========
----------------
New Features
----------------
* **NEW:** Introducing **DeBertaForSequenceClassification** annotator in Spark NLP 🚀. `DeBertaForSequenceClassification` can load DeBERTa v2&v3 models with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for multi-class document classification tasks. This annotator is compatible with all the models trained/fine-tuned by using `DebertaForSequenceClassification` for **PyTorch** or `TFDebertaForSequenceClassification` for **TensorFlow** models in HuggingFace
* New multi-label feature in all SequenceForClassification. The following annotators now have the option to switch to sigmoid activation function instead of softmax for the output layer: AlbertForSequenceClassification, BertForSequenceClassification, DeBertaForSequenceClassification, DistilBertForSequenceClassification, LongformerForSequenceClassification, RoBertaForSequenceClassification, XlmRoBertaForSequenceClassification, and XlnetForSequenceClassification
* New minLength, maxLength, splitLength, customBounds, and useCustomBoundsOnly parameters in SentenceDetectorDL
* New impossiblePenultimates feature in SentenceDetectorDLModel
* New feature to set names for columns in CoNLLU class: textCol, documentCol, sentenceCol, formCol, uposCol, xposCol, and lemmaCol
* New formCol and lemmaCol parameters in Lemmatizer annotator
* Add new functionality to download and extract models from S3 via direct link
----------------
Bug Fixes & Enhancements
----------------
* Fix and train new English spell checker models for Spark NLP 3.4.1 on Spark 3.x and 2.x
* Update SentenceDetector documentation
* Add a missing notebook to demonstrate training a WordSegmenterApproach annotator for word segmentation
========