Mediapipe

Latest version: v0.10.20

Safety actively analyzes 688746 Python packages for vulnerabilities to keep your Python projects secure.

Scan your dependencies

Page 5 of 10

0.8.7

- MediaPipe Pose now outputs "segmentation_mask" when [`enable_segmentation`](https://google.github.io/mediapipe/solutions/pose.html#enable_segmentation) is set.
- MediaPipe Python [FaceMesh](https://google.github.io/mediapipe/solutions/face_mesh.html#python-solution-api), [Hands](https://google.github.io/mediapipe/solutions/hands.html#python-solution-api), [Pose](https://google.github.io/mediapipe/solutions/pose.html#python-solution-api), and [Holistic](https://google.github.io/mediapipe/solutions/holistic.html#python-solution-api) have new drawing styles. Please refer to the documentation and the Colab examples for more details.
- MediaPipe now offers Android [FaceMesh](https://google.github.io/mediapipe/solutions/face_mesh.html#android-solution-api) and [Hands](https://google.github.io/mediapipe/solutions/hands.html#android-solution-api) solution APIs (currently in Alpha). The maven artifacts are available in [Google's Maven Repository](https://maven.google.com/web/index.html?#com.google.mediapipe). To try the example apps, please import [the solution example Android Studio project](https://github.com/google/mediapipe/tree/master/mediapipe/examples/android/solutions) on either Linux, macOS, and Windows.

0.8.6

* MediaPipe Pose (and Holistic) now also outputs estimated real-world 3D coordinates of pose landmarks (in meters with the origin at center of hips)
* MediaPipe Face Detection now supports a "model_selection" option to switch between short-range and full-range models

0.8.5

* Released [MediaPipe Selfie Segmentation](https://solutions.mediapipe.dev/selfie_segmentation)
* JavaScript Solution API w/ a CodePen example
* Python Solution API w/ a Colab example
* Android, iOS and desktop example apps

0.8.4

* Better pose landmark accuracy with the updated pose detection and pose landmark model
* Added a `lite` and a `heavy` version of the pose landmark model, in addition to the existing `full` version (also updated and improved)
* Added a `model_complexity` config option in [MediaPipe Pose](https://solutions.mediapipe.dev/pose#model_complexity) and [MediaPipe Holistic](https://solutions.mediapipe.dev/holistic#model_complexity) Solution APIs to select across the 3 model versions
* Removed the `upper_body_only` option in MediaPipe Pose and MediaPipe Holistic, as the standard model now already handles upper-body-only use cases well

0.8.3.2

* Move up minimum bazel version to [3.7.2](https://github.com/google/mediapipe/blob/7c331ad58b2cca0dca468e342768900041d65adc/WORKSPACE#L17), and encourage the use of [Bazelisk](https://docs.bazel.build/versions/master/install-bazelisk.html) in [Installation](https://google.github.io/mediapipe/getting_started/install.html).
* Move up [TensorFlow dependency](https://github.com/google/mediapipe/blob/7c331ad58b2cca0dca468e342768900041d65adc/WORKSPACE#L369).
* MediaPipe Objectron [desktop/C++ example](https://solutions.mediapipe.dev/objectron#desktop).

0.8.3.1

* [MediaPipe Pose](https://solutions.mediapipe.dev/pose)
* New pose landmark model with Z coordinates ([BlazePose GHUM 3D](https://solutions.mediapipe.dev/pose#pose-landmark-model-blazepose-ghum-3d)), generated from synthetic data
* Added tutorials and Colabs for [Pose Classification](https://solutions.mediapipe.dev/pose_classification)
* [MediaPipe Objectron](https://solutions.mediapipe.dev/objectron)
* Added Python Solution API
* [MediaPipe Face Detection](https://solutions.mediapipe.dev/face_detection)
* Added Python Solution API and JavaScript Solution API
* [MediaPipe Face Mesh](https://solutions.mediapipe.dev/face_mesh)
* [Face Geometry Module](https://solutions.mediapipe.dev/face_mesh#face-geometry-module) ([code](https://github.com/google/mediapipe/tree/master/mediapipe/modules/face_geometry)) now supports [face-detection input](https://github.com/google/mediapipe/blob/master/mediapipe/modules/face_geometry/face_geometry_from_detection.pbtxt) (to generate a face geometry from a detection), in addition to the existing support for [face-landmark input](https://github.com/google/mediapipe/blob/master/mediapipe/modules/face_geometry/face_geometry_from_landmarks.pbtxt)
* [Image](https://github.com/google/mediapipe/blob/master/mediapipe/framework/formats/image.h): a new multi-backend image data container:
* Covering both CPU and GPU storage
* Currently used in [ImageToTensorCalculator](https://github.com/google/mediapipe/blob/master/mediapipe/calculators/tensor/image_to_tensor_calculator.cc) and [Face Detection Module](https://github.com/google/mediapipe/tree/master/mediapipe/modules/face_detection)
* Companion utility [ToImageCalculator](https://github.com/google/mediapipe/blob/master/mediapipe/calculators/util/to_image_calculator.cc) and [FromImageCalculator](https://github.com/google/mediapipe/blob/master/mediapipe/calculators/util/from_image_calculator.cc)

Page 5 of 10

© 2024 Safety CLI Cybersecurity Inc. All Rights Reserved.