Kedro

Latest version: v0.19.9

Safety actively analyzes 681844 Python packages for vulnerabilities to keep your Python projects secure.

Scan your dependencies

Page 21 of 22

0.15.6

Not secure
Major features and improvements
> _TL;DR_ We're launching [`kedro.extras`](https://github.com/kedro-org/kedro/tree/master/extras), the new home for our revamped series of datasets, decorators and dataset transformers. The datasets in [`kedro.extras.datasets`](https://github.com/kedro-org/kedro/tree/master/extras/datasets) use [`fsspec`](https://filesystem-spec.readthedocs.io/en/latest/) to access a variety of data stores including local file systems, network file systems, cloud object stores (including S3 and GCP), and Hadoop, read more about this [**here**](https://docs.kedro.org/en/0.15.6/04_user_guide/04_data_catalog.html#specifying-the-location-of-the-dataset). The change will allow [178](https://github.com/kedro-org/kedro/issues/178) to happen in the next major release of Kedro.

An example of this new system can be seen below, loading the CSV `SparkDataSet` from S3:

yaml
weather:
type: spark.SparkDataSet Observe the specified type, this affects all datasets
filepath: s3a://your_bucket/data/01_raw/weather* filepath uses fsspec to indicate the file storage system
credentials: dev_s3
file_format: csv


You can also load data incrementally whenever it is dumped into a directory with the extension to [`PartionedDataSet`](https://docs.kedro.org/en/0.15.6/04_user_guide/08_advanced_io.html#partitioned-dataset), a feature that allows you to load a directory of files. The [`IncrementalDataSet`](https://docs.kedro.org/en/0.15.6/04_user_guide/08_advanced_io.html#incremental-loads-with-incrementaldataset) stores the information about the last processed partition in a `checkpoint`, read more about this feature [**here**](https://docs.kedro.org/en/0.15.6/04_user_guide/08_advanced_io.html#incremental-loads-with-incrementaldataset).

New features

* Added `layer` attribute for datasets in `kedro.extras.datasets` to specify the name of a layer according to [data engineering convention](https://docs.kedro.org/en/0.15.6/06_resources/01_faq.html#what-is-data-engineering-convention), this feature will be passed to [`kedro-viz`](https://github.com/kedro-org/kedro-viz) in future releases.
* Enabled loading a particular version of a dataset in Jupyter Notebooks and iPython, using `catalog.load("dataset_name", version="<2019-12-13T15.08.09.255Z>")`.
* Added property `run_id` on `ProjectContext`, used for versioning using the [`Journal`](https://docs.kedro.org/en/0.15.6/04_user_guide/13_journal.html). To customise your journal `run_id` you can override the private method `_get_run_id()`.
* Added the ability to install all optional kedro dependencies via `pip install "kedro[all]"`.
* Modified the `DataCatalog`'s load order for datasets, loading order is the following:
- `kedro.io`
- `kedro.extras.datasets`
- Import path, specified in `type`
* Added an optional `copy_mode` flag to `CachedDataSet` and `MemoryDataSet` to specify (`deepcopy`, `copy` or `assign`) the copy mode to use when loading and saving.

