Mlflow

Latest version: v2.19.0

Safety actively analyzes 687959 Python packages for vulnerabilities to keep your Python projects secure.

Scan your dependencies

Page 8 of 18

2.2.2

Not secure
- [Model Registry] Allow `source` to be a local path within a run's artifact directory if a `run_id` is specified (7993, harupy)
- [Model Registry] Fix a bug where a windows UNC path is considered a local path (7988, WeichenXu123)
- [Model Registry] Disallow `name` to be a file path in `FileStore.get_registered_model` (7965, harupy)

2.2.1

Not secure
- [Model Registry] Fix a bug that caused too many results to be requested by default when calling ``MlflowClient.search_model_versions()`` (7935, dbczumar)
- [Model Registry] Patch for GHSA-xg73-94fp-g449 (7908, harupy)
- [Model Registry] Patch for GHSA-wp72-7hj9-5265 (7965, harupy)

2.2.0

Not secure
Features:

- [Recipes] Add support for score calibration to the classification recipe (7744, sunishsheth2009)
- [Recipes] Add automatic label encoding to the classification recipe (7711, sunishsheth2009)
- [Recipes] Support custom data splitting logic in the classification and regression recipes (7815, 7588, sunishsheth2009)
- [Recipes] Introduce customizable MLflow Run name prefixes to the classification and regression recipes (7746, kamalesh0406; 7763, sunishsheth2009)
- [UI] Add a new Chart View to the MLflow Experiment Page for model performance insights (7864, hubertzub-db, apurva-koti, prithvikannan, ridhimag11, sunishseth2009, dbczumar)
- [UI] Modernize and improve parallel coordinates chart for model tuning (7864, hubertzub-db, apurva-koti, prithvikannan, ridhimag11, sunishseth2009, dbczumar)
- [UI] Add typeahead suggestions to the MLflow Experiment Page search bar (7864, hubertzub-db, apurva-koti, prithvikannan, ridhimag11, sunishseth2009, dbczumar)
- [UI] Improve performance of Experiments Sidebar for large numbers of experiments (7804, jmahlik)
- [Tracking] Introduce autologging support for native PyTorch models (7627, temporaer)
- [Tracking] Allow specifying ``model_format`` when autologging XGBoost models (7781, guyrosin)
- [Tracking] Add ``MLFLOW_ARTIFACT_UPLOAD_DOWNLOAD_TIMEOUT`` environment variable to configure artifact operation timeouts (7783, wamartin-aml)
- [Artifacts] Include ``Content-Type`` response headers for artifacts downloaded from ``mlflow server`` (7827, bali0019)
- [Model Registry] Introduce the ``searchModelVersions()`` API to the Java client (7880, gabrielfu)
- [Model Registry] Introduce ``max_results``, ``order_by`` and ``page_token`` arguments to ``MlflowClient.search_model_versions()`` (7623, serena-ruan)
- [Models] Support logging large ONNX models by using external data (7808, dogeplusplus)
- [Models] Add support for logging Diviner models fit in Spark (7800, BenWilson2)
- [Models] Introduce ``MLFLOW_DEFAULT_PREDICTION_DEVICE`` environment variable to set the device for pyfunc model inference (7922, ankit-db)
- [Scoring] Publish official Docker images for the MLflow Model scoring server at github.com/mlflow/mlflow/pkgs (7759, dbczumar)

Bug fixes:

