New tuner and assessor supports
* Support [Metis tuner](docs/HowToChooseTuner.mdMetisTuner) as a new NNI tuner. Metis algorithm has been proofed to be well performed for **online** hyper-parameter tuning.
* Support [ENAS customized tuner](https://github.com/countif/enas_nni), a tuner contributed by github community user, is an algorithm for neural network search, it could learn neural network architecture via reinforcement learning and serve a better performance than NAS.
* Support [Curve fitting assessor](docs/HowToChooseTuner.mdCurvefitting) for early stop policy using learning curve extrapolation.
* Advanced Support of [Weight Sharing](docs/AdvancedNAS.md): Enable weight sharing for NAS tuners, currently through NFS.
Training Service Enhancement
* [FrameworkController Training service](docs/FrameworkControllerMode.md): Support run experiments using frameworkcontroller on kubernetes
* FrameworkController is a Controller on kubernetes that is general enough to run (distributed) jobs with various machine learning frameworks, such as tensorflow, pytorch, MXNet.
* NNI provides unified and simple specification for job definition.
* MNIST example for how to use FrameworkController.
User Experience improvements
* A better trial logging support for NNI experiments in PAI, Kubeflow and FrameworkController mode:
* An improved logging architecture to send stdout/stderr of trials to NNI manager via Http post. NNI manager will store trial's stdout/stderr messages in local log file.
* Show the link for trial log file on WebUI.
* Support to show final result's all key-value pairs.