New and improved 🚀
- New prediction model for CID-TMT: TMT-labelled peptide spectra acquired on ion trap (trap-type CID), often used for "MultiNotch MS3" (https://dx.doi.org/10.1021/ac502040v) (PR #157)
- Support for Python 3.9 and 3.10; dropped support for end-of-life Python 3.6 (PR 156, fixes 126)
- Support for alternative cleavage rules (digestion enzymes) in `fasta2speclib` (PR 166, fixes 96)
Bugfixes 🐛
- Fixed missing support for XGBoost models in single-prediction mode (PR 157, fixes 155)
- Use oldest-supported-numpy for build in CI testing (PR 157)
Refactoring and minor changes 🔧
- Replaced C models files with their XGBoost counterpart (except for HCD2019 and TMT): Faster compilation, smaller Python package (PR 157)
- Add `model_dir` option to set custom directory for model downloads (CLI, single-prediction CLI, Python API) (PR 169, fixes 165)
- Add docstring to `MS2PIP` class and add example to `README.md` (PR 167, fixes 131)
- Relaxed click version requirements (PR 157, fixes 158)
- Removed XGBoost warnings from the CLI output (PR 157)
- Various fasta2speclib improvements (PR 166)
- Add deeplc option to default config
- Suppress tensorflow warnings
- Replace deprecated pandas append with concat
- Add missing `sptm` and `gptm` to example config.toml (167)
New prediction models
| Model | Current version | Train-test dataset (unique peptides) | Evaluation dataset (unique peptides) | Median Pearson correlation on evaluation dataset |
| - | - | - | - | - |
| CID-TMT | v20220104 | [in-house dataset] (72 138) | [PXD005890](10.1021/acs.jproteome.7b00091) (69 768) | 0.851085