Spark-nlp

Latest version: v5.5.1

Safety actively analyzes 685670 Python packages for vulnerabilities to keep your Python projects secure.

Scan your dependencies

Page 20 of 23

1.7.1

Not secure
========
---------------
Overview
---------------
Thanks to our slack community (Bryan Wilkinson, maziyarpanahi, apiltamang), a few bugs been pointed out very quickly from 1.7.0 release. This hotfix fixes an embeddings deserialization issue when cache_pretrained is located on a distributed filesystem.
Also, fixes some path resolution in Windows OS. Thanks to Maziyar, .gitattributes been added in order to identify proper languages in GitHub.
Finally, 1.7.1 adds a missing annotator from 1.7.0 Chunk2Doc, which converts CHUNK types into DOCUMENT types, for further retokenization or other annotations.

---------------
Enhancements
---------------
* Chunk2Doc annotator converts annotatorType from CHUNK to DOCUMENT

---------------
Bugfixes
---------------
* Fixed embedding-based annotators deserialization error when cache_pretrained is on distributed fs (Thanks Bryan Wilkinson for pointing out issue and testing fix)
* Fixed windows path reading when deserializing embeddings (Thanks apiltamang)

---------------
Other
---------------
* .gitattributes added in order to properly discard jupyter as main language for GitHub repo (thanks maziyarpanahi)

========

1.7.0

Not secure
========
---------------
Overview
---------------
Having multiple annotators that use the same word embeddings set, may result in huge pipelines, driver memory and storage consumption.
Since now on, embeddings may be shared and reutilized across annotators making the process much more efficient.
Also, thanks to apiltamang, we now better support path resolution for Windows implementations.

---------------
Enhancements
---------------
Memory and storage saving by allowing annotators with embeddings through params 'includeEmbeddings' and 'embeddingsRef' to allow them to set whether they should be included when saved, or referenced by id from other annotators
EmbeddingsHelper class allows embeddings management

---------------
Bug fixes
---------------
Thanks to apiltamang for improving URI path support for Windows Servers

---------------
Developer API
---------------
Embeddings interfaces and method names completely refactored, hopefully simplified and easier to understand

========

1.6.3

Not secure
========
---------------
Overview
---------------
This release includes a new annotator for de-identification of sensitive information. It uses CHUNK annotations, meaning its accuracy will depend on previous annotators on the pipeline.
Also, OCR capabilities have been improved in the OCR module.
In terms of broken stuff, we've fixed a few annoying bugs on SymmetricDelete and SentenceDetector explode feature.
Finally, pip is now part of the official repositories, meaning you can install it just as any other module. It also includes jars and we've added a SparkNLP class which creates SparkSession easily for you.
Thanks again for all community contribution in issues, feedback and comments in GitHub and in Slack.

---------------
New features
---------------
* DeIdentification annotator, takes DOCUMENT and TOKEN from the original sentence, plus a CHUNK annotation to anonymize target chunk in sentence. CHUNK annotation might come from NerConverter, TextMatcher or other chunk annotators.

---------------
Enhancements
---------------
* Kernel zoom and region erosion improve overall detection quality. Fixed some stability bugs. Improved parallelism

---------------
Bug fixes
---------------
* Sentence Detector explode sentences into rows now works properly
* Fixed Dictionary-based sentiment detector not working on pyspark
* Added missing NerConverter to annotator._ imports
* Fixed SymmetricDelete spell checker deleting tokens in some scenarios
* Fixed SymmetricDelete spell checker unwilling lower-casing

---------------
Other
---------------
* PySpark pip now part from official pip repos
* Pip installation now includes corresponding spark-nlp jar. base module includes SparkNLP SparkSession creator

========

1.6.2

Not secure
========
---------------
Overview
---------------
In this release, we focused on reviewing out streaming performance, buy measuring our amount of sentences processed by second, through a LightPipeline.
We increased Norvig Spell Checker by more than 300% by disabling DoubleVariants and improving algorithm orders. It is now reported capable of 42K sentences per second.
Symmetric Delete Spell checker is more performance, although it has been reported to process 2K sentences per second.
NerCRF has been reported to process 300 hundred sentences per second, while NerDL can do twice fast (about 700 sentences per second).
Vivekn Sentiment Analysis was improved and is now capable to processing 100K sentences per sentence (before it was below 500).
Finally, SentenceDetector performance was improved by a 40% from ~30K rows processed per second to ~40K. But, we have now enabled Abbreviation processing by default which reduces final speed to 22K rows per second with a negative net but better accuracy.
Again, thanks for the community for helping with feedback. We welcome everyone asking questions or giving feedback in our Slack channel or reporting issues on Github.