- [Recipes] Fix dataset format validation in the ingest step for custom dataset sources (7638, sunishsheth2009)
- [Recipes] Fix bug in identification of worst performing examples during training (7658, sunishsheth2009)
- [Recipes] Ensure consistent rendering of the recipe graph when ``inspect()`` is called (7852, sunishsheth2009)
- [Recipes] Correctly respect ``positive_class`` configuration in the transform step (7626, sunishsheth2009)
- [Recipes] Make logged metric names consistent with ``mlflow.evaluate()`` (7613, sunishsheth2009)
- [Recipes] Add ``run_id`` and ``artifact_path`` keys to logged MLmodel files (7651, sunishsheth2009)
- [UI] Fix bugs in UI validation of experiment names, model names, and tag keys (7818, subramaniam02)
- [Tracking] Resolve artifact locations to absolute paths when creating experiments (7670, bali0019)
- [Tracking] Exclude Delta checkpoints from Spark datasource autologging (7902, harupy)
- [Tracking] Consistently return an empty list from GetMetricHistory when a metric does not exist (7589, bali0019; 7659, harupy)
- [Artifacts] Fix support for artifact operations on Windows paths in UNC format (7750, bali0019)
- [Artifacts] Fix bug in HDFS artifact listing (7581, pwnywiz)
- [Model Registry] Disallow creation of model versions with local filesystem sources in ``mlflow server`` (7908, harupy)
- [Model Registry] Fix handling of deleted model versions in FileStore (7716, harupy)
- [Model Registry] Correctly initialize Model Registry SQL tables independently of MLflow Tracking (7704, harupy)
- [Models] Correctly move PyTorch model outputs from GPUs to CPUs during inference with pyfunc (7885, ankit-db)
- [Build] Fix compatiblility issues with Python installations compiled using ``PYTHONOPTIMIZE=2`` (7791, dbczumar)
- [Build] Fix compatibility issues with the upcoming pandas 2.0 release (7899, harupy; 7910, dbczumar)

Documentation updates:

- [Docs] Add an example of saving and loading Spark MLlib models with MLflow (7706, dipanjank)
- [Docs] Add usage examples for ``mlflow.lightgbm`` APIs (7565, canerturkseven)
- [Docs] Add an example of custom model flavor creation with ``sktime`` (7624, benjaminbluhm)
- [Docs] Clarify ``precision_recall_auc`` metric calculation in ``mlflow.evaluate()`` (7701, BenWilson2)
- [Docs] Remove outdated example links (7587, asloan7)

Small bug fixes and documentation updates:

7866, 7751, 7724, 7699, 7697, 7666, alekseyolg; 7896, 7861, 7858, 7862, 7872, 7859, 7863, 7767, 7766, 7765, 7741, smurching; 7895, 7877, viditjain99; 7898, midhun1998; 7891, 7892, 7886, 7882, 7883, 7875, 7874, 7871, 7868, 7854, 7847, 7845, 7838, 7830, 7837, 7836, 7834, 7831, 7828, 7825, 7826, 7824, 7823, 7778, 7780, 7776, 7775, 7773, 7772, 7769, 7756, 7768, 7764, 7685, 7726, 7722, 7720, 7423, 7712, 7710, 7713, 7688, 7663, 7674, 7673, 7672, 7662, 7653, 7646, 7615, 7614, 7586, 7601, 7598, 7602, 7599, 7577, 7585, 7583, 7584, harupy; 7865, 7803, 7753, 7719, dipanjank; 7796, serena-ruan; 7849, turbotimon; 7822, 7600, WeichenXu123; 7811, guyrosin; 7812, 7788, 7787, 7748, 7730, 7616, 7593, dbczumar; 7793, Joel-hanson; 7792, 7694, 7643, BenWilson2; 7771, 7657, 7644, nsenno-dbr; 7738, wkrt7; 7740, Ark-kun; 7739, 7733, bali0019; 7723, andrehp; 7691, 7582, agoyot; 7721, Eseeldur; 7709, srowen; 7693, ry3s; 7649, funkypenguin; 7665, benjaminbluhm; 7668, eltociear; 7550, danielhstahl; 7920, arjundc-db

2.1.0

Not secure
Features:

- [Recipes] Introduce support for multi-class classification (7458, mshtelma)
- [Recipes] Extend the pyfunc representation of classification models to output scores in addition to labels (7474, sunishsheth2009)
- [UI] Add user ID and lifecycle stage quick search links to the Runs page (7462, jaeday)
- [Tracking] Paginate the GetMetricHistory API (7523, 7415, BenWilson2)
- [Tracking] Add Runs search aliases for Run name and start time that correspond to UI column names (7492, apurva-koti)
- [Tracking] Add a ``/version`` endpoint to ``mlflow server`` for querying the server's MLflow version (7273, joncarter1)
- [Model Registry] Add FileStore support for the Model Registry (6605, serena-ruan)
- [Model Registry] Introduce an ``mlflow.search_registered_models()`` fluent API (7428, TSienki)
- [Model Registry / Java] Add a ``getRegisteredModel()`` method to the Java client (6602) (7511, drod331)
- [Model Registry / R] Add an ``mlflow_set_model_version_tag()`` method to the R client (7401, leeweijie)
- [Models] Introduce a ``metadata`` field to the MLmodel specification and ``log_model()`` methods (7237, jdonzallaz)
- [Models] Extend ``Model.load()`` to support loading MLmodel specifications from remote locations (7517, dbczumar)
- [Models] Pin the major version of MLflow in Models' ``requirements.txt`` and ``conda.yaml`` files (7364, BenWilson2)
- [Scoring] Extend ``mlflow.pyfunc.spark_udf()`` to support StructType results (7527, WeichenXu123)
- [Scoring] Extend TensorFlow and Keras Models to support multi-dimensional inputs with ``mlflow.pyfunc.spark_udf()``(7531, 7291, WeichenXu123)
- [Scoring] Support specifying deployment environment variables and tags when deploying models to SageMaker (7433, jhallard)

