7093)).
* Official Java 11 support for most runners (Dataflow, Flink, Spark) ([BEAM-2530](https://issues.apache.org/jira/browse/BEAM-2530)).
* DataFrame API now supports GroupBy.apply ([BEAM-11628](https://issues.apache.org/jira/browse/BEAM-11628)).

I/Os

* Added support for S3 filesystem on AWS SDK V2 (Java) ([BEAM-7637](https://issues.apache.org/jira/browse/BEAM-7637))

New Features / Improvements

* DataFrame API now supports pandas 1.2.x ([BEAM-11531](https://issues.apache.org/jira/browse/BEAM-11531)).
* Multiple DataFrame API bugfixes ([BEAM-12071](https://issues.apache.org/jira/browse/BEAM-12071), [BEAM-11929](https://issues.apache.org/jira/browse/BEAM-11929))

Breaking Changes

* Deterministic coding enforced for GroupByKey and Stateful DoFns. Previously non-deterministic coding was allowed, resulting in keys not properly being grouped in some cases. ([BEAM-11719](https://issues.apache.org/jira/browse/BEAM-11719))
To restore the old behavior, one can register `FakeDeterministicFastPrimitivesCoder` with
`beam.coders.registry.register_fallback_coder(beam.coders.coders.FakeDeterministicFastPrimitivesCoder())`
or use the `allow_non_deterministic_key_coders` pipeline option.

Deprecations

* Support for Flink 1.8 and 1.9 will be removed in the next release (2.30.0) ([BEAM-11948](https://issues.apache.org/jira/browse/BEAM-11948)).

2.28.0

Not secure
Highlights
* Many improvements related to Parquet support ([BEAM-11460](https://issues.apache.org/jira/browse/BEAM-11460), [BEAM-8202](https://issues.apache.org/jira/browse/BEAM-8202), and [BEAM-11526](https://issues.apache.org/jira/browse/BEAM-11526))
* Hash Functions in BeamSQL ([BEAM-10074](https://issues.apache.org/jira/browse/BEAM-10074))
* Hash functions in ZetaSQL ([BEAM-11624](https://issues.apache.org/jira/browse/BEAM-11624))
* Create ApproximateDistinct using HLL Impl ([BEAM-10324](https://issues.apache.org/jira/browse/BEAM-10324))

I/Os

* SpannerIO supports using BigDecimal for Numeric fields ([BEAM-11643](https://issues.apache.org/jira/browse/BEAM-11643))
* Add Beam schema support to ParquetIO ([BEAM-11526](https://issues.apache.org/jira/browse/BEAM-11526))
* Support ParquetTable Writer ([BEAM-8202](https://issues.apache.org/jira/browse/BEAM-8202))
* GCP BigQuery sink (streaming inserts) uses runner determined sharding ([BEAM-11408](https://issues.apache.org/jira/browse/BEAM-11408))
* PubSub support types: TIMESTAMP, DATE, TIME, DATETIME ([BEAM-11533](https://issues.apache.org/jira/browse/BEAM-11533))