---------------
Enhancements
---------------
* OCR now features kernel segmentation. Significantly improves image based PDF processing
* Vivekn Sentiment Analysis prediction performance improved by better data structures
* Both Norvig and Symmetric Delete spell checkers now have improved performance
* SentenceDetector improved accuracy by better handling abbreviations. UseAbbreviations now also by default turned ON
* SentenceDetector improved performance significantly by improved preloading of rules

---------------
Bug fixes
---------------
* Fixed NerDL not training correctly (broken since 1.6.0). Pretrained models not affected
* Fixed NerConverter not properly considering multiple sentences per row (after using SentenceDetector), causing an unhandled exception to occur in some scenarios.
* Tensorflow sessions now all support allow_soft_placement, supporting GPU based graphs to work with and without GPU
* Norvig Spell Checker fixed a missing step from the algorithm to check for additional variants. May improve accuracy
* Norvig Spell Checker disabled DoubleVariants by default. Was not improving accuracy significantly and was hitting performance very hard

---------------
Developer API
---------------
* New FeatureSet allows HashSet params

---------------
Models
---------------
* Vivekn Sentiment Pipeline doesn't have Spell Checker anymore
* Fixed Vivekn Sentiment pretrained improved accuracy

========

1.6.1

========
---------------
Overview
---------------
Hi! We're glad to announce new hotfix 1.6.1. Although changes seem modest or very specific, there is a lot going underground. First of all, we've worked hard with the community to understand S3-based clusters,
which don't have a common fs.defaultFS configuration, which is the one we use to tell where is the cluster temp folder located in order to distribute word embeddings. We fixed two things here,
on one side we fixed a bug pointing to the wrong filesystem. Second, we added a custom override setting in application.conf that allows manually setting where to put temp folders in cluster. This should help S3 users.
Please share your feedback on this regard.
On the other hand, we created a new annotator type internally. The CHUNK type allows better modulary in the communication between different annotators. Impact will be noticed implicitly and over time.

---------------
New features
---------------
* new Scala-only functions that make it easier to work with Annotations in Dataframes. May be imported through com.johnsnowlabs.nlp.functions._ and allow mapping and filtering within and outside Annotations.
filterByAnnotations, mapAnnotations and explodeAnnotations work by providing a column and a function. Check out documentation. Possibly later coming to Python.

---------------
Bug fixes
---------------
* Fixed incorrect filesystem readings in some S3 environments for word embeddings
* Fixed NerCRF not correctly training from CONLL, labeling everything as -O- (Thanks arnound from Slack Channel)

---------------
Enhancements
---------------
* Added overrideable config sparknlp.settings.cluster_tmp_dir allows setting cluster location for temporary embeddings file. May help S3 based clusters with no fs.defaultFS set to a proper distributed storage.
* New annotator type: CHUNK. Representes a SUBSTRING of DOCUMENT and it is used as output from NerConverter, TextMatcher, RegexMatcher and other annotators that retrieve a substring from the original document.
This will make for better modularity and integration within various annotators, such as between NER and AssertionStatus.
* New annotation transformer: ChunkAssembler. Takes a string or array(string) column from a dataset and creates a CHUNK type annotator. The content must also belong to the current DOCUMENT annotation's content.
* SentenceDetector new param explodeSentences allow to explode sentences within a single row into different rows to increase parallelism and performance in some scenarios. Particularly OCR based.
* AssertionDLApproach now may be used within LightPipelines
* AssertionDLApproach and AssertionLogRegApproach now work from CHUNK type instead of start/end bounds. May still be trained with Start/end though. This means target for assertion may be any CHUNK output annotator now (e.g. RegexMatcher)

---------------
Other
---------------
* PerceptronApproachLegacy moved back to default PerceptronApproach. Distributed PerceptronApproach moved to PerceptronApproachDistributed due to not meeting accuracy expectations yet.
* Some configuration parameters in application.conf have been appropriately moved to proper annotator Params (NorvigSweeting Spell Checker, Vivekn Approach and Sentiment Detector affected)
* application.conf renamed configuration values for better consistency

---------------
Developer API
---------------
* Added beforeAnnotate() and afterAnnotate() to manipulate dataframes after or before calling annotate() UDF
* Added extraValidate() and extraValidateMsg() in all annotators to provide developer to add additional SCHEMA checks in transformSchema() stage
* Removed validation() stage in fit() stage. Allows for more flexible training when some of the columns are not really required yet.
* WrapColumnMetadata() will wrap an Annotation column with its appropriate Metadata. Makes it easier not to forget about Metadata in Schema.
* RawAnnotator trait has now all the basics needed to start a new Annotator without annotate() function. It is a complete previous stage before AnnotatorModel, which inherits from RawAnnotator.

