Apache-beam

Latest version: v2.64.0

Safety actively analyzes 723158 Python packages for vulnerabilities to keep your Python projects secure.

Scan your dependencies

Page 8 of 9

2.25.0

Not secure
Highlights

* Splittable DoFn is now the default for executing the Read transform for Java based runners (Direct, Flink, Jet, Samza, Twister2). The expected output of the Read transform is unchanged. Users can opt-out using `--experiments=use_deprecated_read`. The Apache Beam community is looking for feedback for this change as the community is planning to make this change permanent with no opt-out. If you run into an issue requiring the opt-out, please send an e-mail to [userbeam.apache.org](mailto:userbeam.apache.org) specifically referencing BEAM-10670 in the subject line and why you needed to opt-out. (Java) ([BEAM-10670](https://issues.apache.org/jira/browse/BEAM-10670))

I/Os

* Added cross-language support to Java's KinesisIO, now available in the Python module `apache_beam.io.kinesis` ([BEAM-10138](https://issues.apache.org/jira/browse/BEAM-10138), [BEAM-10137](https://issues.apache.org/jira/browse/BEAM-10137)).
* Update Snowflake JDBC dependency for SnowflakeIO ([BEAM-10864](https://issues.apache.org/jira/browse/BEAM-10864))
* Added cross-language support to Java's SnowflakeIO.Write, now available in the Python module `apache_beam.io.snowflake` ([BEAM-9898](https://issues.apache.org/jira/browse/BEAM-9898)).
* Added delete function to Java's `ElasticsearchIOWrite`. Now, Java's ElasticsearchIO can be used to selectively delete documents using `withIsDeleteFn` function ([BEAM-5757](https://issues.apache.org/jira/browse/BEAM-5757)).
* Java SDK: Added new IO connector for InfluxDB - InfluxDbIO ([BEAM-2546](https://issues.apache.org/jira/browse/BEAM-2546)).
* Config options added for Python's S3IO ([BEAM-9094](https://issues.apache.org/jira/browse/BEAM-9094))

New Features / Improvements

* Support for repeatable fields in JSON decoder for `ReadFromBigQuery` added. (Python) ([BEAM-10524](https://issues.apache.org/jira/browse/BEAM-10524))
* Added an opt-in, performance-driven runtime type checking system for the Python SDK ([BEAM-10549](https://issues.apache.org/jira/browse/BEAM-10549)).
More details will be in an upcoming [blog post](https://beam.apache.org/blog/python-performance-runtime-type-checking/index.html).
* Added support for Python 3 type annotations on PTransforms using typed PCollections ([BEAM-10258](https://issues.apache.org/jira/browse/BEAM-10258)).
More details will be in an upcoming [blog post](https://beam.apache.org/blog/python-improved-annotations/index.html).
* Improved the Interactive Beam API where recording streaming jobs now start a long running background recording job. Running ib.show() or ib.collect() samples from the recording ([BEAM-10603](https://issues.apache.org/jira/browse/BEAM-10603)).
* In Interactive Beam, ib.show() and ib.collect() now have "n" and "duration" as parameters. These mean read only up to "n" elements and up to "duration" seconds of data read from the recording ([BEAM-10603](https://issues.apache.org/jira/browse/BEAM-10603)).
* Initial preview of [Dataframes](https://s.apache.org/simpler-python-pipelines-2020#slide=id.g905ac9257b_1_21) support.
See also example at apache_beam/examples/wordcount_dataframe.py
* Fixed support for type hints on `ptransform_fn` decorators in the Python SDK.
([BEAM-4091](https://issues.apache.org/jira/browse/BEAM-4091))
This has not enabled by default to preserve backwards compatibility; use the
`--type_check_additional=ptransform_fn` flag to enable. It may be enabled by
default in future versions of Beam.

Breaking Changes

* Python 2 and Python 3.5 support dropped ([BEAM-10644](https://issues.apache.org/jira/browse/BEAM-10644), [BEAM-9372](https://issues.apache.org/jira/browse/BEAM-9372)).
* Pandas 1.x allowed. Older version of Pandas may still be used, but may not be as well tested.

Deprecations

* Python transform ReadFromSnowflake has been moved from `apache_beam.io.external.snowflake` to `apache_beam.io.snowflake`. The previous path will be removed in the future versions.

