Mlflow

Latest version: v2.21.2

Safety actively analyzes 723177 Python packages for vulnerabilities to keep your Python projects secure.

Scan your dependencies

Page 13 of 20

1.18.0

Not secure
Features:

- Autologging performance improvements for XGBoost, LightGBM, and scikit-learn (4416, 4473, dbczumar)
- Add new PaddlePaddle flavor to MLflow Models (4406, 4439, jinminhao)
- Introduce paginated ListExperiments API (3881, wamartin-aml)
- Include Runtime version for MLflow Models logged on Databricks (4421, stevenchen-db)
- MLflow Models now log dependencies in pip requirements.txt format, in addition to existing conda format (4409, 4422, stevenchen-db)
- Add support for limiting the number child runs created by autologging for scikit-learn hyperparameter search models (4382, mohamad-arabi)
- Improve artifact upload / download performance on Databricks (4260, dbczumar)
- Migrate all model dependencies from conda to "pip" section (4393, WeichenXu123)

Bug fixes and documentation updates:

- Fix an MLflow UI bug that caused git source URIs to be rendered improperly (4403, takabayashi)
- Fix a bug that prevented reloading of MLflow Models based on the TensorFlow SavedModel format (4223) (4319, saschaschramm)
- Fix a bug in the behavior of `KubernetesSubmittedRun.get_status()` for Kubernetes MLflow Project runs (3962) (4159, jcasse)
- Fix a bug in TLS verification for MLflow artifact operations on S3 (4047, PeterSulcs)
- Fix a bug causing the MLflow server to crash after deletion of the default experiment (4352, asaf400)
- Fix a bug causing `mlflow models serve` to crash on Windows 10 (4377, simonvanbernem)
- Fix a crash in runs search when ordering by metric values against the MSSQL backend store (2551) (4238, naor2013)
- Fix an autologging incompatibility issue with TensorFlow 2.5 (4371, dbczumar)
- Fix a bug in the `disable_for_unsupported_versions` autologging argument that caused library versions to be incorrectly compared (4303, WeichenXu123)

Small bug fixes and doc updates (4405, mohamad-arabi; 4455, 4461, 4459, 4464, 4453, 4444, 4449, 4301, 4424, 4418, 4417, 3759, 4398, 4389, 4386, 4385, 4384, 4380, 4373, 4378, 4372, 4369, 4348, 4364, 4363, 4349, 4350, 4174, 4285, 4341, harupy; 4446, kHarshit; 4471, AveshCSingh; 4435, 4440, 4368, 4360, WeichenXu123; 4431, apurva-koti; 4428, stevenchen-db; 4467, 4402, 4261, dbczumar)

1.17.0

Not secure
Features:

- Add support for hyperparameter-tuning models to `mlflow.pyspark.ml.autolog()` (4270, WeichenXu123)

Bug fixes and documentation updates:

- Fix PyTorch Lightning callback definition for compatibility with PyTorch Lightning 1.3.0 (4333, dbczumar)
- Fix a bug in scikit-learn autologging that omitted artifacts for unsupervised models (4325, dbczumar)
- Support logging `datetime.date` objects as part of model input examples (4313, vperiyasamy)
- Implement HTTP request retries in the MLflow Java client for 500-level responses (4311, dbczumar)
- Include a community code of conduct (4310, dennyglee)

Small bug fixes and doc updates (4276, 4263, WeichenXu123; 4289, 4302, 3599, 4287, 4284, 4265, 4266, 4275, 4268, harupy; 4335, 4297, dbczumar; 4324, 4320, tleyden)

1.16.0

Not secure
Features:

- Add `mlflow.pyspark.ml.autolog()` API for autologging of `pyspark.ml` estimators (4228, WeichenXu123)
- Add `mlflow.catboost.log_model`, `mlflow.catboost.save_model`, `mlflow.catboost.load_model` APIs for CatBoost model persistence (2417, harupy)
- Enable `mlflow.pyfunc.spark_udf` to use column names from model signature by default (4236, Loquats)
- Add `datetime` data type for model signatures (4241, vperiyasamy)
- Add `mlflow.sklearn.eval_and_log_metrics` API that computes and logs metrics for the given scikit-learn model and labeled dataset. (4218, alkispoly-db)

Bug fixes and documentation updates:

- Fix a database migration error for PostgreSQL (4211, dolfinus)
- Fix autologging silent mode bugs (4231, dbczumar)

Small bug fixes and doc updates (4255, 4252, 4254, 4253, 4242, 4247, 4243, 4237, 4233, harupy; 4225, dmatrix; 4206, mlflow-automation; 4207, shrinath-suresh; 4264, WeichenXu123; 3884, 3866, 3885, ankan94; 4274, 4216, dbczumar)

1.15.0

Not secure
Features:

- Add `silent=False` option to all autologging APIs, to allow suppressing MLflow warnings and logging statements during autologging setup and training (4173, dbczumar)
- Add `disable_for_unsupported_versions=False` option to all autologging APIs, to disable autologging for versions of ML frameworks that have not been explicitly tested against the current version of the MLflow client (4119, WeichenXu123)