New Datasets

| Type | Description | Location |
| -------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------ | ----------------------------------- |
| `dask.ParquetDataSet` | Handles parquet datasets using Dask | `kedro.extras.datasets.dask` |
| `pickle.PickleDataSet` | Work with Pickle files using [`fsspec`](https://filesystem-spec.readthedocs.io/en/latest/) to communicate with the underlying filesystem | `kedro.extras.datasets.pickle` |
| `pandas.CSVDataSet` | Work with CSV files using [`fsspec`](https://filesystem-spec.readthedocs.io/en/latest/) to communicate with the underlying filesystem | `kedro.extras.datasets.pandas` |
| `pandas.TextDataSet` | Work with text files using [`fsspec`](https://filesystem-spec.readthedocs.io/en/latest/) to communicate with the underlying filesystem | `kedro.extras.datasets.pandas` |
| `pandas.ExcelDataSet` | Work with Excel files using [`fsspec`](https://filesystem-spec.readthedocs.io/en/latest/) to communicate with the underlying filesystem | `kedro.extras.datasets.pandas` |
| `pandas.HDFDataSet` | Work with HDF using [`fsspec`](https://filesystem-spec.readthedocs.io/en/latest/) to communicate with the underlying filesystem | `kedro.extras.datasets.pandas` |
| `yaml.YAMLDataSet` | Work with YAML files using [`fsspec`](https://filesystem-spec.readthedocs.io/en/latest/) to communicate with the underlying filesystem | `kedro.extras.datasets.yaml` |
| `matplotlib.MatplotlibWriter` | Save with Matplotlib images using [`fsspec`](https://filesystem-spec.readthedocs.io/en/latest/) to communicate with the underlying filesystem | `kedro.extras.datasets.matplotlib` |
| `networkx.NetworkXDataSet` | Work with NetworkX files using [`fsspec`](https://filesystem-spec.readthedocs.io/en/latest/) to communicate with the underlying filesystem | `kedro.extras.datasets.networkx` |
| `biosequence.BioSequenceDataSet` | Work with bio-sequence objects using [`fsspec`](https://filesystem-spec.readthedocs.io/en/latest/) to communicate with the underlying filesystem | `kedro.extras.datasets.biosequence` |
| `pandas.GBQTableDataSet` | Work with Google BigQuery | `kedro.extras.datasets.pandas` |
| `pandas.FeatherDataSet` | Work with feather files using [`fsspec`](https://filesystem-spec.readthedocs.io/en/latest/) to communicate with the underlying filesystem | `kedro.extras.datasets.pandas` |
| `IncrementalDataSet` | Inherit from `PartitionedDataSet` and remembers the last processed partition | `kedro.io` |

Files with a new location

| Type | New Location |
| -------------------------------------------------------------------- | -------------------------------------------- |
| `JSONDataSet` | `kedro.extras.datasets.pandas` |
| `CSVBlobDataSet` | `kedro.extras.datasets.pandas` |
| `JSONBlobDataSet` | `kedro.extras.datasets.pandas` |
| `SQLTableDataSet` | `kedro.extras.datasets.pandas` |
| `SQLQueryDataSet` | `kedro.extras.datasets.pandas` |
| `SparkDataSet` | `kedro.extras.datasets.spark` |
| `SparkHiveDataSet` | `kedro.extras.datasets.spark` |
| `SparkJDBCDataSet` | `kedro.extras.datasets.spark` |
| `kedro/contrib/decorators/retry.py` | `kedro/extras/decorators/retry_node.py` |
| `kedro/contrib/decorators/memory_profiler.py` | `kedro/extras/decorators/memory_profiler.py` |
| `kedro/contrib/io/transformers/transformers.py` | `kedro/extras/transformers/time_profiler.py` |
| `kedro/contrib/colors/logging/color_logger.py` | `kedro/extras/logging/color_logger.py` |
| `extras/ipython_loader.py` | `tools/ipython/ipython_loader.py` |
| `kedro/contrib/io/cached/cached_dataset.py` | `kedro/io/cached_dataset.py` |
| `kedro/contrib/io/catalog_with_default/data_catalog_with_default.py` | `kedro/io/data_catalog_with_default.py` |
| `kedro/contrib/config/templated_config.py` | `kedro/config/templated_config.py` |

Upcoming deprecations

| Category | Type |
| ------------------------- | -------------------------------------------------------------- |
| **Datasets** | `BioSequenceLocalDataSet` |
| | `CSVGCSDataSet` |
| | `CSVHTTPDataSet` |
| | `CSVLocalDataSet` |
| | `CSVS3DataSet` |
| | `ExcelLocalDataSet` |
| | `FeatherLocalDataSet` |
| | `JSONGCSDataSet` |
| | `JSONLocalDataSet` |
| | `HDFLocalDataSet` |
| | `HDFS3DataSet` |
| | `kedro.contrib.io.cached.CachedDataSet` |
| | `kedro.contrib.io.catalog_with_default.DataCatalogWithDefault` |
| | `MatplotlibLocalWriter` |
| | `MatplotlibS3Writer` |
| | `NetworkXLocalDataSet` |
| | `ParquetGCSDataSet` |
| | `ParquetLocalDataSet` |
| | `ParquetS3DataSet` |
| | `PickleLocalDataSet` |
| | `PickleS3DataSet` |
| | `TextLocalDataSet` |
| | `YAMLLocalDataSet` |
| **Decorators** | `kedro.contrib.decorators.memory_profiler` |
| | `kedro.contrib.decorators.retry` |
| | `kedro.contrib.decorators.pyspark.spark_to_pandas` |
| | `kedro.contrib.decorators.pyspark.pandas_to_spark` |
| **Transformers** | `kedro.contrib.io.transformers.transformers` |
| **Configuration Loaders** | `kedro.contrib.config.TemplatedConfigLoader` |