New Features / Improvements

* ParquetIO add methods _readGenericRecords_ and _readFilesGenericRecords_ can read files with an unknown schema. See [PR-13554](https://github.com/apache/beam/pull/13554) and ([BEAM-11460](https://issues.apache.org/jira/browse/BEAM-11460))
* Added support for thrift in KafkaTableProvider ([BEAM-11482](https://issues.apache.org/jira/browse/BEAM-11482))
* Added support for HadoopFormatIO to skip key/value clone ([BEAM-11457](https://issues.apache.org/jira/browse/BEAM-11457))
* Support Conversion to GenericRecords in Convert.to transform ([BEAM-11571](https://issues.apache.org/jira/browse/BEAM-11571)).
* Support writes for Parquet Tables in Beam SQL ([BEAM-8202](https://issues.apache.org/jira/browse/BEAM-8202)).
* Support reading Parquet files with unknown schema ([BEAM-11460](https://issues.apache.org/jira/browse/BEAM-11460))
* Support user configurable Hadoop Configuration flags for ParquetIO ([BEAM-11527](https://issues.apache.org/jira/browse/BEAM-11527))
* Expose commit_offset_in_finalize and timestamp_policy to ReadFromKafka ([BEAM-11677](https://issues.apache.org/jira/browse/BEAM-11677))
* S3 options does not provided to boto3 client while using FlinkRunner and Beam worker pool container ([BEAM-11799](https://issues.apache.org/jira/browse/BEAM-11799))
* HDFS not deduplicating identical configuration paths ([BEAM-11329](https://issues.apache.org/jira/browse/BEAM-11329))
* Hash Functions in BeamSQL ([BEAM-10074](https://issues.apache.org/jira/browse/BEAM-10074))
* Create ApproximateDistinct using HLL Impl ([BEAM-10324](https://issues.apache.org/jira/browse/BEAM-10324))
* Add Beam schema support to ParquetIO ([BEAM-11526](https://issues.apache.org/jira/browse/BEAM-11526))
* Add a Deque Encoder ([BEAM-11538](https://issues.apache.org/jira/browse/BEAM-11538))
* Hash functions in ZetaSQL ([BEAM-11624](https://issues.apache.org/jira/browse/BEAM-11624))
* Refactor ParquetTableProvider ([](https://issues.apache.org/jira/browse/))
* Add JVM properties to JavaJobServer ([BEAM-8344](https://issues.apache.org/jira/browse/BEAM-8344))
* Single source of truth for supported Flink versions ([](https://issues.apache.org/jira/browse/))
* Use metric for Python BigQuery streaming insert API latency logging ([BEAM-11018](https://issues.apache.org/jira/browse/BEAM-11018))
* Use metric for Java BigQuery streaming insert API latency logging ([BEAM-11032](https://issues.apache.org/jira/browse/BEAM-11032))
* Upgrade Flink runner to Flink versions 1.12.1 and 1.11.3 ([BEAM-11697](https://issues.apache.org/jira/browse/BEAM-11697))
* Upgrade Beam base image to use Tensorflow 2.4.1 ([BEAM-11762](https://issues.apache.org/jira/browse/BEAM-11762))
* Create Beam GCP BOM ([BEAM-11665](https://issues.apache.org/jira/browse/BEAM-11665))

Breaking Changes

* The Java artifacts "beam-sdks-java-io-kinesis", "beam-sdks-java-io-google-cloud-platform", and
"beam-sdks-java-extensions-sql-zetasql" declare Guava 30.1-jre dependency (It was 25.1-jre in Beam 2.27.0).
This new Guava version may introduce dependency conflicts if your project or dependencies rely
on removed APIs. If affected, ensure to use an appropriate Guava version via `dependencyManagement` in Maven and
`force` in Gradle.

2.27.0

Not secure
I/Os
* ReadFromMongoDB can now be used with MongoDB Atlas (Python) ([BEAM-11266](https://issues.apache.org/jira/browse/BEAM-11266).)
* ReadFromMongoDB/WriteToMongoDB will mask password in display_data (Python) ([BEAM-11444](https://issues.apache.org/jira/browse/BEAM-11444).)
* Support for X source added (Java/Python) ([BEAM-X](https://issues.apache.org/jira/browse/BEAM-X)).
* There is a new transform `ReadAllFromBigQuery` that can receive multiple requests to read data from BigQuery at pipeline runtime. See [PR 13170](https://github.com/apache/beam/pull/13170), and [BEAM-9650](https://issues.apache.org/jira/browse/BEAM-9650).

