- `ReduceL1`, `ReduceL2`
- Fixed the logic to avoid a TensorFlow bug that caused the output tensor of `tf.norm()` to be `(None, None, None, None)`.
- TensorFlow bugs when converting a model that includes `ReduceL1` or `ReduceL2`.
INFO: 20 / 819
INFO: onnx_op_type: ReduceL2 onnx_op_name: wa/model/stages/stages.0/blocks/blocks.0/mlp/grn/ReduceL2
INFO: input_name.1: wa/model/stages/stages.0/blocks/blocks.0/mlp/act/Mul_1_output_0 shape: [1, 56, 56, 512] dtype: float32
INFO: output_name.1: wa/model/stages/stages.0/blocks/blocks.0/mlp/grn/ReduceL2_output_0 shape: [1, 1, 1, 512] dtype: float32
INFO: tf_op_type: l2_normalize
INFO: input.1.x: name: tf.math.multiply_8/Mul:0 shape: (1, 56, 56, 512) dtype: <dtype: 'float32'>
INFO: input.2.axis: val: [1, 2]
INFO: output.1.output: name: tf.compat.v1.norm_6/norm/transpose_1:0 shape: (None, None, None, None) dtype: <dtype: 'float32'>
- [convnextv2_base timm model conversion fails 742](https://github.com/PINTO0309/onnx2tf/issues/742)
What's Changed
* Fixed the logic to avoid a TensorFlow bug that caused the output tensor of `tf.norm()` to be `(None, None, None, None)` by PINTO0309 in https://github.com/PINTO0309/onnx2tf/pull/743
**Full Changelog**: https://github.com/PINTO0309/onnx2tf/compare/1.26.8...1.26.9