Mlflow

Latest version: v2.21.2

Safety actively analyzes 723177 Python packages for vulnerabilities to keep your Python projects secure.

Scan your dependencies

Page 14 of 20

1.13.1

Not secure
- Fix bug causing Spark autologging to ignore configuration options specified by `mlflow.autolog()` (3917, dbczumar)
- Fix bugs causing metrics to be dropped during TensorFlow autologging (3913, 3914, dbczumar)
- Fix incorrect value of optimizer name parameter in autologging PyTorch Lightning (3901, harupy)
- Fix model registry database `allow_null_for_run_id` migration failure affecting MySQL databases (3836, t-henri)
- Fix failure in `transition_model_version_stage` when uncanonical stage name is passed (3929, harupy)
- Fix an undefined variable error causing AzureML model deployment to fail (3922, eedeleon)
- Reclassify scikit-learn as a pip dependency in MLflow Model conda environments (3896, harupy)
- Fix experiment view crash and artifact view inconsistency caused by artifact URIs with redundant slashes (3928, dbczumar)

1.13

Not secure
Features:

New fluent APIs for logging in-memory objects as artifacts:

- Add `mlflow.log_text` which logs text as an artifact (3678, harupy)
- Add `mlflow.log_dict` which logs a dictionary as an artifact (3685, harupy)
- Add `mlflow.log_figure` which logs a figure object as an artifact (3707, harupy)
- Add `mlflow.log_image` which logs an image object as an artifact (3728, harupy)

UI updates / fixes (3867, smurching):

- Add model version link in compact experiment table view
- Add logged/registered model links in experiment runs page view
- Enhance artifact viewer for MLflow models
- Model registry UI settings are now persisted across browser sessions
- Add model version `description` field to model version table

Autologging enhancements:

- Improve robustness of autologging integrations to exceptions (3682, 3815, dbczumar; 3860, mohamad-arabi; 3854, 3855, 3861, harupy)
- Add `disable` configuration option for autologging (3682, 3815, dbczumar; 3838, mohamad-arabi; 3854, 3855, 3861, harupy)
- Add `exclusive` configuration option for autologging (3851, apurva-koti; 3869, dbczumar)
- Add `log_models` configuration option for autologging (3663, mohamad-arabi)
- Set tags on autologged runs for easy identification (and add tags to start_run) (3847, dbczumar)

More features and improvements:

- Allow Keras models to be saved with `SavedModel` format (3552, skylarbpayne)
- Add support for `statsmodels` flavor (3304, olbapjose)
- Add support for nested-run in mlflow R client (3765, yitao-li)
- Deploying a model using `mlflow.azureml.deploy` now integrates better with the AzureML tracking/registry. (3419, trangevi)
- Update schema enforcement to handle integers with missing values (3798, tomasatdatabricks)

Bug fixes and documentation updates:

- When running an MLflow Project on Databricks, the version of MLflow installed on the Databricks cluster will now match the version used to run the Project (3880, FlorisHoogenboom)
- Fix bug where metrics are not logged for single-epoch `tf.keras` training sessions (3853, dbczumar)
- Reject boolean types when logging MLflow metrics (3822, HCoban)
- Fix alignment of Keras / `tf.Keras` metric history entries when `initial_epoch` is different from zero. (3575, garciparedes)
- Fix bugs in autologging integrations for newer versions of TensorFlow and Keras (3735, dbczumar)
- Drop global `filterwwarnings` module at import time (3621, jogo)
- Fix bug that caused preexisting Python loggers to be disabled when using MLflow with the SQLAlchemyStore (3653, arthury1n)
- Fix `h5py` library incompatibility for exported Keras models (3667, tomasatdatabricks)

