Keras

Latest version: v3.9.2

Safety actively analyzes 723976 Python packages for vulnerabilities to keep your Python projects secure.

Scan your dependencies

Page 11 of 13

2.2.1

Not secure
Areas of improvement

- Bugs fixes
- Performance improvements
- Documentation improvements

API changes

- Add `output_padding` argument in `Conv2DTranspose` (to override default padding behavior).
- Enable automatic shape inference when using Lambda layers with the CNTK backend.

Breaking changes

No breaking changes recorded.

Credits

Thanks to our 33 contributors whose commits are featured in this release:

Ajk4, Anner-deJong, Atcold, Dref360, EyeBool, ageron, briannemsick, cclauss, davidtvs, dstine, eTomate, ebatuhankaynak, eliberis, farizrahman4u, fchollet, fuzzythecat, gabrieldemarmiesse, jlopezpena, kamil-kaczmarek, kbattocchi, kmader, kvechera, maxpumperla, mkaze, pavithrasv, rvinas, sachinruk, seriousmac, soumyac1999, taehoonlee, yanboliang, yongzx, yuyang-huang

2.2.0

Not secure
Areas of improvements

- New model definition API: `Model` subclassing.
- New input mode: ability to call models on TensorFlow tensors directly (TensorFlow backend only).
- Improve feature coverage of Keras with the Theano and CNTK backends.
- Bug fixes and performance improvements.
- Large refactors improving code structure, code health, and reducing test time. In particular:
* The Keras engine now follows a much more modular structure.
* The `Sequential` model is now a plain subclass of `Model`.
* The modules `applications` and `preprocessing` are now externalized to their own repositories ([keras-applications](https://github.com/keras-team/keras-applications) and [keras-preprocessing](https://github.com/keras-team/keras-preprocessing)).

API changes

- Add `Model` subclassing API (details below).
- Allow symbolic tensors to be fed to models, with TensorFlow backend (details below).
- Enable CNTK and Theano support for layers `SeparableConv1D`, `SeparableConv2D`, as well as backend methods `separable_conv1d` and `separable_conv2d` (previously only available for TensorFlow).
- Enable CNTK and Theano support for applications `Xception` and `MobileNet` (previously only available for TensorFlow).
- Add `MobileNetV2` application (available for all backends).
- Enable loading external (non built-in) backends by changing your `~/.keras.json` configuration file (e.g. PlaidML backend).
- Add `sample_weight` in `ImageDataGenerator`.
- Add `preprocessing.image.save_img` utility to write images to disk.
- Default `Flatten` layer's `data_format` argument to `None` (which defaults to global Keras config).
- `Sequential` is now a plain subclass of `Model`. The attribute `sequential.model` is deprecated.
- Add `baseline` argument in `EarlyStopping` (stop training if a given baseline isn't reached).
- Add `data_format` argument to `Conv1D`.
- Make the model returned by `multi_gpu_model` serializable.
- Support input masking in `TimeDistributed` layer.
- Add an `advanced_activation` layer `ReLU`, making the ReLU activation easier to configure while retaining easy serialization capabilities.
- Add `axis=-1` argument in backend crossentropy functions specifying the class prediction axis in the input tensor.

New model definition API : `Model` subclassing

In addition to the `Sequential` API and the functional `Model` API, you may now define models by subclassing the `Model` class and writing your own `call` forward pass:

python
import keras

class SimpleMLP(keras.Model):

def __init__(self, use_bn=False, use_dp=False, num_classes=10):
super(SimpleMLP, self).__init__(name='mlp')
self.use_bn = use_bn
self.use_dp = use_dp
self.num_classes = num_classes

self.dense1 = keras.layers.Dense(32, activation='relu')
self.dense2 = keras.layers.Dense(num_classes, activation='softmax')
if self.use_dp:
self.dp = keras.layers.Dropout(0.5)
if self.use_bn:
self.bn = keras.layers.BatchNormalization(axis=-1)

def call(self, inputs):
x = self.dense1(inputs)
if self.use_dp:
x = self.dp(x)
if self.use_bn:
x = self.bn(x)
return self.dense2(x)

model = SimpleMLP()
model.compile(...)
model.fit(...)


Layers are defined in `__init__(self, ...)`, and the forward pass is specified in `call(self, inputs)`. In `call`, you may specify custom losses by calling `self.add_loss(loss_tensor)` (like you would in a custom layer).