Bug fixes:

- [Recipes] Fix a bug that prevented use of custom ``early_stop`` functions during model tuning (7538, sunishsheth2009)
- [Recipes] Fix a bug in the logic used to create a Spark session during data ingestion (7307, WeichenXu123)
- [Tracking] Make the metric names produced by ``mlflow.autolog()`` consistent with ``mlflow.evaluate()`` (7418, wenfeiy-db)
- [Tracking] Fix an autologging bug that caused nested, redundant information to be logged for XGBoost and LightGBM models (7404, WeichenXu123)
- [Tracking] Correctly classify SQLAlchemy OperationalErrors as retryable HTTP errors (7240, barrywhart)
- [Artifacts] Correctly handle special characters in credentials when using FTP artifact storage (7479, HCTsai)
- [Models] Address an issue that prevented MLeap models from being saved on Windows (6966, dbczumar)
- [Scoring] Fix a permissions issue encountered when using NFS during model scoring with ``mlflow.pyfunc.spark_udf()`` (7427, WeichenXu123)

Documentation updates:

- [Docs] Add more examples to the Runs search documentation page (7487, apurva-koti)
- [Docs] Add documentation for Model flavors developed by the community (7425, mmerce)
- [Docs] Add an example for logging and scoring ONNX Models (7398, Rusteam)
- [Docs] Fix a typo in the model scoring REST API example for inputs with the ``dataframe_split`` format (7540, zhouyangyu)
- [Docs] Fix a typo in the model scoring REST API example for inputs with the ``dataframe_records`` format (7361, dbczumar)

Small bug fixes and documentation updates:

7571, 7543, 7529, 7435, 7399, WeichenXu123; 7568, xiaoye-hua; 7549, 7557, 7509, 7498, 7499, 7485, 7486, 7484, 7391, 7388, 7390, 7381, 7366, 7348, 7346, 7334, 7340, 7323, BenWilson2; 7561, 7562, 7560, 7553, 7546, 7539, 7544, 7542, 7541, 7533, 7507, 7470, 7469, 7467, 7466, 7464, 7453, 7449, 7450, 7440, 7430, 7436, 7429, 7426, 7410, 7406, 7409, 7407, 7405, 7396, 7393, 7395, 7384, 7376, 7379, 7375, 7354, 7353, 7351, 7352, 7350, 7345, 6493, 7343, 7344, harupy; 7494, dependabot[bot]; 7526, tobycheese; 7489, liangz1; 7534, Jingnan-Jia; 7496, danielhstahl; 7504, 7503, 7459, 7454, 7447, tsugumi-sys; 7461, wkrt7; 7451, 7414, 7372, 7289, sunishsheth2009; 7441, ikrizanic; 7432, Pochingto; 7386, jhallard; 7370, 7373, 7371, 7336, 7341, 7342, dbczumar; 7335, prithvikannan

2.0.1

Not secure
The 2.0.1 version of MLflow is a major milestone release that focuses on simplifying the management of end-to-end MLOps workflows, providing new feature-rich functionality, and expanding upon the production-ready MLOps capabilities offered by MLflow.
This release contains several important breaking changes from the 1.x API, additional major features and improvements.

