Nni

Latest version: v3.0

Safety actively analyzes 685670 Python packages for vulnerabilities to keep your Python projects secure.

Scan your dependencies

Page 3 of 8

2.1

Not secure
Major updates
=========

Neural architecture search
-----------------------------

* Improve NAS 2.0 (Retiarii) Framework (Improved Experimental)

* Improve the robustness of graph generation and code generation for PyTorch models (3365)
* Support the inline mutation API ``ValueChoice`` (3349 3382)
* Improve the design and implementation of Model Evaluator (3359 3404)
* Support Random/Grid/Evolution exploration strategies (i.e., search algorithms) (3377)
* Refer to [here](https://github.com/microsoft/nni/issues/3301) for Retiarii Roadmap

Training service
-----------------

* Support shared storage for reuse mode (3354)
* Support Windows as the local training service in hybrid mode (3353)
* Remove PAIYarn training service (3327)
* Add "recently-idle" scheduling algorithm (3375)
* Deprecate ``preCommand`` and enable ``pythonPath`` for remote training service (3284 3410)
* Refactor reuse mode temp folder (3374)

nnictl & nni.experiment
--------------------------

* Migrate ``nnicli`` to new Python API ``nni.experiment`` (3334)
* Refactor the way of specifying tuner in experiment Python API (``nni.experiment``), more aligned with ``nnictl`` (3419)

WebUI
-------

* Support showing the assigned training service of each trial in hybrid mode on WebUI (3261 3391)
* Support multiple selection for filter status in experiments management page (3351)
* Improve overview page (3316 3317 3352)
* Support copy trial id in the table (3378)

Documentation
-----------------

* Improve model compression examples and documentation (3326 3371)
* Add Python API examples and documentation (3396)
* Add SECURITY doc (3358)
* Add 'What's NEW!' section in README (3395)
* Update English contributing doc (3398, thanks external contributor Yongxuanzhang)

Bug fixes
----------

* Fix AML outputs path and python process not killed (3321)
* Fix bug that an experiment launched from Python cannot be resumed by nnictl (3309)
* Fix import path of network morphism example (3333)
* Fix bug in the tuple unpack (3340)
* Fix bug of security for arbitrary code execution (3311, thanks external contributor huntr-helper)
* Fix ``NoneType`` error on jupyter notebook (3337, thanks external contributor tczhangzhi)
* Fix bugs in Retiarii (3339 3341 3357, thanks external contributor tczhangzhi)
* Fix bug in AdaptDL mode example (3381, thanks external contributor ZeyaWang)
* Fix the spelling mistake of assessor (3416, thanks external contributor ByronCHAO)
* Fix bug in ruamel import (3430, thanks external contributor rushtehrani)

2.0

Not secure
Major updates
=============

Neural architecture search
--------------------------

* Support an improved NAS framework: Retiarii (experimental)
* [Feature roadmap](https://github.com/microsoft/nni/issues/3301)
* [Related issues and pull requests](https://github.com/microsoft/nni/issues?q=label%3Aretiarii-v2.0)
* [Documentation](https://nni.readthedocs.io/en/v2.0/NAS/retiarii/retiarii_index.html)
* Support a new NAS algorithm: Cream (2705)
* Add a new NAS benchmark for NLP model search (3140)

Training service
----------------

* Support hybrid training service (3097 3251 3252)
* Support AdlTrainingService, a new training service based on Kubernetes (3022, thanks external contributors Petuum pw2393)

Model compression
-----------------

* Support pruning schedule for fpgm pruning algorithm (3110)
* ModelSpeedup improvement: support torch v1.7 (updated graph_utils.py) (3076)
* Improve model compression utility: model flops counter (3048 3265)

WebUI & nnictl
--------------

* Support experiments management on WebUI, add a web page for it (3081 3127)
* Improve the layout of overview page (3046 3123)
* Add navigation bar on the right for logs and configs; add expanded icons for table (3069 3103)