Small changes, bug fixes and doc updates (3887, 3882, 3845, 3833, 3830, 3828, 3826, 3825, 3800, 3809, 3807, 3786, 3794, 3731, 3776, 3760, 3771, 3754, 3750, 3749, 3747, 3736, 3701, 3699, 3698, 3658, 3675, harupy; 3723, mohamad-arabi; 3650, 3655, shrinath-suresh; 3850, 3753, 3725, dmatrix; 3867, 3670, 3664, smurching; 3681, sueann; 3619, andrewnitu; 3837, javierluraschi; 3721, szczeles; 3653, arthury1n; 3883, 3874, 3870, 3877, 3878, 3815, 3859, 3844, 3703, dbczumar; 3768, wentinghu; 3784, HCoban; 3643, 3649, arjundc-db; 3864, AveshCSingh, 3756, yitao-li)

1.12.1

Not secure
- Fix `run_link` for cross-workspace model versions (3681, sueann)
- Remove hard dependency on matplotlib for sklearn autologging (3703, dbczumar)
- Do not disable existing loggers when initializing alembic (3653, arthury1n)

1.12.0

Not secure
Features:

Autologging:

- Add universal `mlflow.autolog` which enables autologging for all supported integrations (3561, 3590, andrewnitu)
- Add `mlflow.pytorch.autolog` API for automatic logging of metrics, params, and models from Pytorch Lightning training (3601, shrinath-suresh, 3636, karthik-77). This API is also enabled by `mlflow.autolog`.
- Scikit-learn, XGBoost, and LightGBM autologging now support logging model signatures and input examples (3386, 3403, 3449, andrewnitu)
- `mlflow.sklearn.autolog` now supports logging metrics (e.g. accuracy) and plots (e.g. confusion matrix heat map) (3423, 3327, willzhan-db, harupy)

PyTorch:

- `mlflow.pytorch.log_model`, `mlflow.pytorch.load_model` now support logging/loading TorchScript models (3557, shrinath-suresh)
- `mlflow.pytorch.log_model` supports passing `requirements_file` & `extra_files` arguments to log additional artifacts along with a model (3436, shrinath-suresh)

More features and improvements:

- Add `mlflow.shap.log_explanation` for logging model explanations generated by SHAP (3513, harupy)
- `log_model` and `create_model_version` now supports an `await_creation_for` argument (3376, andychow-db)
- Put preview paths before non-preview paths for backwards compatibility (3648, sueann)
- Clean up model registry endpoint and client method definitions (3610, sueann)
- MLflow deployments plugin now supports 'predict' CLI command (3597, shrinath-suresh)
- Support H2O for R (3416, yitao-li)
- Add `MLFLOW_S3_IGNORE_TLS` environment variable to enable skipping TLS verification of S3 endpoint (3345, dolfinus)

Bug fixes and documentation updates:

- Ensure that results are synced across distributed processes if ddp enabled (no-op else) (3651, SeanNaren)
- Remove optimizer step override to ensure that all accelerator cases are covered by base module (3635, SeanNaren)
- Fix `AttributeError` in keras autologgging (3611, sephib)
- Scikit-learn autologging: Exclude feature extraction / selection estimator (3600, dbczumar)
- Scikit-learn autologging: Fix behavior when a child and its parent are both patched (3582, dbczumar)
- Fix a bug where `lightgbm.Dataset(None)` fails after running `mlflow.lightgbm.autolog` (3594, harupy)
- Fix a bug where `xgboost.DMatrix(None)` fails after running `mlflow.xgboost.autolog` (3584, harupy)
- Pass `docker_args` in non-synchronous mlflow project runs (3563, alfozan)
- Fix a bug of `FTPArtifactRepository.log_artifacts` with `artifact_path` keyword argument (issue 3388) (3391, kzm4269)
- Exclude preprocessing & imputation steps from scikit-learn autologging (3491, dbczumar)
- Fix duplicate stderr logging during artifact logging and project execution in the R client (3145, yitao-li)
- Don't call `atexit.register(_flush_queue)` in `__main__` scope of `mlflow/tensorflow.py` (3410, harupy)
- Fix for restarting terminated run not setting status correctly (3329, apurva-koti)
- Fix model version run_link URL for some Databricks regions (3417, sueann)
- Skip JSON validation when endpoint is not MLflow REST API (3405, harupy)
- Document `mlflow-torchserve` plugin (3634, karthik-77)
- Add `mlflow-elasticsearchstore` to the doc (3462, AxelVivien25)
- Add code snippets for fluent and MlflowClient APIs (3385, 3437, 3489 3573, dmatrix)
- Document `mlflow-yarn` backend (3373, fhoering)
- Fix a breakage in loading Tensorflow and Keras models (3667, tomasatdatabricks)