Known Issues

* Dataflow streaming timers once against not strictly time ordered when set earlier mid-bundle, as the fix for [BEAM-8543](https://issues.apache.org/jira/browse/BEAM-8543) introduced more severe bugs and has been rolled back.
* Default compressor change breaks dataflow python streaming job update compatibility. Please use python SDK version <= 2.23.0 or > 2.25.0 if job update is critical.([BEAM-11113](https://issues.apache.org/jira/browse/BEAM-11113))

2.24.0

Not secure
Highlights

* Apache Beam 2.24.0 is the last release with Python 2 and Python 3.5
support.

I/Os

* New overloads for BigtableIO.Read.withKeyRange() and BigtableIO.Read.withRowFilter()
methods that take ValueProvider as a parameter (Java) ([BEAM-10283](https://issues.apache.org/jira/browse/BEAM-10283)).
* The WriteToBigQuery transform (Python) in Dataflow Batch no longer relies on BigQuerySink by default. It relies on
a new, fully-featured transform based on file loads into BigQuery. To revert the behavior to the old implementation,
you may use `--experiments=use_legacy_bq_sink`.
* Add cross-language support to Java's JdbcIO, now available in the Python module `apache_beam.io.jdbc` ([BEAM-10135](https://issues.apache.org/jira/browse/BEAM-10135), [BEAM-10136](https://issues.apache.org/jira/browse/BEAM-10136)).
* Add support of AWS SDK v2 for KinesisIO.Read (Java) ([BEAM-9702](https://issues.apache.org/jira/browse/BEAM-9702)).
* Add streaming support to SnowflakeIO in Java SDK ([BEAM-9896](https://issues.apache.org/jira/browse/BEAM-9896))
* Support reading and writing to Google Healthcare DICOM APIs in Python SDK ([BEAM-10601](https://issues.apache.org/jira/browse/BEAM-10601))
* Add dispositions for SnowflakeIO.write ([BEAM-10343](https://issues.apache.org/jira/browse/BEAM-10343))
* Add cross-language support to SnowflakeIO.Read now available in the Python module `apache_beam.io.external.snowflake` ([BEAM-9897](https://issues.apache.org/jira/browse/BEAM-9897)).

New Features / Improvements

* Shared library for simplifying management of large shared objects added to Python SDK. An example use case is sharing a large TF model object across threads ([BEAM-10417](https://issues.apache.org/jira/browse/BEAM-10417)).
* Dataflow streaming timers are not strictly time ordered when set earlier mid-bundle ([BEAM-8543](https://issues.apache.org/jira/browse/BEAM-8543)).
* OnTimerContext should not create a new one when processing each element/timer in FnApiDoFnRunner ([BEAM-9839](https://issues.apache.org/jira/browse/BEAM-9839))
* Key should be available in OnTimer methods (Spark Runner) ([BEAM-9850](https://issues.apache.org/jira/browse/BEAM-9850))

Breaking Changes

* WriteToBigQuery transforms now require a GCS location to be provided through either
custom_gcs_temp_location in the constructor of WriteToBigQuery or the fallback option
--temp_location, or pass method="STREAMING_INSERTS" to WriteToBigQuery ([BEAM-6928](https://issues.apache.org/jira/browse/BEAM-6928)).
* Python SDK now understands `typing.FrozenSet` type hints, which are not interchangeable with `typing.Set`. You may need to update your pipelines if type checking fails. ([BEAM-10197](https://issues.apache.org/jira/browse/BEAM-10197))

Known issues

* When a timer fires but is reset prior to being executed, a watermark hold may be leaked, causing a stuck pipeline [BEAM-10991](https://issues.apache.org/jira/browse/BEAM-10991).
* Default compressor change breaks dataflow python streaming job update compatibility. Please use python SDK version <= 2.23.0 or > 2.25.0 if job update is critical.([BEAM-11113](https://issues.apache.org/jira/browse/BEAM-11113))

2.23.0

Not secure
Highlights

* Twister2 Runner ([BEAM-7304](https://issues.apache.org/jira/browse/BEAM-7304)).
* Python 3.8 support ([BEAM-8494](https://issues.apache.org/jira/browse/BEAM-8494)).

I/Os

* Support for reading from Snowflake added (Java) ([BEAM-9722](https://issues.apache.org/jira/browse/BEAM-9722)).
* Support for writing to Splunk added (Java) ([BEAM-8596](https://issues.apache.org/jira/browse/BEAM-8596)).
* Support for assume role added (Java) ([BEAM-10335](https://issues.apache.org/jira/browse/BEAM-10335)).
* A new transform to read from BigQuery has been added: `apache_beam.io.gcp.bigquery.ReadFromBigQuery`. This transform
is experimental. It reads data from BigQuery by exporting data to Avro files, and reading those files. It also supports
reading data by exporting to JSON files. This has small differences in behavior for Time and Date-related fields. See
Pydoc for more information.