Others
------

* Support launching an experiment from Python code (3111 3210 3263)
* Refactor builtin/customized tuner installation (3134)
* Support new experiment configuration V2 (3138 3248 3251)
* Reorganize source code directory hierarchy (2962 2987 3037)
* Change SIGKILL to SIGTERM in local mode when cancelling trial jobs (3173)
* Refector hyperband (3040)

Documentation
-------------

* Port markdown docs to reStructuredText docs and introduce ``githublink`` (3107)
* List related research and publications in doc (3150)
* Add tutorial of saving and loading quantized model (3192)
* Remove paiYarn doc and add description of ``reuse`` config in remote mode (3253)
* Update EfficientNet doc to clarify repo versions (3158, thanks external contributor ahundt)

Bug fixes
---------

* Fix exp-duration pause timing under NO_MORE_TRIAL status (3043)
* Fix bug in NAS SPOS trainer, apply_fixed_architecture (3051, thanks external contributor HeekangPark)
* Fix ``_compute_hessian`` bug in NAS DARTS (PyTorch version) (3058, thanks external contributor hroken)
* Fix bug of conv1d in the cdarts utils (3073, thanks external contributor athaker)
* Fix the handling of unknown trials when resuming an experiment (3096)
* Fix bug of kill command under Windows (3106)
* Fix lazy logging (3108, thanks external contributor HarshCasper)
* Fix checkpoint load and save issue in QAT quantizer (3124, thanks external contributor eedalong)
* Fix quant grad function calculation error (3160, thanks external contributor eedalong)
* Fix device assignment bug in quantization algorithm (3212, thanks external contributor eedalong)
* Fix bug in ModelSpeedup and enhance UT for it (3279)
* and others

1.9

Not secure
Major updates

Neural architecture search
* Support regularized evolution algorithm for NAS scenario (2802)
* Add NASBench201 in search space zoo (2766)

Model compression
* AMC pruner improvement: support resnet, support reproduction of the experiments (default parameters in our example code) in AMC paper (2876 2906)
* Support constraint-aware on some of our pruners to improve model compression efficiency (2657)
* Support "tf.keras.Sequential" in model compression for TensorFlow (2887)
* Support customized op in the model flops counter (2795)
* Support quantizing bias in QAT quantizer (2914)

Training service

* Support configuring python environment using "preCommand" in remote mode (2875)
* Support AML training service in Windows (2882)
* Support reuse mode for remote training service (2923)

WebUI & nnictl

* The "Overview" page on WebUI is redesigned with new layout (2914)
* Upgraded node, yarn and FabricUI, and enabled Eslint (2894 2873 2744)
* Add/Remove columns in hyper-parameter chart and trials table in "Trials detail" page (2900)
* JSON format utility beautify on WebUI (2863)
* Support nnictl command auto-completion (2857)

UT & IT
* Add integration test for experiment import and export (2878)
* Add integration test for user installed builtin tuner (2859)
* Add unit test for nnictl (2912)

Documentation
* Refactor of the document for model compression (2919)

Bug fixes
* Bug fix of naïve evolution tuner, correctly deal with trial fails (2695)
* Resolve the warning "WARNING (nni.protocol) IPC pipeline not exists, maybe you are importing tuner/assessor from trial code?" (2864)
* Fix search space issue in experiment save/load (2886)
* Fix bug in experiment import data (2878)
* Fix annotation in remote mode (python 3.8 ast update issue) (2881)
* Support boolean type for "choice" hyper-parameter when customizing trial configuration on WebUI (3003)

1.8

Not secure
Major updates

Training service

* Access trial log directly on WebUI (local mode only) (2718)
* Add OpenPAI trial job detail link (2703)
* Support GPU scheduler in reusable environment (2627) (2769)
* Add timeout for `web_channel` in `trial_runner` (2710)
* Show environment error message in AzureML mode (2724)
* Add more log information when copying data in OpenPAI mode (2702)