Small bug fixes and doc updates (3607, 3616, 3534, 3598, 3542, 3568, 3349, 3554, 3544, 3541, 3533, 3535, 3516, 3512, 3497, 3522, 3521, 3492, 3502, 3434, 3422, 3394, 3387, 3294, 3324, 3654, harupy; 3451, jgc128; 3638, 3632, 3608, 3452, 3399, shrinath-suresh; 3495, 3459, 3662, 3668, 3670 smurching; 3488, edgan8; 3639, karthik-77; 3589, 3444, 3276, lorenzwalthert; 3538, 3506, 3509, 3507, 3510, 3508, rahulporuri; 3504, sbrugman; 3486, 3466, apurva-koti; 3477, juntai-zheng; 3617, 3609, 3605, 3603, 3560, dbczumar; 3411, danielvdende; 3377, willzhan-db; 3420, 3404, andrewnitu; 3591, mateiz; 3465, abawchen; 3543, emptalk; 3302, bramrodenburg; 3468, ghisvail; 3496, extrospective; 3549, 3501, 3435, yitao-li; 3243, OlivierBondu; 3439, andrewnitu; 3651, 3635 SeanNaren, 3470, ankit-db)

1.11.0

Not secure
Features:

- New `mlflow.sklearn.autolog()` API for automatic logging of metrics, params, and models from scikit-learn model training (3287, harupy; 3323, 3358 dbczumar)
- Registered model & model version creation APIs now support specifying an initial `description` (3271, sueann)
- The R `mlflow_log_model` and `mlflow_load_model` APIs now support XGBoost models (3085, lorenzwalthert)
- New `mlflow.list_run_infos` fluent API for listing run metadata (3183, trangevi)
- Added section for visualizing and comparing model schemas to model version and model-version-comparison UIs (3209, zhidongqu-db)
- Enhanced support for using the model registry across Databricks workspaces: support for registering models to a Databricks workspace from outside the workspace (3119, sueann), tracking run-lineage of these models (3128, 3164, ankitmathur-db; 3187, harupy), and calling `mlflow.<flavor>.load_model` against remote Databricks model registries (3330, sueann)
- UI support for setting/deleting registered model and model version tags (3187, harupy)
- UI support for archiving existing staging/production versions of a model when transitioning a new model version to staging/production (3134, harupy)

Bug fixes and documentation updates:

- Fixed parsing of MLflow project parameter values containing'=' (3347, dbczumar)
- Fixed a bug preventing listing of WASBS artifacts on the latest version of Azure Blob Storage (12.4.0) (3348, dbczumar)
- Fixed a bug where artifact locations become malformed when using an SFTP file store in Windows (3168, harupy)
- Fixed bug where `list_artifacts` returned incorrect results on GCS, preventing e.g. loading SparkML models from GCS (3242, santosh1994)
- Writing and reading artifacts via `MlflowClient` to a DBFS location in a Databricks tracking server specified through the `tracking_uri` parameter during the initialization of `MlflowClient` now works properly (3220, sueann)
- Fixed bug where `FTPArtifactRepository` returned artifact locations as absolute paths, rather than paths relative to the artifact repository root (3210, shaneing), and bug where calling `log_artifacts` against an FTP artifact location copied the logged directory itself into the FTP location, rather than the contents of the directory.
- Fixed bug where Databricks project execution failed due to passing of GET request params as part of the request body rather than as query parameters (2947, cdemonchy-pro)
- Fix bug where artifact viewer did not correctly render PDFs in MLflow 1.10 (3172, ankitmathur-db)
- Fixed parsing of `order_by` arguments to MLflow search APIs when ordering by fields whose names contain spaces (3118, jdlesage)
- Fixed bug where MLflow model schema enforcement raised exceptions when validating string columns using pandas >= 1.0 (3130, harupy)
- Fixed bug where `mlflow.spark.log_model` did not save model signature and input examples (3151, harupy)
- Fixed bug in runs UI where tags table did not reflect deletion of tags. (3135, ParseDark)
- Added example illustrating the use of RAPIDS with MLflow (3028, drobison00)

