Pairwise GP for Preference Learning, Sampling Strategies.
Compatibility
* Require PyTorch >=1.5 (423).
* Require GPyTorch >=1.1.1 (425).
New Features
* Add `PairwiseGP` for preference learning with pair-wise comparison data (388).
* Add `SamplingStrategy` abstraction for sampling-based generation strategies, including
`MaxPosteriorSampling` (i.e. Thompson Sampling) and `BoltzmannSampling` (218, 407).
Deprecations
* The existing `botorch.gen` module is moved to `botorch.generation.gen` and imports
from `botorch.gen` will raise a warning (an error in the next release) (218).
Bug fixes
* Fix & update a number of tutorials (394, 398, 393, 399, 403).
* Fix CUDA tests (404).
* Fix sobol maxdim limitation in `prune_baseline` (419).
Other changes
* Better stopping criteria for stochastic optimization (392).
* Improve numerical stability of `LinearTruncatedFidelityKernel` (409).
* Allow batched `best_f` in `qExpectedImprovement` and `qProbabilityOfImprovement`
(411).
* Introduce new logger framework (412).
* Faster indexing in some situations (414).
* More generic `BaseTestProblem` (9e604fe2188ac85294c143d249872415c4d95823).