Mlflow

Latest version: v2.19.0

Safety actively analyzes 687959 Python packages for vulnerabilities to keep your Python projects secure.

Scan your dependencies

Page 12 of 18

1.16.0

Not secure
Features:

- Add `mlflow.pyspark.ml.autolog()` API for autologging of `pyspark.ml` estimators (4228, WeichenXu123)
- Add `mlflow.catboost.log_model`, `mlflow.catboost.save_model`, `mlflow.catboost.load_model` APIs for CatBoost model persistence (2417, harupy)
- Enable `mlflow.pyfunc.spark_udf` to use column names from model signature by default (4236, Loquats)
- Add `datetime` data type for model signatures (4241, vperiyasamy)
- Add `mlflow.sklearn.eval_and_log_metrics` API that computes and logs metrics for the given scikit-learn model and labeled dataset. (4218, alkispoly-db)

Bug fixes and documentation updates:

- Fix a database migration error for PostgreSQL (4211, dolfinus)
- Fix autologging silent mode bugs (4231, dbczumar)

Small bug fixes and doc updates (4255, 4252, 4254, 4253, 4242, 4247, 4243, 4237, 4233, harupy; 4225, dmatrix; 4206, mlflow-automation; 4207, shrinath-suresh; 4264, WeichenXu123; 3884, 3866, 3885, ankan94; 4274, 4216, dbczumar)

1.15.0

Not secure
Features:

- Add `silent=False` option to all autologging APIs, to allow suppressing MLflow warnings and logging statements during autologging setup and training (4173, dbczumar)
- Add `disable_for_unsupported_versions=False` option to all autologging APIs, to disable autologging for versions of ML frameworks that have not been explicitly tested against the current version of the MLflow client (4119, WeichenXu123)

Bug fixes:

- Autologged runs are now terminated when execution is interrupted via SIGINT (4200, dbczumar)
- The R `mlflow_get_experiment` API now returns the same tag structure as `mlflow_list_experiments` and `mlflow_get_run` (4017, lorenzwalthert)
- Fix bug where `mlflow.tensorflow.autolog` would previously mutate the user-specified callbacks list when fitting `tf.keras` models (4195, dbczumar)
- Fix bug where SQL-backed MLflow tracking server initialization failed when using the MLflow skinny client (4161, eedeleon)
- Model version creation (e.g. via `mlflow.register_model`) now fails if the model version status is not READY (4114, ankit-db)

Small bug fixes and doc updates (4191, 4149, 4162, 4157, 4155, 4144, 4141, 4138, 4136, 4133, 3964, 4130, 4118, harupy; 4152, mlflow-automation; 4139, WeichenXu123; 4193, smurching; 4029, architkulkarni; 4134, xhochy; 4116, wenleix; 4160, wentinghu; 4203, 4184, 4167, dbczumar)

1.14.1

Not secure
- Fix issues in handling flexible numpy datatypes in TensorSpec (4147, arjundc-db)

1.14.0

Not secure
- MLflow's model inference APIs (`mlflow.pyfunc.predict`), built-in model serving tools (`mlflow models serve`), and model signatures now support tensor inputs. In particular, MLflow now provides built-in support for scoring PyTorch, TensorFlow, Keras, ONNX, and Gluon models with tensor inputs. For more information, see https://mlflow.org/docs/latest/models.html#deploy-mlflow-models (3808, 3894, 4084, 4068 wentinghu; 4041 tomasatdatabricks, 4099, arjundc-db)
- Add new `mlflow.shap.log_explainer`, `mlflow.shap.load_explainer` APIs for logging and loading `shap.Explainer` instances (3989, vivekchettiar)
- The MLflow Python client is now available with a reduced dependency set via the `mlflow-skinny` PyPI package (4049, eedeleon)
- Add new `RequestHeaderProvider` plugin interface for passing custom request headers with REST API requests made by the MLflow Python client (4042, jimmyxu-db)
- `mlflow.keras.log_model` now saves models in the TensorFlow SavedModel format by default instead of the older Keras H5 format (4043, harupy)
- `mlflow_log_model` now supports logging MLeap models in R (3819, yitao-li)
- Add `mlflow.pytorch.log_state_dict`, `mlflow.pytorch.load_state_dict` for logging and loading PyTorch state dicts (3705, shrinath-suresh)
- `mlflow gc` can now garbage-collect artifacts stored in S3 (3958, sklingel)

Bug fixes and documentation updates:

- Enable autologging for TensorFlow estimators that extend `tensorflow.compat.v1.estimator.Estimator` (4097, mohamad-arabi)
- Fix for universal autolog configs overriding integration-specific configs (4093, dbczumar)
- Allow `mlflow.models.infer_signature` to handle dataframes containing `pandas.api.extensions.ExtensionDtype` (4069, caleboverman)
- Fix bug where `mlflow_restore_run` doesn't propagate the `client` parameter to `mlflow_get_run` (4003, yitao-li)
- Fix bug where scoring on served model fails when request data contains a string that looks like URL and pandas version is later than 1.1.0 (3921, Secbone)
- Fix bug causing `mlflow_list_experiments` to fail listing experiments with tags (3942, lorenzwalthert)
- Fix bug where metrics plots are computed from incorrect target values in scikit-learn autologging (3993, mtrencseni)
- Remove redundant / verbose Python event logging message in autologging (3978, dbczumar)
- Fix bug where `mlflow_load_model` doesn't load metadata associated to MLflow model flavor in R (3872, yitao-li)
- Fix `mlflow.spark.log_model`, `mlflow.spark.load_model` APIs on passthrough-enabled environments against ACL'd artifact locations (3443, smurching)