New Features / Improvements

* Update Snowflake JDBC dependency and add application=beam to connection URL ([BEAM-10383](https://issues.apache.org/jira/browse/BEAM-10383)).

Breaking Changes

* `RowJson.RowJsonDeserializer`, `JsonToRow`, and `PubsubJsonTableProvider` now accept "implicit
nulls" by default when deserializing JSON (Java) ([BEAM-10220](https://issues.apache.org/jira/browse/BEAM-10220)).
Previously nulls could only be represented with explicit null values, as in
`{"foo": "bar", "baz": null}`, whereas an implicit null like `{"foo": "bar"}` would raise an
exception. Now both JSON strings will yield the same result by default. This behavior can be
overridden with `RowJson.RowJsonDeserializerwithNullBehavior`.
* Fixed a bug in `GroupIntoBatches` experimental transform in Python to actually group batches by key.
This changes the output type for this transform ([BEAM-6696](https://issues.apache.org/jira/browse/BEAM-6696)).

Deprecations

* Remove Gearpump runner. ([BEAM-9999](https://issues.apache.org/jira/browse/BEAM-9999))
* Remove Apex runner. ([BEAM-9999](https://issues.apache.org/jira/browse/BEAM-9999))
* RedisIO.readAll() is deprecated and will be removed in 2 versions, users must use RedisIO.readKeyPatterns() as a replacement ([BEAM-9747](https://issues.apache.org/jira/browse/BEAM-9747)).

Known Issues

* Fixed X (Java/Python) ([BEAM-X](https://issues.apache.org/jira/browse/BEAM-X)).

2.22.0

Not secure
Highlights

I/Os

* Basic Kafka read/write support for DataflowRunner (Python) ([BEAM-8019](https://issues.apache.org/jira/browse/BEAM-8019)).
* Sources and sinks for Google Healthcare APIs (Java)([BEAM-9468](https://issues.apache.org/jira/browse/BEAM-9468)).
* Support for writing to Snowflake added (Java) ([BEAM-9894](https://issues.apache.org/jira/browse/BEAM-9894)).

New Features / Improvements

* `--workerCacheMB` flag is supported in Dataflow streaming pipeline ([BEAM-9964](https://issues.apache.org/jira/browse/BEAM-9964))
* `--direct_num_workers=0` is supported for FnApi runner. It will set the number of threads/subprocesses to number of cores of the machine executing the pipeline ([BEAM-9443](https://issues.apache.org/jira/browse/BEAM-9443)).
* Python SDK now has experimental support for SqlTransform ([BEAM-8603](https://issues.apache.org/jira/browse/BEAM-8603)).
* Add OnWindowExpiration method to Stateful DoFn ([BEAM-1589](https://issues.apache.org/jira/browse/BEAM-1589)).
* Added PTransforms for Google Cloud DLP (Data Loss Prevention) services integration ([BEAM-9723](https://issues.apache.org/jira/browse/BEAM-9723)):
* Inspection of data,
* Deidentification of data,
* Reidentification of data.
* Add a more complete I/O support matrix in the documentation site ([BEAM-9916](https://issues.apache.org/jira/browse/BEAM-9916)).
* Upgrade Sphinx to 3.0.3 for building PyDoc.
* Added a PTransform for image annotation using Google Cloud AI image processing service
([BEAM-9646](https://issues.apache.org/jira/browse/BEAM-9646))
* Dataflow streaming timers are not strictly time ordered when set earlier mid-bundle ([BEAM-8543](https://issues.apache.org/jira/browse/BEAM-8543)).

Breaking Changes

* The Python SDK now requires `--job_endpoint` to be set when using `--runner=PortableRunner` ([BEAM-9860](https://issues.apache.org/jira/browse/BEAM-9860)). Users seeking the old default behavior should set `--runner=FlinkRunner` instead.