Bug fixes:

- Autologged runs are now terminated when execution is interrupted via SIGINT (4200, dbczumar)
- The R `mlflow_get_experiment` API now returns the same tag structure as `mlflow_list_experiments` and `mlflow_get_run` (4017, lorenzwalthert)
- Fix bug where `mlflow.tensorflow.autolog` would previously mutate the user-specified callbacks list when fitting `tf.keras` models (4195, dbczumar)
- Fix bug where SQL-backed MLflow tracking server initialization failed when using the MLflow skinny client (4161, eedeleon)
- Model version creation (e.g. via `mlflow.register_model`) now fails if the model version status is not READY (4114, ankit-db)

Small bug fixes and doc updates (4191, 4149, 4162, 4157, 4155, 4144, 4141, 4138, 4136, 4133, 3964, 4130, 4118, harupy; 4152, mlflow-automation; 4139, WeichenXu123; 4193, smurching; 4029, architkulkarni; 4134, xhochy; 4116, wenleix; 4160, wentinghu; 4203, 4184, 4167, dbczumar)

1.14.1

Not secure
- Fix issues in handling flexible numpy datatypes in TensorSpec (4147, arjundc-db)

1.14.0

Not secure
- MLflow's model inference APIs (`mlflow.pyfunc.predict`), built-in model serving tools (`mlflow models serve`), and model signatures now support tensor inputs. In particular, MLflow now provides built-in support for scoring PyTorch, TensorFlow, Keras, ONNX, and Gluon models with tensor inputs. For more information, see https://mlflow.org/docs/latest/models.html#deploy-mlflow-models (3808, 3894, 4084, 4068 wentinghu; 4041 tomasatdatabricks, 4099, arjundc-db)
- Add new `mlflow.shap.log_explainer`, `mlflow.shap.load_explainer` APIs for logging and loading `shap.Explainer` instances (3989, vivekchettiar)
- The MLflow Python client is now available with a reduced dependency set via the `mlflow-skinny` PyPI package (4049, eedeleon)
- Add new `RequestHeaderProvider` plugin interface for passing custom request headers with REST API requests made by the MLflow Python client (4042, jimmyxu-db)
- `mlflow.keras.log_model` now saves models in the TensorFlow SavedModel format by default instead of the older Keras H5 format (4043, harupy)
- `mlflow_log_model` now supports logging MLeap models in R (3819, yitao-li)
- Add `mlflow.pytorch.log_state_dict`, `mlflow.pytorch.load_state_dict` for logging and loading PyTorch state dicts (3705, shrinath-suresh)
- `mlflow gc` can now garbage-collect artifacts stored in S3 (3958, sklingel)

Bug fixes and documentation updates:

- Enable autologging for TensorFlow estimators that extend `tensorflow.compat.v1.estimator.Estimator` (4097, mohamad-arabi)
- Fix for universal autolog configs overriding integration-specific configs (4093, dbczumar)
- Allow `mlflow.models.infer_signature` to handle dataframes containing `pandas.api.extensions.ExtensionDtype` (4069, caleboverman)
- Fix bug where `mlflow_restore_run` doesn't propagate the `client` parameter to `mlflow_get_run` (4003, yitao-li)
- Fix bug where scoring on served model fails when request data contains a string that looks like URL and pandas version is later than 1.1.0 (3921, Secbone)
- Fix bug causing `mlflow_list_experiments` to fail listing experiments with tags (3942, lorenzwalthert)
- Fix bug where metrics plots are computed from incorrect target values in scikit-learn autologging (3993, mtrencseni)
- Remove redundant / verbose Python event logging message in autologging (3978, dbczumar)
- Fix bug where `mlflow_load_model` doesn't load metadata associated to MLflow model flavor in R (3872, yitao-li)
- Fix `mlflow.spark.log_model`, `mlflow.spark.load_model` APIs on passthrough-enabled environments against ACL'd artifact locations (3443, smurching)

Small bug fixes and doc updates (4102, 4101, 4096, 4091, 4067, 4059, 4016, 4054, 4052, 4051, 4038, 3992, 3990, 3981, 3949, 3948, 3937, 3834, 3906, 3774, 3916, 3907, 3938, 3929, 3900, 3902, 3899, 3901, 3891, 3889, harupy; 4014, 4001, dmatrix; 4028, 3957, dbczumar; 3816, lorenzwalthert; 3939, pauldj54; 3740, jkthompson; 4070, 3946, jimmyxu-db; 3836, t-henri; 3982, neo-anderson; 3972, 3687, 3922, eedeleon; 4044, WeichenXu123; 4063, yitao-li; 3976, whiteh; 4110, tomasatdatabricks; 4050, apurva-koti; 4100, 4084, wentinghu; 3947, vperiyasamy; 4021, trangevi; 3773, ankan94; 4090, jinzhang21; 3918, danielfrg)

Page 13 of 20

© 2025 Safety CLI Cybersecurity Inc. All Rights Reserved.