New input mode: symbolic TensorFlow tensors

With Keras 2.2.0 and TensorFlow 1.8 or higher, you may `fit`, `evaluate` and `predict` using symbolic TensorFlow tensors (that are expected to yield data indefinitely). The API is similar to the one in use in `fit_generator` and other generator methods:

python
iterator = training_dataset.make_one_shot_iterator()
x, y = iterator.get_next()

model.fit(x, y, steps_per_epoch=100, epochs=10)

iterator = validation_dataset.make_one_shot_iterator()
x, y = iterator.get_next()
model.evaluate(x, y, steps=50)


This is achieved by dynamically rewiring the TensorFlow graph to feed the input tensors to the existing model placeholders. There is no performance loss compared to building your model on top of the input tensors in the first place.


Breaking changes

- Remove legacy `Merge` layers and associated functionality (remnant of Keras 0), which were deprecated in May 2016, with full removal initially scheduled for August 2017. Models from the Keras 0 API using these layers cannot be loaded with Keras 2.2.0 and above.
- The `truncated_normal` base initializer now returns values that are scaled by ~0.9 (resulting in correct variance value after truncation). This has a small chance of affecting initial convergence behavior on some models.


Credits

Thanks to our 46 contributors whose commits are featured in this release:

ASvyatkovskiy, AmirAlavi, Anirudh-Swaminathan, DavidAriel, Dref360, JonathanCMitchell, KuzMenachem, PeterChe1990, Saharkakavand, StefanoCappellini, ageron, askskro, bileschi, bonlime, bottydim, brge17, briannemsick, bzamecnik, christian-lanius, clemens-tolboom, dschwertfeger, dynamicwebpaige, farizrahman4u, fchollet, fuzzythecat, ghostplant, giuscri, huyu398, jnphilipp, masstomato, morenoh149, mrTsjolder, nittanycolonial, r-kellerm, reidjohnson, roatienza, sbebo, stevemurr, taehoonlee, tiferet, tkoivisto, tzerrell, vkk800, wangkechn, wouterdobbels, zwang36wang

2.1.6

Not secure
Areas of improvement

- Bug fixes
- Documentation improvements
- Minor usability improvements

API changes

- In callback `ReduceLROnPlateau`, rename `epsilon` argument to `min_delta` (backwards-compatible).
- In callback `RemoteMonitor`, add argument `send_as_json`.
- In backend `softmax` function, add argument `axis`.
- In `Flatten` layer, add argument `data_format`.
- In `save_model` (`Model.save`) and `load_model` functions, allow the `filepath` argument to be a `h5py.File` object.
- In `Model.evaluate_generator`, add `verbose` argument.
- In `Bidirectional` wrapper layer, add `constants` argument.
- In `multi_gpu_model` function, add arguments `cpu_merge` and `cpu_relocation` (controlling whether to force the template model's weights to be on CPU, and whether to operate merge operations on CPU or GPU).
- In `ImageDataGenerator`, allow argument `width_shift_range` to be `int` or 1D array-like.

Breaking changes

This release does not include any known breaking changes.

Credits

Thanks to our 37 contributors whose commits are featured in this release:

Dref360, FirefoxMetzger, Naereen, NiharG15, StefanoCappellini, WindQAQ, dmadeka, edrogers, eltronix, farizrahman4u, fchollet, gabrieldemarmiesse, ghostplant, jedrekfulara, jlherren, joeyearsley, johanahlqvist, johnyf, jsaporta, kalkun, lucasdavid, masstomato, mrlzla, myutwo150, nisargjhaveri, obi1kenobi, olegantonyan, ozabluda, pasky, planck35, sotlampr, souptc, srjoglekar246, stamate, taehoonlee, vkk800, xuhdev

2.1.5

Not secure
Areas of improvement

- Bug fixes.
- New APIs: sequence generation API `TimeseriesGenerator`, and new layer `DepthwiseConv2D`.
- Unit tests / CI improvements.
- Documentation improvements.

API changes

- Add new sequence generation API `keras.preprocessing.sequence.TimeseriesGenerator`.
- Add new convolutional layer `keras.layers.DepthwiseConv2D`.
- Allow weights from `keras.layers.CuDNNLSTM` to be loaded into a `keras.layers.LSTM` layer (e.g. for inference on CPU).
- Add `brightness_range` data augmentation argument in `keras.preprocessing.image.ImageDataGenerator`.
- Add `validation_split` API in `keras.preprocessing.image.ImageDataGenerator`. You can pass `validation_split` to the constructor (float), then select between training/validation subsets by passing the argument `subset='validation'` or `subset='training'` to methods `flow` and `flow_from_directory`.

Breaking changes

- As a side effect of a refactor of `ConvLSTM2D` to a modular implementation, recurrent dropout support in Theano has been dropped for this layer.

