Roboflow

Latest version: v1.1.50

Safety actively analyzes 693883 Python packages for vulnerabilities to keep your Python projects secure.

Scan your dependencies

Page 2 of 6

0.21.0

- Added [500](https://github.com/roboflow/supervision/pull/500): [`sv.Detections.with_nmm`](https://supervision.roboflow.com/0.21.0/detection/core/#supervision.detection.core.Detections.with_nmm) to perform non-maximum merging on the current set of object detections.

- Added [1221](https://github.com/roboflow/supervision/pull/1221): [`sv.Detections.from_lmm`](https://supervision.roboflow.com/0.21.0/detection/core/#supervision.detection.core.Detections.from_lmm) allowing to parse Large Multimodal Model (LMM) text result into [`sv.Detections`](https://supervision.roboflow.com/0.21.0/detection/core/) object. For now `from_lmm` supports only [PaliGemma](https://colab.research.google.com/github/roboflow-ai/notebooks/blob/main/notebooks/how-to-finetune-paligemma-on-detection-dataset.ipynb) result parsing.

python
import supervision as sv

paligemma_result = "<loc0256><loc0256><loc0768><loc0768> cat"
detections = sv.Detections.from_lmm(
sv.LMM.PALIGEMMA,
paligemma_result,
resolution_wh=(1000, 1000),
classes=["cat", "dog"],
)
detections.xyxy
array([[250., 250., 750., 750.]])

detections.class_id
array([0])


- Added [1236](https://github.com/roboflow/supervision/pull/1236): [`sv.VertexLabelAnnotator`](https://supervision.roboflow.com/0.21.0/keypoint/annotators/#supervision.keypoint.annotators.EdgeAnnotator.annotate) allowing to annotate every vertex of a keypoint skeleton with custom text and color.

python
import supervision as sv

image = ...
key_points = sv.KeyPoints(...)

edge_annotator = sv.EdgeAnnotator(
color=sv.Color.GREEN,
thickness=5
)
annotated_frame = edge_annotator.annotate(
scene=image.copy(),
key_points=key_points
)


- Added [1147](https://github.com/roboflow/supervision/pull/1147): [`sv.KeyPoints.from_inference`](https://supervision.roboflow.com/0.21.0/keypoint/core/#supervision.keypoint.core.KeyPoints.from_inference) allowing to create [`sv.KeyPoints`](https://supervision.roboflow.com/0.21.0/keypoint/core/#supervision.keypoint.core.KeyPoints) from [Inference](https://github.com/roboflow/inference) result.

- Added [1138](https://github.com/roboflow/supervision/pull/1138): [`sv.KeyPoints.from_yolo_nas`](https://supervision.roboflow.com/0.21.0/keypoint/core/#supervision.keypoint.core.KeyPoints.from_yolo_nas) allowing to create [`sv.KeyPoints`](https://supervision.roboflow.com/0.21.0/keypoint/core/#supervision.keypoint.core.KeyPoints) from [YOLO-NAS](https://github.com/Deci-AI/super-gradients/blob/master/YOLONAS.md) result.

- Added [1163](https://github.com/roboflow/supervision/pull/1163): [`sv.mask_to_rle`](https://supervision.roboflow.com/0.21.0/datasets/utils/#supervision.dataset.utils.rle_to_mask) and [`sv.rle_to_mask`](https://supervision.roboflow.com/0.21.0/datasets/utils/#supervision.dataset.utils.rle_to_mask) allowing for easy conversion between mask and rle formats.

- Changed [1236](https://github.com/roboflow/supervision/pull/1236): [`sv.InferenceSlicer`](https://supervision.roboflow.com/0.21.0/detection/tools/inference_slicer/) allowing to select overlap filtering strategy (`NONE`, `NON_MAX_SUPPRESSION` and `NON_MAX_MERGE`).

- Changed [1178](https://github.com/roboflow/supervision/pull/1178): [`sv.InferenceSlicer`](https://supervision.roboflow.com/0.21.0/detection/tools/inference_slicer/) adding instance segmentation model support.

python
import cv2
import numpy as np
import supervision as sv
from inference import get_model

model = get_model(model_id="yolov8x-seg-640")
image = cv2.imread(<SOURCE_IMAGE_PATH>)

def callback(image_slice: np.ndarray) -> sv.Detections:
results = model.infer(image_slice)[0]
return sv.Detections.from_inference(results)

slicer = sv.InferenceSlicer(callback = callback)
detections = slicer(image)

mask_annotator = sv.MaskAnnotator()
label_annotator = sv.LabelAnnotator()

annotated_image = mask_annotator.annotate(
scene=image, detections=detections)
annotated_image = label_annotator.annotate(
scene=annotated_image, detections=detections)


- Changed [1228](https://github.com/roboflow/supervision/pull/1228): [`sv.LineZone`](https://supervision.roboflow.com/0.21.0/detection/tools/line_zone/) making it 10-20 times faster, depending on the use case.