Small bug fixes and doc updates (4102, 4101, 4096, 4091, 4067, 4059, 4016, 4054, 4052, 4051, 4038, 3992, 3990, 3981, 3949, 3948, 3937, 3834, 3906, 3774, 3916, 3907, 3938, 3929, 3900, 3902, 3899, 3901, 3891, 3889, harupy; 4014, 4001, dmatrix; 4028, 3957, dbczumar; 3816, lorenzwalthert; 3939, pauldj54; 3740, jkthompson; 4070, 3946, jimmyxu-db; 3836, t-henri; 3982, neo-anderson; 3972, 3687, 3922, eedeleon; 4044, WeichenXu123; 4063, yitao-li; 3976, whiteh; 4110, tomasatdatabricks; 4050, apurva-koti; 4100, 4084, wentinghu; 3947, vperiyasamy; 4021, trangevi; 3773, ankan94; 4090, jinzhang21; 3918, danielfrg)

1.13.1

Not secure
- Fix bug causing Spark autologging to ignore configuration options specified by `mlflow.autolog()` (3917, dbczumar)
- Fix bugs causing metrics to be dropped during TensorFlow autologging (3913, 3914, dbczumar)
- Fix incorrect value of optimizer name parameter in autologging PyTorch Lightning (3901, harupy)
- Fix model registry database `allow_null_for_run_id` migration failure affecting MySQL databases (3836, t-henri)
- Fix failure in `transition_model_version_stage` when uncanonical stage name is passed (3929, harupy)
- Fix an undefined variable error causing AzureML model deployment to fail (3922, eedeleon)
- Reclassify scikit-learn as a pip dependency in MLflow Model conda environments (3896, harupy)
- Fix experiment view crash and artifact view inconsistency caused by artifact URIs with redundant slashes (3928, dbczumar)

1.13

Not secure
Features:

New fluent APIs for logging in-memory objects as artifacts:

- Add `mlflow.log_text` which logs text as an artifact (3678, harupy)
- Add `mlflow.log_dict` which logs a dictionary as an artifact (3685, harupy)
- Add `mlflow.log_figure` which logs a figure object as an artifact (3707, harupy)
- Add `mlflow.log_image` which logs an image object as an artifact (3728, harupy)

UI updates / fixes (3867, smurching):

- Add model version link in compact experiment table view
- Add logged/registered model links in experiment runs page view
- Enhance artifact viewer for MLflow models
- Model registry UI settings are now persisted across browser sessions
- Add model version `description` field to model version table

Autologging enhancements:

- Improve robustness of autologging integrations to exceptions (3682, 3815, dbczumar; 3860, mohamad-arabi; 3854, 3855, 3861, harupy)
- Add `disable` configuration option for autologging (3682, 3815, dbczumar; 3838, mohamad-arabi; 3854, 3855, 3861, harupy)
- Add `exclusive` configuration option for autologging (3851, apurva-koti; 3869, dbczumar)
- Add `log_models` configuration option for autologging (3663, mohamad-arabi)
- Set tags on autologged runs for easy identification (and add tags to start_run) (3847, dbczumar)

More features and improvements:

- Allow Keras models to be saved with `SavedModel` format (3552, skylarbpayne)
- Add support for `statsmodels` flavor (3304, olbapjose)
- Add support for nested-run in mlflow R client (3765, yitao-li)
- Deploying a model using `mlflow.azureml.deploy` now integrates better with the AzureML tracking/registry. (3419, trangevi)
- Update schema enforcement to handle integers with missing values (3798, tomasatdatabricks)

Bug fixes and documentation updates:

- When running an MLflow Project on Databricks, the version of MLflow installed on the Databricks cluster will now match the version used to run the Project (3880, FlorisHoogenboom)
- Fix bug where metrics are not logged for single-epoch `tf.keras` training sessions (3853, dbczumar)
- Reject boolean types when logging MLflow metrics (3822, HCoban)
- Fix alignment of Keras / `tf.Keras` metric history entries when `initial_epoch` is different from zero. (3575, garciparedes)
- Fix bugs in autologging integrations for newer versions of TensorFlow and Keras (3735, dbczumar)
- Drop global `filterwwarnings` module at import time (3621, jogo)
- Fix bug that caused preexisting Python loggers to be disabled when using MLflow with the SQLAlchemyStore (3653, arthury1n)
- Fix `h5py` library incompatibility for exported Keras models (3667, tomasatdatabricks)

Small changes, bug fixes and doc updates (3887, 3882, 3845, 3833, 3830, 3828, 3826, 3825, 3800, 3809, 3807, 3786, 3794, 3731, 3776, 3760, 3771, 3754, 3750, 3749, 3747, 3736, 3701, 3699, 3698, 3658, 3675, harupy; 3723, mohamad-arabi; 3650, 3655, shrinath-suresh; 3850, 3753, 3725, dmatrix; 3867, 3670, 3664, smurching; 3681, sueann; 3619, andrewnitu; 3837, javierluraschi; 3721, szczeles; 3653, arthury1n; 3883, 3874, 3870, 3877, 3878, 3815, 3859, 3844, 3703, dbczumar; 3768, wentinghu; 3784, HCoban; 3643, 3649, arjundc-db; 3864, AveshCSingh, 3756, yitao-li)

Page 12 of 18

© 2024 Safety CLI Cybersecurity Inc. All Rights Reserved.