Bug fixes and other changes
* Added the option to set/overwrite params in `config.yaml` using YAML dict style instead of string CLI formatting only.
* Kedro CLI arguments `--node` and `--tag` support comma-separated values, alternative methods will be deprecated in future releases.
* Fixed a bug in the `invalidate_cache` method of `ParquetGCSDataSet` and `CSVGCSDataSet`.
* `--load-version` now won't break if version value contains a colon.
* Enabled running `node`s with duplicate inputs.
* Improved error message when empty credentials are passed into `SparkJDBCDataSet`.
* Fixed bug that caused an empty project to fail unexpectedly with ImportError in `template/.../pipeline.py`.
* Fixed bug related to saving dataframe with categorical variables in table mode using `HDFS3DataSet`.
* Fixed bug that caused unexpected behavior when using `from_nodes` and `to_nodes` in pipelines using transcoding.
* Credentials nested in the dataset config are now also resolved correctly.
* Bumped minimum required pandas version to 0.24.0 to make use of `pandas.DataFrame.to_numpy` (recommended alternative to `pandas.DataFrame.values`).
* Docs improvements.
* `Pipeline.transform` skips modifying node inputs/outputs containing `params:` or `parameters` keywords.
* Support for `dataset_credentials` key in the credentials for `PartitionedDataSet` is now deprecated. The dataset credentials should be specified explicitly inside the dataset config.
* Datasets can have a new `confirm` function which is called after a successful node function execution if the node contains `confirms` argument with such dataset name.
* Make the resume prompt on pipeline run failure use `--from-nodes` instead of `--from-inputs` to avoid unnecessarily re-running nodes that had already executed.
* When closed, Jupyter notebook kernels are automatically terminated after 30 seconds of inactivity by default. Use `--idle-timeout` option to update it.
* Added `kedro-viz` to the Kedro project template `requirements.txt` file.
* Removed the `results` and `references` folder from the project template.
* Updated contribution process in `CONTRIBUTING.md`.

Breaking changes to the API
* Existing `MatplotlibWriter` dataset in `contrib` was renamed to `MatplotlibLocalWriter`.
* `kedro/contrib/io/matplotlib/matplotlib_writer.py` was renamed to `kedro/contrib/io/matplotlib/matplotlib_local_writer.py`.
* `kedro.contrib.io.bioinformatics.sequence_dataset.py` was renamed to `kedro.contrib.io.bioinformatics.biosequence_local_dataset.py`.

Thanks for supporting contributions
[Andrii Ivaniuk](https://github.com/andrii-ivaniuk), [Jonas Kemper](https://github.com/jonasrk), [Yuhao Zhu](https://github.com/yhzqb), [Balazs Konig](https://github.com/BalazsKonigQB), [Pedro Abreu](https://github.com/PedroAbreuQB), [Tam-Sanh Nguyen](https://github.com/tamsanh), [Peter Zhao](https://github.com/zxpeter), [Deepyaman Datta](https://github.com/deepyaman), [Florian Roessler](https://github.com/fdroessler/), [Miguel Rodriguez Gutierrez](https://github.com/MigQ2)

0.15.5

Not secure
Major features and improvements
* New CLI commands and command flags:
- Load multiple `kedro run` CLI flags from a configuration file with the `--config` flag (e.g. `kedro run --config run_config.yml`)
- Run parametrised pipeline runs with the `--params` flag (e.g. `kedro run --params param1:value1,param2:value2`).
- Lint your project code using the `kedro lint` command, your project is linted with [`black`](https://github.com/psf/black) (Python 3.6+), [`flake8`](https://gitlab.com/pycqa/flake8) and [`isort`](https://github.com/PyCQA/isort).
* Load specific environments with Jupyter notebooks using `KEDRO_ENV` which will globally set `run`, `jupyter notebook` and `jupyter lab` commands using environment variables.
* Added the following datasets:
- `CSVGCSDataSet` dataset in `contrib` for working with CSV files in Google Cloud Storage.
- `ParquetGCSDataSet` dataset in `contrib` for working with Parquet files in Google Cloud Storage.
- `JSONGCSDataSet` dataset in `contrib` for working with JSON files in Google Cloud Storage.
- `MatplotlibS3Writer` dataset in `contrib` for saving Matplotlib images to S3.
- `PartitionedDataSet` for working with datasets split across multiple files.
- `JSONDataSet` dataset for working with JSON files that uses [`fsspec`](https://filesystem-spec.readthedocs.io/en/latest/) to communicate with the underlying filesystem. It doesn't support `http(s)` protocol for now.
* Added `s3fs_args` to all S3 datasets.
* Pipelines can be deducted with `pipeline1 - pipeline2`.