- Changed [1163](https://github.com/roboflow/supervision/pull/1163): [`sv.DetectionDataset.from_coco`](https://supervision.roboflow.com/0.21.0/datasets/core/#supervision.dataset.core.DetectionDataset.from_coco) and [`sv.DetectionDataset.as_coco`](https://supervision.roboflow.com/0.21.0/datasets/core/#supervision.dataset.core.DetectionDataset.as_coco) adding support for run-length encoding (RLE) mask format.

0.20.0

- Added [1128](https://github.com/roboflow/supervision/pull/1128): [`sv.KeyPoints`](/0.20.0/keypoint/core/#supervision.keypoint.core.KeyPoints) to provide initial support for pose estimation and broader keypoint detection models.

- Added [1128](https://github.com/roboflow/supervision/pull/1128): [`sv.EdgeAnnotator`](/0.20.0/keypoint/annotators/#supervision.keypoint.annotators.EdgeAnnotator) and [`sv.VertexAnnotator`](/0.20.0/keypoint/annotators/supervision.keypoint.annotators.VertexAnnotator) to enable rendering of results from keypoint detection models.

python
import cv2
import supervision as sv
from ultralytics import YOLO

image = cv2.imread(<SOURCE_IMAGE_PATH>)
model = YOLO('yolov8l-pose')

result = model(image, verbose=False)[0]
keypoints = sv.KeyPoints.from_ultralytics(result)

edge_annotators = sv.EdgeAnnotator(color=sv.Color.GREEN, thickness=5)
annotated_image = edge_annotators.annotate(image.copy(), keypoints)


- Changed [1037](https://github.com/roboflow/supervision/pull/1037): [`sv.LabelAnnotator`](/0.20.0/annotators/#supervision.annotators.core.LabelAnnotator) by adding an additional `corner_radius` argument that allows for rounding the corners of the bounding box.

- Changed [1109](https://github.com/roboflow/supervision/pull/1109): [`sv.PolygonZone`](/0.20.0/detection/tools/polygon_zone/#supervision.detection.tools.polygon_zone.PolygonZone) such that the `frame_resolution_wh` argument is no longer required to initialize `sv.PolygonZone`.

!!! failure "Deprecated"

The `frame_resolution_wh` parameter in `sv.PolygonZone` is deprecated and will be removed in `supervision-0.24.0`.

- Changed [1084](https://github.com/roboflow/supervision/pull/1084): [`sv.get_polygon_center`](/0.20.0/utils/geometry/#supervision.geometry.core.utils.get_polygon_center) to calculate a more accurate polygon centroid.

- Changed [1069](https://github.com/roboflow/supervision/pull/1069): [`sv.Detections.from_transformers`](/0.20.0/detection/core/#supervision.detection.core.Detections.from_transformers) by adding support for Transformers segmentation models and extract class names values.

python
import torch
import supervision as sv
from PIL import Image
from transformers import DetrImageProcessor, DetrForSegmentation

processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50-panoptic")
model = DetrForSegmentation.from_pretrained("facebook/detr-resnet-50-panoptic")

image = Image.open(<SOURCE_IMAGE_PATH>)
inputs = processor(images=image, return_tensors="pt")

with torch.no_grad():
outputs = model(**inputs)

width, height = image.size
target_size = torch.tensor([[height, width]])
results = processor.post_process_segmentation(
outputs=outputs, target_sizes=target_size)[0]
detections = sv.Detections.from_transformers(results, id2label=model.config.id2label)

mask_annotator = sv.MaskAnnotator()
label_annotator = sv.LabelAnnotator(text_position=sv.Position.CENTER)

annotated_image = mask_annotator.annotate(
scene=image, detections=detections)
annotated_image = label_annotator.annotate(
scene=annotated_image, detections=detections)


- Fixed [787](https://github.com/roboflow/supervision/pull/787): [`sv.ByteTrack.update_with_detections`](/0.20.0/trackers/#supervision.tracker.byte_tracker.core.ByteTrack.update_with_detections) which was removing segmentation masks while tracking. Now, `ByteTrack` can be used alongside segmentation models.

