----------------
* better pandas.DataFrame integration: :func:`eli5.explain_weights_df`,
:func:`eli5.explain_weights_dfs`, :func:`eli5.explain_prediction_df`,
:func:`eli5.explain_prediction_dfs`,
:func:`eli5.format_as_dataframe <eli5.formatters.as_dataframe.format_as_dataframe>`
and :func:`eli5.format_as_dataframes <eli5.formatters.as_dataframe.format_as_dataframes>`
functions allow to export explanations to pandas.DataFrames;
* :func:`eli5.explain_prediction` now shows predicted class for binary
classifiers (previously it was always showing positive class);
* :func:`eli5.explain_prediction` supports ``targets=[<class>]`` now
for binary classifiers; e.g. to show result as seen for negative class,
you can use ``eli5.explain_prediction(..., targets=[False])``;
* support :func:`eli5.explain_prediction` and :func:`eli5.explain_weights`
for libsvm-based linear estimators from sklearn.svm: ``SVC(kernel='linear')``
(only binary classification), ``NuSVC(kernel='linear')`` (only
binary classification), ``SVR(kernel='linear')``, ``NuSVR(kernel='linear')``,
``OneClassSVM(kernel='linear')``;
* fixed :func:`eli5.explain_weights` for LightGBM_ estimators in Python 2 when
``importance_type`` is 'split' or 'weight';
* testing improvements.