Deprecations

Known Issues

2.21.0

Not secure
Highlights

I/Os
* Python: Deprecated module `apache_beam.io.gcp.datastore.v1` has been removed
as the client it uses is out of date and does not support Python 3
([BEAM-9529](https://issues.apache.org/jira/browse/BEAM-9529)).
Please migrate your code to use
[apache_beam.io.gcp.datastore.**v1new**](https://beam.apache.org/releases/pydoc/current/apache_beam.io.gcp.datastore.v1new.datastoreio.html).
See the updated
[datastore_wordcount](https://github.com/apache/beam/blob/master/sdks/python/apache_beam/examples/cookbook/datastore_wordcount.py)
for example usage.
* Python SDK: Added integration tests and updated batch write functionality for Google Cloud Spanner transform ([BEAM-8949](https://issues.apache.org/jira/browse/BEAM-8949)).

New Features / Improvements
* Python SDK will now use Python 3 type annotations as pipeline type hints.
([10717](https://github.com/apache/beam/pull/10717))

If you suspect that this feature is causing your pipeline to fail, calling
`apache_beam.typehints.disable_type_annotations()` before pipeline creation
will disable is completely, and decorating specific functions (such as
`process()`) with `apache_beam.typehints.no_annotations` will disable it
for that function.

More details will be in
[Ensuring Python Type Safety](https://beam.apache.org/documentation/sdks/python-type-safety/)
and an upcoming
[blog post](https://beam.apache.org/blog/python-typing/index.html).

* Java SDK: Introducing the concept of options in Beam Schemas. These options add extra
context to fields and schemas. This replaces the current Beam metadata that is present
in a FieldType only, options are available in fields and row schemas. Schema options are
fully typed and can contain complex rows. *Remark: Schema aware is still experimental.*
([BEAM-9035](https://issues.apache.org/jira/browse/BEAM-9035))
* Java SDK: The protobuf extension is fully schema aware and also includes protobuf option
conversion to beam schema options. *Remark: Schema aware is still experimental.*
([BEAM-9044](https://issues.apache.org/jira/browse/BEAM-9044))
* Added ability to write to BigQuery via Avro file loads (Python) ([BEAM-8841](https://issues.apache.org/jira/browse/BEAM-8841))

By default, file loads will be done using JSON, but it is possible to
specify the temp_file_format parameter to perform file exports with AVRO.
AVRO-based file loads work by exporting Python types into Avro types, so
to switch to Avro-based loads, you will need to change your data types
from Json-compatible types (string-type dates and timestamp, long numeric
values as strings) into Python native types that are written to Avro
(Python's date, datetime types, decimal, etc). For more information
see https://cloud.google.com/bigquery/docs/loading-data-cloud-storage-avro#avro_conversions.
* Added integration of Java SDK with Google Cloud AI VideoIntelligence service
([BEAM-9147](https://issues.apache.org/jira/browse/BEAM-9147))
* Added integration of Java SDK with Google Cloud AI natural language processing API
([BEAM-9634](https://issues.apache.org/jira/browse/BEAM-9634))
* `docker-pull-licenses` tag was introduced. Licenses/notices of third party dependencies will be added to the docker images when `docker-pull-licenses` was set.
The files are added to `/opt/apache/beam/third_party_licenses/`.
By default, no licenses/notices are added to the docker images. ([BEAM-9136](https://issues.apache.org/jira/browse/BEAM-9136))


Breaking Changes

* Dataflow runner now requires the `--region` option to be set, unless a default value is set in the environment ([BEAM-9199](https://issues.apache.org/jira/browse/BEAM-9199)). See [here](https://cloud.google.com/dataflow/docs/concepts/regional-endpoints) for more details.
* HBaseIO.ReadAll now requires a PCollection of HBaseIO.Read objects instead of HBaseQuery objects ([BEAM-9279](https://issues.apache.org/jira/browse/BEAM-9279)).
* ProcessContext.updateWatermark has been removed in favor of using a WatermarkEstimator ([BEAM-9430](https://issues.apache.org/jira/browse/BEAM-9430)).
* Coder inference for PCollection of Row objects has been disabled ([BEAM-9569](https://issues.apache.org/jira/browse/BEAM-9569)).
* Go SDK docker images are no longer released until further notice.