0.19.0

- Added [818](https://github.com/roboflow/supervision/pull/818): [`sv.CSVSink`](/0.19.0/detection/tools/save_detections/#supervision.detection.tools.csv_sink.CSVSink) allowing for the straightforward saving of image, video, or stream inference results in a `.csv` file.

python
import supervision as sv
from ultralytics import YOLO

model = YOLO(<SOURCE_MODEL_PATH>)
csv_sink = sv.CSVSink(<RESULT_CSV_FILE_PATH>)
frames_generator = sv.get_video_frames_generator(<SOURCE_VIDEO_PATH>)

with csv_sink:
for frame in frames_generator:
result = model(frame)[0]
detections = sv.Detections.from_ultralytics(result)
csv_sink.append(detections, custom_data={<CUSTOM_LABEL>:<CUSTOM_DATA>})


- Added [819](https://github.com/roboflow/supervision/pull/819): [`sv.JSONSink`](/0.19.0/detection/tools/save_detections/#supervision.detection.tools.csv_sink.JSONSink) allowing for the straightforward saving of image, video, or stream inference results in a `.json` file.

python
import supervision as sv
from ultralytics import YOLO

model = YOLO(<SOURCE_MODEL_PATH>)
json_sink = sv.JSONSink(<RESULT_JSON_FILE_PATH>)
frames_generator = sv.get_video_frames_generator(<SOURCE_VIDEO_PATH>)

with json_sink:
for frame in frames_generator:
result = model(frame)[0]
detections = sv.Detections.from_ultralytics(result)
json_sink.append(detections, custom_data={<CUSTOM_LABEL>:<CUSTOM_DATA>})


- Added [847](https://github.com/roboflow/supervision/pull/847): [`sv.mask_iou_batch`](/0.19.0/detection/utils/#supervision.detection.utils.mask_iou_batch) allowing to compute Intersection over Union (IoU) of two sets of masks.

- Added [847](https://github.com/roboflow/supervision/pull/847): [`sv.mask_non_max_suppression`](/0.19.0/detection/utils/#supervision.detection.utils.mask_non_max_suppression) allowing to perform Non-Maximum Suppression (NMS) on segmentation predictions.

- Added [888](https://github.com/roboflow/supervision/pull/888): [`sv.CropAnnotator`](/0.19.0/annotators/#supervision.annotators.core.CropAnnotator) allowing users to annotate the scene with scaled-up crops of detections.

python
import cv2
import supervision as sv
from inference import get_model

image = cv2.imread(<SOURCE_IMAGE_PATH>)
model = get_model(model_id="yolov8n-640")

result = model.infer(image)[0]
detections = sv.Detections.from_inference(result)

crop_annotator = sv.CropAnnotator()
annotated_frame = crop_annotator.annotate(
scene=image.copy(),
detections=detections
)


- Changed [827](https://github.com/roboflow/supervision/pull/827): [`sv.ByteTrack.reset`](/0.19.0/trackers/#supervision.tracker.ByteTrack.reset) allowing users to clear trackers state, enabling the processing of multiple video files in sequence.

- Changed [802](https://github.com/roboflow/supervision/pull/802): [`sv.LineZoneAnnotator`](/0.19.0/detection/tools/line_zone/#supervision.detection.line_zone.LineZone) allowing to hide in/out count using `display_in_count` and `display_out_count` properties.

- Changed [787](https://github.com/roboflow/supervision/pull/787): [`sv.ByteTrack`](/0.19.0/trackers/#supervision.tracker.ByteTrack) input arguments and docstrings updated to improve readability and ease of use.

!!! failure "Deprecated"

The `track_buffer`, `track_thresh`, and `match_thresh` parameters in `sv.ByteTrack` are deprecated and will be removed in `supervision-0.23.0`. Use `lost_track_buffer,` `track_activation_threshold`, and `minimum_matching_threshold` instead.

- Changed [910](https://github.com/roboflow/supervision/pull/910): [`sv.PolygonZone`](/0.19.0/detection/tools/polygon_zone/#supervision.detection.tools.polygon_zone.PolygonZone) to now accept a list of specific box anchors that must be in zone for a detection to be counted.