========

1.6.0

========
---------------
Overview
---------------
We're late! But it was worth it. We're glad to release 1.6.0 which brings new features, lots of enhancements and many bugfixes. First of all, we are thankful for community participating in Slack and in GitHub by reporting feedback and issues.
In this one, we have a new annotator, the Chunker, which allows to grab pieces of text following a particular Part-of-Speech pattern.
On the other hand, we have a brand new OCR to Spark Dataframe utility, which bundles as an optional component to Spark-NLP. This one requires tesseract 4.x+ to be installed on your system, and may be downloaded from our website or readme pages.
Aside from that, we improved in many areas, from the DocumentAssembler to work better with OCR output, down to our Deep Learning models with better consistency and accuracy. Word Embedding based annotators also receive improvements when working in Cluster environments.
Finally, we are glad a user contributed a fix to the AWS dependency issue, particularly happening in Cloudera environments. We're still waiting for feedback, and gladly accept it.
We'll be working on the documentation as this release follows. Thank you.

---------------
New Features
---------------
* New annotator: Chunker. This annotator takes regex for Part-of-Speech tags and returns appropriate chunks of text following such patterns
* OCR to Spark-NLP: As an optional jar module, users may use OcrHelper class in order to convert PDF files into Spark Dataset, ready to be utilized by Spark-NLP's document assembler. May be used without Spark-NLP. Requires Tesseract 4.x on your system.

---------------
Enhancements
---------------
* TextMatcher now has caseSensitive (setCaseSensitive) Param which allows to setup for matching with case sensitivity or not (Ignores if Normalizer did it). Returned word is still the original.
* LightPipelines in Python should now be faster thanks to an optimization of prefetching results into Python memory instead of py4j bridge
* LightPipelines can now handle embedded Pipelines
* PerceptronApproach now trains utilizing full Spark distributed algoritm. Still experimental. PerceptronApproachLegacy may still be used, which might be better for local non cluster setups.
* Tokenizer now has a param 'includeDefaults' which may be set to False to disable all preset-rules.
* WordEmbedding based annotators may now decide to normalize tokens before matching embeddings vectors through 'useNormalizedTokensForEmbeddings' Param. Generally improves consistency, lesser overfitting.
* DocumentAssembler may now better deal with large amounts of texts by using 'trimAndClearNewLines' to better work with OCR Outputs and be better ready for further Sentence Detection
* Improved SentenceDetector handling of enumerations and lists
* Slightly improved SentenceDetector performance through non-tail-recursive optimizations
* Finisher does no longer have default delimiters when output into String (not Array) (thanks S_L)

---------------
Bug fixes
---------------
* AWS library dependecy conflict now resolved (Thanks to apiltamang for proposing solution. thanks to the community for follow-up). Solution is experimental, waiting for feedback.
* Fixed wrong order of further added Tokenizer's infixPatterns in Python (Thanks sethah)
* Training annotators that use Word Embeddings in a distributed cluster does no longer throw file not found exceptions sporadically
* Fixed NerDLModel returning non-deterministic results during prediction
* Deep-Learning based models and graphs now allow running them on CPU if trained on GPU and GPU is not available on client
* WordEmbeddings temporary location no longer in HOME dir, moved to tmp.dir
* Fixed SentenceDetector incorrectly bounding sentences with non-English characters (Thanks lorenz-nlp)
* Python Spark-NLP annotator models should now have all appropriate setter and getter functions for Params
* Fixed wrong-format of column when showing Metadata through Finisher's output as Array
* Added missing python Finisher's include metadata function (thanks PinusSilvestris for reporting the bug)
* Fixed Symmetric Delete Spell Checker throwing wrong error when training with an empty dataset (Thanks ankush)

---------------
Developer API
---------------
* Deep Learning models may now be read through SavedModelBundle API into Tensorflow for Java in TensorflowWrapper
* WordEmbeddings now allow checking if word exists with contains()
* Included tool that converts text into CoNLL format for further labeling for training NER models (

========

Page 20 of 23

© 2024 Safety CLI Cybersecurity Inc. All Rights Reserved.