New Features / Improvements

* Beam modules that depend on Hadoop are now tested for compatibility with Hadoop 3 ([BEAM-8569](https://issues.apache.org/jira/browse/BEAM-8569)). (Hive/HCatalog pending)
* Publishing Java 11 SDK container images now supported as part of Apache Beam release process. ([BEAM-8106](https://issues.apache.org/jira/browse/BEAM-8106))
* Added Cloud Bigtable Provider extension to Beam SQL ([BEAM-11173](https://issues.apache.org/jira/browse/BEAM-11173), [BEAM-11373](https://issues.apache.org/jira/browse/BEAM-11373))
* Added a schema provider for thrift data ([BEAM-11338](https://issues.apache.org/jira/browse/BEAM-11338))
* Added combiner packing pipeline optimization to Dataflow runner. ([BEAM-10641](https://issues.apache.org/jira/browse/BEAM-10641))
* Support for the Deque structure by adding a coder ([BEAM-11538](https://issues.apache.org/jira/browse/BEAM-11538))

Breaking Changes

* HBaseIO hbase-shaded-client dependency should be now provided by the users ([BEAM-9278](https://issues.apache.org/jira/browse/BEAM-9278)).
* `--region` flag in amazon-web-services2 was replaced by `--awsRegion` ([BEAM-11331](https://issues.apache.org/jira/projects/BEAM/issues/BEAM-11331)).

2.26.0

Not secure
Highlights

* Splittable DoFn is now the default for executing the Read transform for Java based runners (Spark with bounded pipelines) in addition to existing runners from the 2.25.0 release (Direct, Flink, Jet, Samza, Twister2). The expected output of the Read transform is unchanged. Users can opt-out using `--experiments=use_deprecated_read`. The Apache Beam community is looking for feedback for this change as the community is planning to make this change permanent with no opt-out. If you run into an issue requiring the opt-out, please send an e-mail to [userbeam.apache.org](mailto:userbeam.apache.org) specifically referencing BEAM-10670 in the subject line and why you needed to opt-out. (Java) ([BEAM-10670](https://issues.apache.org/jira/browse/BEAM-10670))

I/Os

* Java BigQuery streaming inserts now have timeouts enabled by default. Pass `--HTTPWriteTimeout=0` to revert to the old behavior. ([BEAM-6103](https://issues.apache.org/jira/browse/BEAM-6103))
* Added support for Contextual Text IO (Java), a version of text IO that provides metadata about the records ([BEAM-10124](https://issues.apache.org/jira/browse/BEAM-10124)). Support for this IO is currently experimental. Specifically, **there are no update-compatibility guarantees** for streaming jobs with this IO between current future verisons of Apache Beam SDK.

New Features / Improvements
* Added support for avro payload format in Beam SQL Kafka Table ([BEAM-10885](https://issues.apache.org/jira/browse/BEAM-10885))
* Added support for json payload format in Beam SQL Kafka Table ([BEAM-10893](https://issues.apache.org/jira/browse/BEAM-10893))
* Added support for protobuf payload format in Beam SQL Kafka Table ([BEAM-10892](https://issues.apache.org/jira/browse/BEAM-10892))
* Added support for avro payload format in Beam SQL Pubsub Table ([BEAM-5504](https://issues.apache.org/jira/browse/BEAM-5504))
* Added option to disable unnecessary copying between operators in Flink Runner (Java) ([BEAM-11146](https://issues.apache.org/jira/browse/BEAM-11146))
* Added CombineFn.setup and CombineFn.teardown to Python SDK. These methods let you initialize the CombineFn's state before any of the other methods of the CombineFn is executed and clean that state up later on. If you are using Dataflow, you need to enable Dataflow Runner V2 by passing `--experiments=use_runner_v2` before using this feature. ([BEAM-3736](https://issues.apache.org/jira/browse/BEAM-3736))
* Added support for NestedValueProvider for the Python SDK ([BEAM-10856](https://issues.apache.org/jira/browse/BEAM-10856)).

Breaking Changes

* BigQuery's DATETIME type now maps to Beam logical type org.apache.beam.sdk.schemas.logicaltypes.SqlTypes.DATETIME
* Pandas 1.x is now required for dataframe operations.

Known Issues

* Non-idempotent combiners built via `CombineFn.from_callable()` or `CombineFn.maybe_from_callable()` can lead to incorrect behavior. ([BEAM-11522](https://issues.apache.org/jira/browse/BEAM-11522)).

Page 7 of 9

© 2025 Safety CLI Cybersecurity Inc. All Rights Reserved.