Features:

- [Recipes] MLflow Pipelines is now MLflow Recipes - a framework that enables data scientists to quickly develop high-quality models and deploy them to production
- [Recipes] Add support for classification models to MLflow Recipes (7082, bbarnes52)
- [UI] Introduce support for pinning runs within the experiments UI (7177, harupy)
- [UI] Simplify the layout and provide customized displays of metrics, parameters, and tags within the experiments UI (7177, harupy)
- [UI] Simplify run filtering and ordering of runs within the experiments UI (7177, harupy)
- [Tracking] Update `mlflow.pyfunc.get_model_dependencies()` to download all referenced requirements files for specified models (6733, harupy)
- [Tracking] Add support for selecting the Keras model `save_format` used by `mlflow.tensorflow.autolog()` (7123, balvisio)
- [Models] Set `mlflow.evaluate()` status to stable as it is now a production-ready API
- [Models] Simplify APIs for specifying custom metrics and custom artifacts during model evaluation with `mlflow.evaluate()` (7142, harupy)
- [Models] Correctly infer the positive label for binary classification within `mlflow.evaluate()` (7149, dbczumar)
- [Models] Enable automated signature logging for `tensorflow` and `keras` models when `mlflow.tensorflow.autolog()` is enabled (6678, BenWilson2)
- [Models] Add support for native Keras and Tensorflow Core models within `mlflow.tensorflow` (6530, WeichenXu123)
- [Models] Add support for defining the `model_format` used by `mlflow.xgboost.save/log_model()` (7068, AvikantSrivastava)
- [Scoring] Overhaul the model scoring REST API to introduce format indicators for inputs and support multiple output fields (6575, tomasatdatabricks; 7254, adriangonz)
- [Scoring] Add support for ragged arrays in model signatures (7135, trangevi)
- [Java] Add `getModelVersion` API to the java client (6955, wgottschalk)

Breaking Changes:

The following list of breaking changes are arranged by their order of significance within each category.

- [Core] Support for Python 3.7 has been dropped. MLflow now requires Python >=3.8
- [Recipes] `mlflow.pipelines` APIs have been replaced with `mlflow.recipes`
- [Tracking / Registry] Remove `/preview` routes for Tracking and Model Registry REST APIs (6667, harupy)
- [Tracking] Remove deprecated `list` APIs for experiments, models, and runs from Python, Java, R, and REST APIs (6785, 6786, 6787, 6788, 6800, 6868, dbczumar)
- [Tracking] Remove deprecated `runs` response field from `Get Experiment` REST API response (6541, 6524 dbczumar)
- [Tracking] Remove deprecated `MlflowClient.download_artifacts` API (6537, WeichenXu123)
- [Tracking] Change the behavior of environment variable handling for `MLFLOW_EXPERIMENT_NAME` such that the value is always used when creating an experiment (6674, BenWilson2)
- [Tracking] Update `mlflow server` to run in `--serve-artifacts` mode by default (6502, harupy)
- [Tracking] Update Experiment ID generation for the Filestore backend to enable threadsafe concurrency (7070, BenWilson2)
- [Tracking] Remove `dataset_name` and `on_data_{name | hash}` suffixes from `mlflow.evaluate()` metric keys (7042, harupy)
- [Models / Scoring / Projects] Change default environment manager to `virtualenv` instead of `conda` for model inference and project execution (6459, 6489 harupy)
- [Models] Move Keras model logging APIs to the `mlflow.tensorflow` flavor and drop support for TensorFlow Estimators (6530, WeichenXu123)
- [Models] Remove deprecated `mlflow.sklearn.eval_and_log_metrics()` API in favor of `mlflow.evaluate()` API (6520, dbczumar)
- [Models] Require `mlflow.evaluate()` model inputs to be specified as URIs (6670, harupy)
- [Models] Drop support for returning custom metrics and artifacts from the same function when using `mlflow.evaluate()`, in favor of `custom_artifacts` (7142, harupy)
- [Models] Extend `PyFuncModel` spec to support `conda` and `virtualenv` subfields (6684, harupy)
- [Scoring] Remove support for defining input formats using the `Content-Type` header (6575, tomasatdatabricks; 7254, adriangonz)
- [Scoring] Replace the `--no-conda` CLI option argument for native serving with `--env-manager='local'` (6501, harupy)
- [Scoring] Remove public APIs for `mlflow.sagemaker.deploy()` and `mlflow.sagemaker.delete()` in favor of MLflow deployments APIs, such as `mlflow deployments -t sagemaker` (6650, dbczumar)
- [Scoring] Rename input argument `df` to `inputs` in `mlflow.deployments.predict()` method (6681, BenWilson2)
- [Projects] Replace the `use_conda` argument with the `env_manager` argument within the `run` CLI command for MLflow Projects (6654, harupy)
- [Projects] Modify the MLflow Projects docker image build options by renaming `--skip-image-build` to `--build-image` with a default of `False` (7011, harupy)
- [Integrations/Azure] Remove deprecated `mlflow.azureml` modules from MLflow in favor of the `azure-mlflow` deployment plugin (6691, BenWilson2)
- [R] Remove conda integration with the R client (6638, harupy)