!!! failure "Deprecated"

The `triggering_position ` parameter in `sv.PolygonZone` is deprecated and will be removed in `supervision-0.23.0`. Use `triggering_anchors` instead.

- Changed [875](https://github.com/roboflow/supervision/pull/875): annotators adding support for Pillow images. All supervision Annotators can now accept an image as either a numpy array or a Pillow Image. They automatically detect its type, draw annotations, and return the output in the same format as the input.

- Fixed [944](https://github.com/roboflow/supervision/pull/944): [`sv.DetectionsSmoother`](/0.19.0/detection/tools/smoother/#supervision.detection.tools.smoother.DetectionsSmoother) removing `tracking_id` from `sv.Detections`.

0.18.0

- Added [720](https://github.com/roboflow/supervision/pull/720): [`sv.PercentageBarAnnotator`](/0.18.0/annotators/#percentagebarannotator) allowing to annotate images and videos with percentage values representing confidence or other custom property.

python
>>> import supervision as sv

>>> image = ...
>>> detections = sv.Detections(...)

>>> percentage_bar_annotator = sv.PercentageBarAnnotator()
>>> annotated_frame = percentage_bar_annotator.annotate(
... scene=image.copy(),
... detections=detections
... )


- Added [702](https://github.com/roboflow/supervision/pull/702): [`sv.RoundBoxAnnotator`](/0.18.0/annotators/#roundboxannotator) allowing to annotate images and videos with rounded corners bounding boxes.

- Added [770](https://github.com/roboflow/supervision/pull/770): [`sv.OrientedBoxAnnotator`](/0.18.0/annotators/#orientedboxannotator) allowing to annotate images and videos with OBB (Oriented Bounding Boxes).

python
import cv2
import supervision as sv
from ultralytics import YOLO

image = cv2.imread(<SOURCE_IMAGE_PATH>)
model = YOLO("yolov8n-obb.pt")

result = model(image)[0]
detections = sv.Detections.from_ultralytics(result)

oriented_box_annotator = sv.OrientedBoxAnnotator()
annotated_frame = oriented_box_annotator.annotate(
scene=image.copy(),
detections=detections
)


- Added [696](https://github.com/roboflow/supervision/pull/696): [`sv.DetectionsSmoother`](/0.18.0/detection/tools/smoother/#detection-smoother) allowing for smoothing detections over multiple frames in video tracking.

- Added [769](https://github.com/roboflow/supervision/pull/769): [`sv.ColorPalette.from_matplotlib`](/0.18.0/draw/color/#supervision.draw.color.ColorPalette.from_matplotlib) allowing users to create a `sv.ColorPalette` instance from a Matplotlib color palette.

python
>>> import supervision as sv

>>> sv.ColorPalette.from_matplotlib('viridis', 5)
ColorPalette(colors=[Color(r=68, g=1, b=84), Color(r=59, g=82, b=139), ...])


- Changed [770](https://github.com/roboflow/supervision/pull/770): [`sv.Detections.from_ultralytics`](/0.18.0/detection/core/#supervision.detection.core.Detections.from_ultralytics) adding support for OBB (Oriented Bounding Boxes).

- Changed [735](https://github.com/roboflow/supervision/pull/735): [`sv.LineZone`](/0.18.0/detection/tools/line_zone/#linezone) to now accept a list of specific box anchors that must cross the line for a detection to be counted. This update marks a significant improvement from the previous requirement, where all four box corners were necessary. Users can now specify a single anchor, such as `sv.Position.BOTTOM_CENTER`, or any other combination of anchors defined as `List[sv.Position]`.

- Changed [756](https://github.com/roboflow/supervision/pull/756): [`sv.Color`](/0.18.0/draw/color/#color)'s and [`sv.ColorPalette`](/0.18.0/draw/color/colorpalette)'s method of accessing predefined colors, transitioning from a function-based approach (`sv.Color.red()`) to a more intuitive and conventional property-based method (`sv.Color.RED`).

!!! failure "Deprecated"

`sv.ColorPalette.default()` is deprecated and will be removed in `supervision-0.22.0`. Use `sv.ColorPalette.DEFAULT` instead.

- Changed [769](https://github.com/roboflow/supervision/pull/769): [`sv.ColorPalette.DEFAULT`](/0.18.0/draw/color/#colorpalette) value, giving users a more extensive set of annotation colors.