Credits

Thanks to our 28 contributors whose commits are featured in this release:

DomHudson, Dref360, VitamintK, abrad1212, ahundt, bojone, brainnoise, bzamecnik, caisq, cbensimon, davinnovation, farizrahman4u, fchollet, gabrieldemarmiesse, khosravipasha, ksindi, lenjoy, masstomato, mewwts, ozabluda, paulpister, sandpiturtle, saralajew, srjoglekar246, stefangeneralao, taehoonlee, tiangolo, treszkai

2.1.4

Not secure
Areas of improvement

- Bug fixes
- Performance improvements
- Improvements to example scripts

API changes

- Allow for stateful metrics in `model.compile(..., metrics=[...])`. A stateful metric inherits from `Layer`, and implements `__call__` and `reset_states`.
- Support `constants` argument in `StackedRNNCells`.
- Enable some TensorBoard features in the `TensorBoard` callback (loss and metrics plotting) with non-TensorFlow backends.
- Add `reshape` argument in `model.load_weights()`, to optionally reshape weights being loaded to the size of the target weights in the model considered.
- Add `tif` to supported formats in `ImageDataGenerator`.
- Allow auto-GPU selection in `multi_gpu_model()` (set `gpus=None`).
- In `LearningRateScheduler` callback, the scheduling function now takes an argument: `lr`, the current learning rate.

Breaking changes

- In `ImageDataGenerator`, change default interpolation of image transforms from nearest to bilinear. This should probably not break any users, but it is a change of behavior.

Credits

Thanks to our 37 contributors whose commits are featured in this release:

DalilaSal, Dref360, GalaxyDream, GarrisonJ, Max-Pol, May4m, MiliasV, MrMYHuang, N-McA, Vijayabhaskar96, abrad1212, ahundt, angeloskath, bbabenko, bojone, brainnoise, bzamecnik, caisq, cclauss, dsadulla, fchollet, gabrieldemarmiesse, ghostplant, gorogoroyasu, icyblade, kapsl, kevinbache, mendesmiguel, mikesol, myutwo150, ozabluda, sadreamer, simra, taehoonlee, veniversum, yongtang, zhangwj618

2.1.3

Not secure
Areas of improvement

- Performance improvements (esp. convnets with TensorFlow backend).
- Usability improvements.
- Docs & docstrings improvements.
- New models in the `applications` module.
- Bug fixes.

API changes

- `trainable` attribute in `BatchNormalization` now disables the updates of the batch statistics (i.e. if `trainable == False` the layer will now run 100% in inference mode).
- Add `amsgrad` argument in `Adam` optimizer.
- Add new applications: `NASNetMobile`, `NASNetLarge`, `DenseNet121`, `DenseNet169`, `DenseNet201`.
- Add `Softmax` layer (removing need to use a `Lambda` layer in order to specify the `axis` argument).
- Add `SeparableConv1D` layer.
- In `preprocessing.image.ImageDataGenerator`, allow `width_shift_range` and `height_shift_range` to take integer values (absolute number of pixels)
- Support `return_state` in `Bidirectional` applied to RNNs (`return_state` should be set on the child layer).
- The string values `"crossentropy"` and `"ce"` are now allowed in the `metrics` argument (in `model.compile()`), and are routed to either `categorical_crossentropy` or `binary_crossentropy` as needed.
- Allow `steps` argument in `predict_*` methods on the `Sequential` model.
- Add `oov_token` argument in `preprocessing.text.Tokenizer`.

Breaking changes

- In `preprocessing.image.ImageDataGenerator`, `shear_range` has been switched to use degrees rather than radians (for consistency). This should not actually break anything (neither training nor inference), but keep this change in mind in case you see any issues with regard to your image data augmentation process.


Credits

Thanks to our 45 contributors whose commits are featured in this release:

Dref360, OliPhilip, TimZaman, bbabenko, bdwyer2, berkatmaca, caisq, decrispell, dmaniry, fchollet, fgaim, gabrieldemarmiesse, gklambauer, hgaiser, hlnull, icyblade, jgrnt, kashif, kouml, lutzroeder, m-mohsen, mab4058, manashty, masstomato, mihirparadkar, myutwo150, nickbabcock, novotnj3, obsproth, ozabluda, philferriere, piperchester, pstjohn, roatienza, souptc, spiros, srs70187, sumitgouthaman, taehoonlee, tigerneil, titu1994, tobycheese, vitaly-krumins, yang-zhang, ziky90

Page 11 of 13

© 2025 Safety CLI Cybersecurity Inc. All Rights Reserved.