WebUI, nnictl and nnicli

* Improve hyper-parameter parallel coordinates plot (2691) (2759)
* Add pagination for trial job list (2738) (2773)
* Enable panel close when clicking overlay region (2734)
* Remove support for Multiphase on WebUI (2760)
* Support save and restore experiments (2750)
* Add intermediate results in export result (2706)
* Add [command](https://github.com/microsoft/nni/blob/v1.8/docs/en_US/Tutorial/Nnictl.md#nnictl-trial) to list trial results with highest/lowest metrics (2747)
* Improve the user experience of [nnicli](https://github.com/microsoft/nni/blob/v1.8/docs/en_US/nnicli_ref.md) with [examples](https://github.com/microsoft/nni/blob/v1.8/examples/notebooks/retrieve_nni_info_with_python.ipynb) (#2713)

Neural architecture search

* [Search space zoo: ENAS and DARTS](https://github.com/microsoft/nni/blob/v1.8/docs/en_US/NAS/SearchSpaceZoo.md) (#2589)
* API to query intermediate results in NAS benchmark (2728)

Model compression

* Support the List/Tuple Construct/Unpack operation for TorchModuleGraph (2609)
* Model speedup improvement: Add support of DenseNet and InceptionV3 (2719)
* Support the multiple successive tuple unpack operations (2768)
* [Doc of comparing the performance of supported pruners](https://github.com/microsoft/nni/blob/v1.8/docs/en_US/CommunitySharings/ModelCompressionComparison.md) (#2742)
* New pruners: [Sensitivity pruner](https://github.com/microsoft/nni/blob/v1.8/docs/en_US/Compressor/Pruner.md#sensitivity-pruner) (2684) and [AMC pruner](https://github.com/microsoft/nni/blob/v1.8/docs/en_US/Compressor/Pruner.md) (#2573) (2786)
* TensorFlow v2 support in model compression (2755)

Backward incompatible changes

* Update the default experiment folder from `$HOME/nni/experiments` to `$HOME/nni-experiments`. If you want to view the experiments created by previous NNI releases, you can move the experiments folders from `$HOME/nni/experiments` to `$HOME/nni-experiments` manually. (2686) (2753)
* Dropped support for Python 3.5 and scikit-learn 0.20 (2778) (2777) (2783) (2787) (2788) (2790)

Others

* Upgrade TensorFlow version in Docker image (2732) (2735) (2720)

Examples

* Remove gpuNum in assessor examples (2641)

Documentation

* Improve customized tuner documentation (2628)
* Fix several typos and grammar mistakes in documentation (2637 2638, thanks tomzx)
* Improve AzureML training service documentation (2631)
* Improve CI of Chinese translation (2654)
* Improve OpenPAI training service documenation (2685)
* Improve documentation of community sharing (2640)
* Add tutorial of Colab support (2700)
* Improve documentation structure for model compression (2676)

Bug fixes

* Fix mkdir error in training service (2673)
* Fix bug when using chmod in remote training service (2689)
* Fix dependency issue by making `_graph_utils` imported inline (2675)
* Fix mask issue in `SimulatedAnnealingPruner` (2736)
* Fix intermediate graph zooming issue (2738)
* Fix issue when dict is unordered when querying NAS benchmark (2728)
* Fix import issue for gradient selector dataloader iterator (2690)
* Fix support of adding tens of machines in remote training service (2725)
* Fix several styling issues in WebUI (2762 2737)
* Fix support of unusual types in metrics including NaN and Infinity (2782)
* Fix nnictl experiment delete (2791)

1.7.1

Not secure
Bug Fixes

* Fix pai training service error handling 2692
* Fix pai training service codeDir copying issue 2673
* Upgrade training service to support latest pai restful API 2722

1.7

Not secure
Major Features

Training Service

* Support AML(Azure Machine Learning) platform as NNI training service.
* OpenPAI job can be reusable. When a trial is completed, the OpenPAI job won't stop, and wait next trial. [refer to reuse flag in OpenPAI config](https://github.com/microsoft/nni/blob/v1.7/docs/en_US/TrainingService/PaiMode.md#openpai-configurations).
* [Support ignoring files and folders in code directory with .nniignore when uploading code directory to training service](https://github.com/microsoft/nni/blob/v1.7/docs/en_US/TrainingService/Overview.md#how-to-use-training-service).