Deprecations
* Java SDK: Beam Schema FieldType.getMetadata is now deprecated and is replaced by the Beam
Schema Options, it will be removed in version `2.23.0`. ([BEAM-9704](https://issues.apache.org/jira/browse/BEAM-9704))
* The `--zone` option in the Dataflow runner is now deprecated. Please use `--worker_zone` instead. ([BEAM-9716](https://issues.apache.org/jira/browse/BEAM-9716))

Known Issues

2.20.0

Not secure
Highlights


I/Os

* Java SDK: Adds support for Thrift encoded data via ThriftIO. ([BEAM-8561](https://issues.apache.org/jira/browse/BEAM-8561))
* Java SDK: KafkaIO supports schema resolution using Confluent Schema Registry. ([BEAM-7310](https://issues.apache.org/jira/browse/BEAM-7310))
* Java SDK: Add Google Cloud Healthcare IO connectors: HL7v2IO and FhirIO ([BEAM-9468](https://issues.apache.org/jira/browse/BEAM-9468))
* Python SDK: Support for Google Cloud Spanner. This is an experimental module for reading and writing data from Google Cloud Spanner ([BEAM-7246](https://issues.apache.org/jira/browse/BEAM-7246)).
* Python SDK: Adds support for standard HDFS URLs (with server name). ([10223](https://github.com/apache/beam/pull/10223)).


New Features / Improvements

* New AnnotateVideo & AnnotateVideoWithContext PTransform's that integrates GCP Video Intelligence functionality. (Python) ([BEAM-9146](https://issues.apache.org/jira/browse/BEAM-9146))
* New AnnotateImage & AnnotateImageWithContext PTransform's for element-wise & batch image annotation using Google Cloud Vision API. (Python) ([BEAM-9247](https://issues.apache.org/jira/browse/BEAM-9247))
* Added a PTransform for inspection and deidentification of text using Google Cloud DLP. (Python) ([BEAM-9258](https://issues.apache.org/jira/browse/BEAM-9258))
* New AnnotateText PTransform that integrates Google Cloud Natural Language functionality (Python) ([BEAM-9248](https://issues.apache.org/jira/browse/BEAM-9248))
* _ReadFromBigQuery_ now supports value providers for the query string (Python) ([BEAM-9305](https://issues.apache.org/jira/browse/BEAM-9305))
* Direct runner for FnApi supports further parallelism (Python) ([BEAM-9228](https://issues.apache.org/jira/browse/BEAM-9228))
* Support for _RequiresTimeSortedInput_ in Flink and Spark (Java) ([BEAM-8550](https://issues.apache.org/jira/browse/BEAM-8550))

Breaking Changes

* ReadFromPubSub(topic=<topic>) in Python previously created a subscription under the same project as the topic. Now it will create the subscription under the project specified in pipeline_options. If the project is not specified in pipeline_options, then it will create the subscription under the same project as the topic. ([BEAM-3453](https://issues.apache.org/jira/browse/BEAM-3453)).
* SpannerAccessor in Java is now package-private to reduce API surface. `SpannerConfig.connectToSpanner` has been moved to `SpannerAccessor.create`. ([BEAM-9310](https://issues.apache.org/jira/browse/BEAM-9310)).
* ParquetIO hadoop dependency should be now provided by the users ([BEAM-8616](https://issues.apache.org/jira/browse/BEAM-8616)).
* Docker images will be deployed to
[apache/beam](https://hub.docker.com/search?q=apache%2Fbeam&type=image) repositories from 2.20. They
used to be deployed to
[apachebeam](https://hub.docker.com/search?q=apachebeam&type=image) repository.
([BEAM-9063](https://issues.apache.org/jira/browse/BEAM-9093))
* PCollections now have tags inferred from the result type (e.g. the keys of a dict or index of a tuple). Users may expect the old implementation which gave PCollection output ids a monotonically increasing id. To go back to the old implementation, use the `force_generated_pcollection_output_ids` experiment.

Deprecations

Bugfixes

* Fixed numpy operators in ApproximateQuantiles (Python) ([BEAM-9579](https://issues.apache.org/jira/browse/BEAM-9579)).
* Fixed exception when running in IPython notebook (Python) ([BEAM-X9277](https://issues.apache.org/jira/browse/BEAM-9277)).
* Fixed Flink uberjar job termination bug. ([BEAM-9225](https://issues.apache.org/jira/browse/BEAM-9225))
* Fixed SyntaxError in process worker startup ([BEAM-9503](https://issues.apache.org/jira/browse/BEAM-9503))
* Key should be available in OnTimer methods (Java) ([BEAM-1819](https://issues.apache.org/jira/browse/BEAM-1819)).

Known Issues

* ([BEAM-X](https://issues.apache.org/jira/browse/BEAM-X)).
* ([BEAM-9322](https://issues.apache.org/jira/browse/BEAM-9322)).
* Python SDK `pre_optimize=all` experiment may cause error ([BEAM-9445](https://issues.apache.org/jira/browse/BEAM-9445))

Page 8 of 9

© 2025 Safety CLI Cybersecurity Inc. All Rights Reserved.