Bug fixes:

- [Recipes] Fix rendering issue with profile cards polyfill (7154, hubertzub-db)
- [Tracking] Set the MLflow Run name correctly when specified as part of the `tags` argument to `mlflow.start_run()` (7228, Cokral)
- [Tracking] Fix an issue with conflicting MLflow Run name assignment if the `mlflow.runName` tag is set (7138, harupy)
- [Scoring] Fix incorrect payload constructor error in SageMaker deployment client `predict()` API (7193, dbczumar)
- [Scoring] Fix an issue where `DataCaptureConfig` information was not preserved when updating a Sagemaker deployment (7281, harupy)

Small bug fixes and documentation updates:

7309, 7314, 7288, 7276, 7244, 7207, 7175, 7107, sunishsheth2009; 7261, 7313, 7311, 7249, 7278, 7260, 7284, 7283, 7263, 7266, 7264, 7267, 7265, 7250, 7259, 7247, 7242, 7143, 7214, 7226, 7230, 7227, 7229, 7225, 7224, 7223, 7210, 7192, 7197, 7196, 7204, 7198, 7191, 7189, 7184, 7182, 7170, 7183, 7131, 7165, 7151, 7164, 7168, 7150, 7128, 7028, 7118, 7117, 7102, 7072, 7103, 7101, 7100, 7099, 7098, 7041, 7040, 6978, 6768, 6719, 6669, 6658, 6656, 6655, 6538, 6507, 6504 harupy; 7310, 7308, 7300, 7290, 7239, 7220, 7127, 7091, 6713 BenWilson2; 7332, 7299, 7271, 7209, 7180, 7179, 7158, 7147, 7114, prithvikannan; 7275, 7245, 7134, 7059, jinzhang21; 7306, 7298, 7287, 7272, 7258, 7236, ayushthe1; 7279, tk1012; 7219, rddefauw; 7333, 7218, 7208, 7188, 7190, 7176, 7137, 7136, 7130, 7124, 7079, 7052, 6541 dbczumar; 6640, WeichenXu123; 7200, hubertzub-db; 7121, Gonmeso; 6988, alonisser; 7141, pdifranc; 7086, jerrylian-db; 7286, shogohida

1.30.0

Not secure
Features:

- [Pipelines] Introduce hyperparameter tuning support to MLflow Pipelines (6859, prithvikannan)
- [Pipelines] Introduce support for prediction outlier comparison to training data set (6991, jinzhang21)
- [Pipelines] Introduce support for recording all training parameters for reproducibility (7026, 7094, prithvikannan)
- [Pipelines] Add support for `Delta` tables as a datasource in the ingest step (7010, sunishsheth2009)
- [Pipelines] Add expanded support for data profiling up to 10,000 columns (7035, prithvikanna)
- [Pipelines] Add support for AutoML in MLflow Pipelines using FLAML (6959, mshtelma)
- [Pipelines] Add support for simplified transform step execution by allowing for unspecified configuration (6909, apurva-koti)
- [Pipelines] Introduce a data preview tab to the transform step card (7033, prithvikannan)
- [Tracking] Introduce `run_name` attribute for `create_run`, `get_run` and `update_run` APIs (6782, 6798 apurva-koti)
- [Tracking] Add support for searching by `creation_time` and `last_update_time` for the `search_experiments` API (6979, harupy)
- [Tracking] Add support for search terms `run_id IN` and `run ID NOT IN` for the `search_runs` API (6945, harupy)
- [Tracking] Add support for searching by `user_id` and `end_time` for the `search_runs` API (6881, 6880 subramaniam02)
- [Tracking] Add support for searching by `run_name` and `run_id` for the `search_runs` API (6899, harupy; 6952, alexacole)
- [Tracking] Add support for synchronizing run `name` attribute and `mlflow.runName` tag (6971, BenWilson2)
- [Tracking] Add support for signed tracking server requests using AWSSigv4 and AWS IAM (7044, pdifranc)
- [Tracking] Introduce the `update_run()` API for modifying the `status` and `name` attributes of existing runs (7013, gabrielfu)
- [Tracking] Add support for experiment deletion in the `mlflow gc` cli API (6977, shaikmoeed)
- [Models] Add support for environment restoration in the `evaluate()` API (6728, jerrylian-db)
- [Models] Remove restrictions on binary classification labels in the `evaluate()` API (7077, dbczumar)
- [Scoring] Add support for `BooleanType` to `mlflow.pyfunc.spark_udf()` (6913, BenWilson2)
- [SQLAlchemy] Add support for configurable `Pool` class options for `SqlAlchemyStore` (6883, mingyu89)

