Highlights
- Add support for arbitrary, deeply nested input/output structures in Functional models (e.g. dicts of dicts of lists of inputs or outputs...)
- Add support for optional Functional inputs.
- Introduce `keras.dtype_policies.DTypePolicyMap` for easy configuration of dtype policies of nested sublayers of a subclassed layer/model.
- New ops:
- `keras.ops.argpartition`
- `keras.ops.scan`
- `keras.ops.lstsq`
- `keras.ops.switch`
- `keras.ops.dtype`
- `keras.ops.map`
- `keras.ops.image.rgb_to_hsv`
- `keras.ops.image.hsv_to_rgb`
What's changed
- Add support for `float8` inference for `Dense` and `EinsumDense` layers.
- Add custom `name` argument in all Keras Applications models.
- Add `axis` argument in `keras.losses.Dice`.
- Enable `keras.utils.FeatureSpace` to be used in a `tf.data` pipeline even when the backend isn't TensorFlow.
- `StringLookup` layer can now take `tf.SparseTensor` as input.
- `Metric.variables` is now recursive.
- Add `training` argument to `Model.compute_loss()`.
- Add `dtype` argument to all losses.
- `keras.utils.split_dataset` now supports nested structures in dataset.
- Bugs fixes and performance improvements.
**Full Changelog**: https://github.com/keras-team/keras/compare/v3.3.3...v3.4.0