- Changed [677](https://github.com/roboflow/supervision/pull/677): `sv.Detections.from_roboflow` to [`sv.Detections.from_inference`](/0.18.0/detection/core/#supervision.detection.core.Detections.from_inference) streamlining its functionality to be compatible with both the both [inference](https://github.com/roboflow/inference) pip package and the Robloflow [hosted API](https://docs.roboflow.com/deploy/hosted-api).

!!! failure "Deprecated"

`Detections.from_roboflow()` is deprecated and will be removed in `supervision-0.22.0`. Use `Detections.from_inference` instead.

- Fixed [735](https://github.com/roboflow/supervision/pull/735): [`sv.LineZone`](/0.18.0/detection/tools/line_zone/#linezone) functionality to accurately update the counter when an object crosses a line from any direction, including from the side. This enhancement enables more precise tracking and analytics, such as calculating individual in/out counts for each lane on the road.

0.17.0

- Added [633](https://github.com/roboflow/supervision/pull/633): [`sv.PixelateAnnotator`](/0.17.0/annotators/#supervision.annotators.core.PixelateAnnotator) allowing to pixelate objects on images and videos.

- Added [652](https://github.com/roboflow/supervision/pull/652): [`sv.TriangleAnnotator`](/0.17.0/annotators/#supervision.annotators.core.TriangleAnnotator) allowing to annotate images and videos with triangle markers.

- Added [602](https://github.com/roboflow/supervision/pull/602): [`sv.PolygonAnnotator`](/0.17.0/annotators/#supervision.annotators.core.PolygonAnnotator) allowing to annotate images and videos with segmentation mask outline.

python
>>> import supervision as sv

>>> image = ...
>>> detections = sv.Detections(...)

>>> polygon_annotator = sv.PolygonAnnotator()
>>> annotated_frame = polygon_annotator.annotate(
... scene=image.copy(),
... detections=detections
... )


- Added [476](https://github.com/roboflow/supervision/pull/476): [`sv.assets`](/0.18.0/assets/) allowing download of video files that you can use in your demos.

python
>>> from supervision.assets import download_assets, VideoAssets
>>> download_assets(VideoAssets.VEHICLES)
"vehicles.mp4"


- Added [605](https://github.com/roboflow/supervision/pull/605): [`Position.CENTER_OF_MASS`](/0.17.0/geometry/core/#position) allowing to place labels in center of mass of segmentation masks.

- Added [651](https://github.com/roboflow/supervision/pull/651): [`sv.scale_boxes`](/0.17.0/detection/utils/#supervision.detection.utils.scale_boxes) allowing to scale [`sv.Detections.xyxy`](/0.17.0/detection/core/supervision.detection.core.Detections) values.

- Added [637](https://github.com/roboflow/supervision/pull/637): [`sv.calculate_dynamic_text_scale`](/0.17.0/draw/utils/#supervision.draw.utils.calculate_dynamic_text_scale) and [`sv.calculate_dynamic_line_thickness`](/0.17.0/draw/utils/supervision.draw.utils.calculate_dynamic_line_thickness) allowing text scale and line thickness to match image resolution.

- Added [620](https://github.com/roboflow/supervision/pull/620): [`sv.Color.as_hex`](/0.17.0/draw/color/#supervision.draw.color.Color.as_hex) allowing to extract color value in HEX format.

- Added [572](https://github.com/roboflow/supervision/pull/572): [`sv.Classifications.from_timm`](/0.17.0/classification/core/#supervision.classification.core.Classifications.from_timm) allowing to load classification result from [timm](https://huggingface.co/docs/hub/timm) models.

- Added [478](https://github.com/roboflow/supervision/pull/478): [`sv.Classifications.from_clip`](/0.17.0/classification/core/#supervision.classification.core.Classifications.from_clip) allowing to load classification result from [clip](https://github.com/openai/clip) model.

- Added [571](https://github.com/roboflow/supervision/pull/571): [`sv.Detections.from_azure_analyze_image`](/0.17.0/detection/core/#supervision.detection.core.Detections.from_azure_analyze_image) allowing to load detection results from [Azure Image Analysis](https://learn.microsoft.com/en-us/azure/ai-services/computer-vision/concept-object-detection-40).

- Changed [646](https://github.com/roboflow/supervision/pull/646): `sv.BoxMaskAnnotator` renaming it to [`sv.ColorAnnotator`](/0.17.0/annotators/#supervision.annotators.core.ColorAnnotator).