Bug fixes:

- [Pipelines] Enable Pipeline subprocess commands to create a new `SparkSession` if one does not exist (6846, prithvikannan)
- [Pipelines] Fix a rendering issue with `bool` column types in Step Card data profiles (6907, sunishsheth2009)
- [Pipelines] Add validation and an exception if required step files are missing (7067, mingyu89)
- [Pipelines] Change step configuration validation to only be performed during runtime execution of a step (6967, prithvikannan)
- [Tracking] Fix infinite recursion bug when inferring the model schema in `mlflow.pyspark.ml.autolog()` (6831, harupy)
- [UI] Remove the browser error notification when failing to fetch artifacts (7001, kevingreer)
- [Models] Allow `mlflow-skinny` package to serve as base requirement in `MLmodel` requirements (6974, BenWilson2)
- [Models] Fix an issue with code path resolution for loading SparkML models (6968, dbczumar)
- [Models] Fix an issue with dependency inference in logging SparkML models (6912, BenWilson2)
- [Models] Fix an issue involving potential duplicate downloads for SparkML models (6903, serena-ruan)
- [Models] Add missing `pos_label` to `sklearn.metrics.precision_recall_curve` in `mlflow.evaluate()` (6854, dbczumar)
- [SQLAlchemy] Fix a bug in `SqlAlchemyStore` where `set_tag()` updates the incorrect tags (7027, gabrielfu)

Documentation updates:

- [Models] Update details regarding the default `Keras` serialization format (7022, balvisio)

Small bug fixes and documentation updates:

7093, 7095, 7092, 7064, 7049, 6921, 6920, 6940, 6926, 6923, 6862, jerrylian-db; 6946, 6954, 6938, mingyu89; 7047, 7087, 7056, 6936, 6925, 6892, 6860, 6828, sunishsheth2009; 7061, 7058, 7098, 7071, 7073, 7057, 7038, 7029, 6918, 6993, 6944, 6976, 6960, 6933, 6943, 6941, 6900, 6901, 6898, 6890, 6888, 6886, 6887, 6885, 6884, 6849, 6835, 6834, harupy; 7094, 7065, 7053, 7026, 7034, 7021, 7020, 6999, 6998, 6996, 6990, 6989, 6934, 6924, 6896, 6895, 6876, 6875, 6861, prithvikannan; 7081, 7030, 7031, 6965, 6750, bbarnes52; 7080, 7069, 7051, 7039, 7012, 7004, dbczumar; 7054, jinzhang21; 7055, 7037, 7036, 6949, 6951, apurva-koti; 6815, michaguenther; 6897, chaturvedakash; 7025, 6981, 6950, 6948, 6937, 6829, 6830, BenWilson2; 6982, vadim; 6985, 6927, kriscon-db; 6917, 6919, 6872, 6855, WeichenXu123; 6980, utkarsh867; 6973, 6935, wentinghu; 6930, mingyangge-db; 6956, RohanBha1; 6916, av-maslov; 6824, shrinath-suresh; 6732, oojo12; 6807, ikrizanic; 7066, subramaniam20jan; 7043, AvikantSrivastava; 6879, jspablo

Page 8 of 18

© 2024 Safety CLI Cybersecurity Inc. All Rights Reserved.