Small bug fixes and doc updates (3326, 3344, 3314, 3289, 3225, 3288, 3279, 3265, 3263, 3260, 3255, 3267, 3266, 3264, 3256, 3253, 3231, 3245, 3191, 3238, 3192, 3188, 3189, 3180, 3178, 3166, 3181, 3142, 3165, 2960, 3129, 3244, 3359 harupy; 3236, 3141, AveshCSingh; 3295, 3163, arjundc-db; 3241, 3200, zhidongqu-db; 3338, 3275, sueann; 3020, magnus-m; 3322, 3219, dmatrix; 3341, 3179, 3355, 3360, 3363 smurching; 3124, jdlesage; 3232, 3146, ankitmathur-db; 3140, andreakress; 3174, 3133, mlflow-automation; 3062, cafeal; 3193, tomasatdatabricks; 3115, fhoering; 3328, apurva-koti; 3046, OlivierBondu; 3194, 3158, dmatrix; 3250, shivp950; 3259, simonhessner; 3357 dbczumar)

1.10.0

Not secure
MLflow 1.10.0 includes several major features and improvements, in particular the release of several new model registry Python client APIs.

Features:

- `MlflowClient.transition_model_version_stage` now supports an
`archive_existing_versions` argument for archiving existing staging or production model
versions when transitioning a new model version to staging or production (3095, harupy)
- Added `set_registry_uri`, `get_registry_uri` APIs. Setting the model registry URI causes
fluent APIs like `mlflow.register_model` to communicate with the model registry at the specified
URI (3072, sueann)
- Added paginated `MlflowClient.search_registered_models` API (2939, 3023, 3027 ankitmathur-db; 2966, mparkhe)
- Added syntax highlighting when viewing text files (YAML etc) in the MLflow runs UI (3041, harupy)
- Added REST API and Python client support for setting and deleting tags on model versions and registered models,
via the `MlflowClient.create_registered_model`, `MlflowClient.create_model_version`,
`MlflowClient.set_registered_model_tag`, `MlflowClient.set_model_version_tag`,
`MlflowClient.delete_registered_model_tag`, and `MlflowClient.delete_model_version_tag` APIs (3094, zhidongqu-db)

Bug fixes and documentation updates:

- Removed usage of deprecated `aws ecr get-login` command in `mlflow.sagemaker` (3036, mrugeles)
- Fixed bug where artifacts could not be viewed and downloaded from the artifact UI when using
Azure Blob Storage (3014, Trollgeir)
- Databricks credentials are now propagated to the project subprocess when running MLflow projects
within a notebook (3035, smurching)
- Added docs explaining how to fetching an MLflow model from the model registry (3000, andychow-db)

Small bug fixes and doc updates (3112, 3102, 3089, 3103, 3096, 3090, 3049, 3080, 3070, 3078, 3083, 3051, 3050, 2875, 2982, 2949, 3121 harupy; 3082, ankitmathur-db; 3084, 3019, smurching)

Page 14 of 20

© 2025 Safety CLI Cybersecurity Inc. All Rights Reserved.