Starting diive library
**GENERAL**
The `diive` library contains packages and modules that aim to facilitate working
with time series data, in particular ecosystem data.
Previous versions of `diive` included a GUI. The GUI component will from now on
be developed separately as `diive-gui`, which makes use of the `diive` library.
Previous versions of `diive` (up to v0.22.0) can be found in the separate repo
[diive-legacy](https://gitlab.ethz.ch/diive/diive-legacy).
This initial version of the `diive` library contains several first versions of
packages that will be extended with the next versions.
Notable introduction in this version is the package `echires` for working with
high-resolution eddy covariance data. This package contains the module `fluxdetectionlimit`,
which allows the calculation of the flux detection limit following Langford et al. (2015).
**NEW PACKAGES**
- Added `common`: Common functionality, e.g. reading data files
- Added `pkgs > analyses`: General analyses
- Added `pkgs > corrections`: Calculate corrections for existing variables
- Added `pkgs > createflag`: Create flag variables, e.g. for quality checks
- Added `pkgs > createvar`: Calculate new variables, e.g. potential radiation
- Added `pkgs > echires`: Calculations for eddy covariance high-resolution data, e.g. 20Hz data
- Added `pkgs > gapfilling`: Gap-filling routines
- Added `pkgs > outlierdetection`: Outlier detection
- Added `pkgs > qaqc`: Quality screening for timeseries variables
**NEW MODULES**
- Added `optimumrange` in `pkgs > analyses`
- Added `gapfinder` in `pkgs > analyses`
- Added `offsetcorrection` in `pkgs > corrections`
- Added `setto_threshold` in `pkgs > corrections`
- Added `outsiderange` in `pkgs > createflag`
- Added `potentialradiation` in `pkgs > createvar`
- Added `fluxdetectionlimit` in `pkgs > echires`
- Added `interpolate` in `pkgs > gapfilling`
- Added `hampel` in `pkgs > outlierdetection`
- Added `meteoscreening` in `pkgs > qaqc`
**CHANGES & ADDITIONS**
- None
**BUGFIXES**
- None
**REFERENCES**
- Hollinger, D. Y., & Richardson, A. D. (2005). Uncertainty in eddy covariance measurements
and its application to physiological models. Tree Physiology, 25(7),
873–885. https://doi.org/10.1093/treephys/25.7.873
- Langford, B., Acton, W., Ammann, C., Valach, A., & Nemitz, E. (2015). Eddy-covariance data with low signal-to-noise
ratio: Time-lag determination, uncertainties and limit of detection. Atmospheric Measurement Techniques, 8(10),
4197–4213. https://doi.org/10.5194/amt-8-4197-2015
- Papale, D., Reichstein, M., Aubinet, M., Canfora, E., Bernhofer, C., Kutsch, W., Longdoz, B., Rambal, S., Valentini,
R., Vesala, T., & Yakir, D. (2006). Towards a standardized processing of Net Ecosystem Exchange measured with eddy
covariance technique: Algorithms and uncertainty estimation. Biogeosciences, 3(4),
571–583. https://doi.org/10.5194/bg-3-571-2006
- Pastorello, G. et al. (2020). The FLUXNET2015 dataset and the ONEFlux processing pipeline
for eddy covariance data. 27. https://doi.org/10.1038/s41597-020-0534-3
- Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M., Berbigier, P., Bernhofer, C., Buchmann, N.,
Gilmanov, T., Granier, A., Grunwald, T., Havrankova, K., Ilvesniemi, H., Janous, D., Knohl, A., Laurila, T., Lohila,
A., Loustau, D., Matteucci, G., … Valentini, R. (2005). On the separation of net ecosystem exchange into assimilation
and ecosystem respiration: Review and improved algorithm. Global Change Biology, 11(9),
1424–1439. https://doi.org/10.1111/j.1365-2486.2005.001002.x