- Changed [606](https://github.com/roboflow/supervision/pull/606): [`sv.MaskAnnotator`](/0.17.0/annotators/#supervision.annotators.core.MaskAnnotator) to make it **5x faster**.

- Fixed [584](https://github.com/roboflow/supervision/pull/584): [`sv.DetectionDataset.from_yolo`](/0.17.0/datasets/#supervision.dataset.core.DetectionDataset.from_yolo) to ignore empty lines in annotation files.

- Fixed [555](https://github.com/roboflow/supervision/pull/555): [`sv.BlurAnnotator`](/0.17.0/annotators/#supervision.annotators.core.BlurAnnotator) to trim negative coordinates before bluring detections.

- Fixed [511](https://github.com/roboflow/supervision/pull/511): [`sv.TraceAnnotator`](/0.17.0/annotators/#supervision.annotators.core.TraceAnnotator) to respect trace position.

0.16.0

- Added [422](https://github.com/roboflow/supervision/pull/422): [`sv.BoxMaskAnnotator`](/0.16.0/annotators/#supervision.annotators.core.BoxMaskAnnotator) allowing to annotate images and videos with mox masks.

- Added [433](https://github.com/roboflow/supervision/pull/433): [`sv.HaloAnnotator`](/0.16.0/annotators/#supervision.annotators.core.HaloAnnotator) allowing to annotate images and videos with halo effect.

python
>>> import supervision as sv

>>> image = ...
>>> detections = sv.Detections(...)

>>> halo_annotator = sv.HaloAnnotator()
>>> annotated_frame = halo_annotator.annotate(
... scene=image.copy(),
... detections=detections
... )


- Added [466](https://github.com/roboflow/supervision/pull/466): [`sv.HeatMapAnnotator`](/0.16.0/annotators/#supervision.annotators.core.HeatMapAnnotator) allowing to annotate videos with heat maps.

- Added [492](https://github.com/roboflow/supervision/pull/492): [`sv.DotAnnotator`](/0.16.0/annotators/#supervision.annotators.core.DotAnnotator) allowing to annotate images and videos with dots.

- Added [449](https://github.com/roboflow/supervision/pull/449): [`sv.draw_image`](/0.16.0/draw/utils/#supervision.draw.utils.draw_image) allowing to draw an image onto a given scene with specified opacity and dimensions.

- Added [280](https://github.com/roboflow/supervision/pull/280): [`sv.FPSMonitor`](/0.16.0/utils/video/#supervision.utils.video.FPSMonitor) for monitoring frames per second (FPS) to benchmark latency.

- Added [454](https://github.com/roboflow/supervision/pull/454): 🤗 Hugging Face Annotators [space](https://huggingface.co/spaces/Roboflow/Annotators).

- Changed [482](https://github.com/roboflow/supervision/pull/482): [`sv.LineZone.trigger`](/0.16.0/detection/tools/line_zone/#supervision.detection.line_counter.LineZone.trigger) now return `Tuple[np.ndarray, np.ndarray]`. The first array indicates which detections have crossed the line from outside to inside. The second array indicates which detections have crossed the line from inside to outside.

- Changed [465](https://github.com/roboflow/supervision/pull/465): Annotator argument name from `color_map: str` to `color_lookup: ColorLookup` enum to increase type safety.

- Changed [426](https://github.com/roboflow/supervision/pull/426): [`sv.MaskAnnotator`](/0.16.0/annotators/#supervision.annotators.core.MaskAnnotator) allowing 2x faster annotation.

- Fixed [477](https://github.com/roboflow/supervision/pull/477): Poetry env definition allowing proper local installation.

- Fixed [430](https://github.com/roboflow/supervision/pull/430): [`sv.ByteTrack`](/0.16.0/trackers/#supervision.tracker.byte_tracker.core.ByteTrack) to return `np.array([], dtype=int)` when `svDetections` is empty.

!!! failure "Deprecated"

`sv.Detections.from_yolov8` and `sv.Classifications.from_yolov8` as those are now replaced by [`sv.Detections.from_ultralytics`](/0.16.0/detection/core/supervision.detection.core.Detections.from_ultralytics) and [`sv.Classifications.from_ultralytics`](/0.16.0/classification/core/supervision.classification.core.Classifications.from_ultralytics).

Page 2 of 6

© 2025 Safety CLI Cybersecurity Inc. All Rights Reserved.