Neural Architecture Search (NAS)

* [Provide NAS Open Benchmarks (NasBench101, NasBench201, NDS) with friendly APIs](https://github.com/microsoft/nni/blob/v1.7/docs/en_US/NAS/Benchmarks.md).

* [Support Classic NAS (i.e., non-weight-sharing mode) on TensorFlow 2.X](https://github.com/microsoft/nni/blob/v1.7/docs/en_US/NAS/ClassicNas.md).

Model Compression

* Improve Model Speedup: track more dependencies among layers and automatically resolve mask conflict, support the speedup of pruned resnet.
* Added new pruners, including three auto model pruning algorithms: [NetAdapt Pruner](https://github.com/microsoft/nni/blob/v1.7/docs/en_US/Compressor/Pruner.md#netadapt-pruner), [SimulatedAnnealing Pruner](https://github.com/microsoft/nni/blob/v1.7/docs/en_US/Compressor/Pruner.md#simulatedannealing-pruner), [AutoCompress Pruner](https://github.com/microsoft/nni/blob/v1.7/docs/en_US/Compressor/Pruner.md#autocompress-pruner), and [ADMM Pruner](https://github.com/microsoft/nni/blob/v1.7/docs/en_US/Compressor/Pruner.md#admm-pruner).
* Added [model sensitivity analysis tool](https://github.com/microsoft/nni/blob/v1.7/docs/en_US/Compressor/CompressionUtils.md) to help users find the sensitivity of each layer to the pruning.
* [Easy flops calculation for model compression and NAS](https://github.com/microsoft/nni/blob/v1.7/docs/en_US/Compressor/CompressionUtils.md#model-flops-parameters-counter).

* Update lottery ticket pruner to export winning ticket.

Examples

* Automatically optimize tensor operators on NNI with a new [customized tuner OpEvo](https://github.com/microsoft/nni/blob/v1.7/docs/en_US/TrialExample/OpEvoExamples.md).

Built-in tuners/assessors/advisors

* [Allow customized tuners/assessor/advisors to be installed as built-in algorithms](https://github.com/microsoft/nni/blob/v1.7/docs/en_US/Tutorial/InstallCustomizedAlgos.md).

WebUI

* Support visualizing nested search space more friendly.
* Show trial's dict keys in hyper-parameter graph.
* Enhancements to trial duration display.

Others

* Provide utility function to merge parameters received from NNI
* Support setting paiStorageConfigName in pai mode

Documentation

* Improve [documentation for model compression](https://github.com/microsoft/nni/blob/v1.7/docs/en_US/Compressor/Overview.md)
* Improve [documentation](https://github.com/microsoft/nni/blob/v1.7/docs/en_US/NAS/Benchmarks.md)
and [examples](https://github.com/microsoft/nni/blob/v1.7/docs/en_US/NAS/BenchmarksExample.ipynb) for NAS benchmarks.
* Improve [documentation for AzureML training service](https://github.com/microsoft/nni/blob/v1.7/docs/en_US/TrainingService/AMLMode.md)
* Homepage migration to readthedoc.

Bug Fixes

* Fix bug for model graph with shared nn.Module
* Fix nodejs OOM when `make build`
* Fix NASUI bugs
* Fix duration and intermediate results pictures update issue.
* Fix minor WebUI table style issues.

Page 3 of 8

© 2024 Safety CLI Cybersecurity Inc. All Rights Reserved.