Bug fixes and other changes
* `ParallelRunner` now works with `SparkDataSet`.
* Allowed the use of nulls in `parameters.yml`.
* Fixed an issue where `%reload_kedro` wasn't reloading all user modules.
* Fixed `pandas_to_spark` and `spark_to_pandas` decorators to work with functions with kwargs.
* Fixed a bug where `kedro jupyter notebook` and `kedro jupyter lab` would run a different Jupyter installation to the one in the local environment.
* Implemented Databricks-compatible dataset versioning for `SparkDataSet`.
* Fixed a bug where `kedro package` would fail in certain situations where `kedro build-reqs` was used to generate `requirements.txt`.
* Made `bucket_name` argument optional for the following datasets: `CSVS3DataSet`, `HDFS3DataSet`, `PickleS3DataSet`, `contrib.io.parquet.ParquetS3DataSet`, `contrib.io.gcs.JSONGCSDataSet` - bucket name can now be included into the filepath along with the filesystem protocol (e.g. `s3://bucket-name/path/to/key.csv`).
* Documentation improvements and fixes.

Breaking changes to the API
* Renamed entry point for running pip-installed projects to `run_package()` instead of `main()` in `src/<package>/run.py`.
* `bucket_name` key has been removed from the string representation of the following datasets: `CSVS3DataSet`, `HDFS3DataSet`, `PickleS3DataSet`, `contrib.io.parquet.ParquetS3DataSet`, `contrib.io.gcs.JSONGCSDataSet`.
* Moved the `mem_profiler` decorator to `contrib` and separated the `contrib` decorators so that dependencies are modular. You may need to update your import paths, for example the pyspark decorators should be imported as `from kedro.contrib.decorators.pyspark import <pyspark_decorator>` instead of `from kedro.contrib.decorators import <pyspark_decorator>`.

Thanks for supporting contributions
[Sheldon Tsen](https://github.com/sheldontsen-qb), [roumail](https://github.com/roumail), [Karlson Lee](https://github.com/i25959341), [Waylon Walker](https://github.com/WaylonWalker), [Deepyaman Datta](https://github.com/deepyaman), [Giovanni](https://github.com/plauto), [Zain Patel](https://github.com/mzjp2)

0.15.4

Not secure
Major features and improvements
* `kedro jupyter` now gives the default kernel a sensible name.
* `Pipeline.name` has been deprecated in favour of `Pipeline.tags`.
* Reuse pipelines within a Kedro project using `Pipeline.transform`, it simplifies dataset and node renaming.
* Added Jupyter Notebook line magic (`%run_viz`) to run `kedro viz` in a Notebook cell (requires [`kedro-viz`](https://github.com/kedro-org/kedro-viz) version 3.0.0 or later).
* Added the following datasets:
- `NetworkXLocalDataSet` in `kedro.contrib.io.networkx` to load and save local graphs (JSON format) via NetworkX. (by [josephhaaga](https://github.com/josephhaaga))
- `SparkHiveDataSet` in `kedro.contrib.io.pyspark.SparkHiveDataSet` allowing usage of Spark and insert/upsert on non-transactional Hive tables.
* `kedro.contrib.config.TemplatedConfigLoader` now supports name/dict key templating and default values.

Bug fixes and other changes
* `get_last_load_version()` method for versioned datasets now returns exact last load version if the dataset has been loaded at least once and `None` otherwise.
* Fixed a bug in `_exists` method for versioned `SparkDataSet`.
* Enabled the customisation of the ExcelWriter in `ExcelLocalDataSet` by specifying options under `writer` key in `save_args`.
* Fixed a bug in IPython startup script, attempting to load context from the incorrect location.
* Removed capping the length of a dataset's string representation.
* Fixed `kedro install` command failing on Windows if `src/requirements.txt` contains a different version of Kedro.
* Enabled passing a single tag into a node or a pipeline without having to wrap it in a list (i.e. `tags="my_tag"`).

Breaking changes to the API
* Removed `_check_paths_consistency()` method from `AbstractVersionedDataSet`. Version consistency check is now done in `AbstractVersionedDataSet.save()`. Custom versioned datasets should modify `save()` method implementation accordingly.

Thanks for supporting contributions
[Joseph Haaga](https://github.com/josephhaaga), [Deepyaman Datta](https://github.com/deepyaman), [Joost Duisters](https://github.com/JoostDuisters), [Zain Patel](https://github.com/mzjp2), [Tom Vigrass](https://github.com/tomvigrass)

0.15.3

Not secure
Bug Fixes and other changes
* Narrowed the requirements for `PyTables` so that we maintain support for Python 3.5.

0.15.2

Not secure
Major features and improvements
* Added `--load-version`, a `kedro run` argument that allows you run the pipeline with a particular load version of a dataset.
* Support for modular pipelines in `src/`, break the pipeline into isolated parts with reusability in mind.
* Support for multiple pipelines, an ability to have multiple entry point pipelines and choose one with `kedro run --pipeline NAME`.
* Added a `MatplotlibWriter` dataset in `contrib` for saving Matplotlib images.
* An ability to template/parameterize configuration files with `kedro.contrib.config.TemplatedConfigLoader`.
* Parameters are exposed as a context property for ease of access in iPython / Jupyter Notebooks with `context.params`.
* Added `max_workers` parameter for ``ParallelRunner``.

Bug fixes and other changes
* Users will override the `_get_pipeline` abstract method in `ProjectContext(KedroContext)` in `run.py` rather than the `pipeline` abstract property. The `pipeline` property is not abstract anymore.
* Improved an error message when versioned local dataset is saved and unversioned path already exists.
* Added `catalog` global variable to `00-kedro-init.py`, allowing you to load datasets with `catalog.load()`.
* Enabled tuples to be returned from a node.
* Disallowed the ``ConfigLoader`` loading the same file more than once, and deduplicated the `conf_paths` passed in.
* Added a `--open` flag to `kedro build-docs` that opens the documentation on build.
* Updated the ``Pipeline`` representation to include name of the pipeline, also making it readable as a context property.
* `kedro.contrib.io.pyspark.SparkDataSet` and `kedro.contrib.io.azure.CSVBlobDataSet` now support versioning.

Breaking changes to the API
* `KedroContext.run()` no longer accepts `catalog` and `pipeline` arguments.
* `node.inputs` now returns the node's inputs in the order required to bind them properly to the node's function.

Thanks for supporting contributions
[Deepyaman Datta](https://github.com/deepyaman), [Luciano Issoe](https://github.com/Lucianois), [Joost Duisters](https://github.com/JoostDuisters), [Zain Patel](https://github.com/mzjp2), [William Ashford](https://github.com/williamashfordQB), [Karlson Lee](https://github.com/i25959341)

0.15.1

Not secure
Major features and improvements
* Extended `versioning` support to cover the tracking of environment setup, code and datasets.
* Added the following datasets:
- `FeatherLocalDataSet` in `contrib` for usage with pandas. (by [mdomarsaleem](https://github.com/mdomarsaleem))
* Added `get_last_load_version` and `get_last_save_version` to `AbstractVersionedDataSet`.
* Implemented `__call__` method on `Node` to allow for users to execute `my_node(input1=1, input2=2)` as an alternative to `my_node.run(dict(input1=1, input2=2))`.
* Added new `--from-inputs` run argument.

Bug fixes and other changes
* Fixed a bug in `load_context()` not loading context in non-Kedro Jupyter Notebooks.
* Fixed a bug in `ConfigLoader.get()` not listing nested files for `**`-ending glob patterns.
* Fixed a logging config error in Jupyter Notebook.
* Updated documentation in `03_configuration` regarding how to modify the configuration path.
* Documented the architecture of Kedro showing how we think about library, project and framework components.
* `extras/kedro_project_loader.py` renamed to `extras/ipython_loader.py` and now runs any IPython startup scripts without relying on the Kedro project structure.
* Fixed TypeError when validating partial function's signature.
* After a node failure during a pipeline run, a resume command will be suggested in the logs. This command will not work if the required inputs are MemoryDataSets.

Breaking changes to the API

Thanks for supporting contributions
[Omar Saleem](https://github.com/mdomarsaleem), [Mariana Silva](https://github.com/marianansilva), [Anil Choudhary](https://github.com/aniryou), [Craig](https://github.com/cfranklin11)

Page 21 of 22

© 2024 Safety CLI Cybersecurity Inc. All Rights Reserved.