1. Improved full validation algorithm
2. Problem solved where validation could fail for a sequence of tensors of the same shape.
[Bug in onnx_tf_tensor_validation 139](https://github.com/PINTO0309/onnx2tf/issues/139)
4. Validation speed is now approximately five times faster.
5. The more complex the structure of the model, the greater the improvement in validation speed.
6. When converting `pidnet_S_cityscapes_192x320.onnx`, I noticed that the output size of `AveragePool` is different between ONNX and TensorFlow, but I will separate the correspondence from this pull request. Maybe this pull request will improve it. [MaxPool padding insertion logic update 138](https://github.com/PINTO0309/onnx2tf/pull/138)
INFO: onnx_op_type: AveragePool onnx_op_name: /spp/scale2/scale2.0/AveragePool
INFO: input_name.1: /layer5/layer5.1/Add_output_0 shape: [1, 512, 3, 5] dtype: float32
INFO: output_name.1: /spp/scale2/scale2.0/AveragePool_output_0 shape: [1, 512, 1, 2] dtype: float32
INFO: tf_op_type: AveragePooling2D
INFO: input.1.x: name: tf.math.add_81/Add:0 shape: (1, 3, 5, 512) dtype: <dtype: 'float32'>
INFO: input.2.pool_size: val: [9, 9]
INFO: input.3.strides: val: [4, 4]
INFO: input.4.padding: val: [[0, 0], [4, 4], [4, 4], [0, 0]]
INFO: output.1.output: name: tf.concat_1/concat:0 shape: (1, 2, 2, 512) dtype: <dtype: 'float32'>
7. Changed `Skipped` indication to `Skipped (Deleted or Shape Unmatched)`.

- sample
onnx2tf -i pidnet_S_cityscapes_192x320.onnx -cotof -cotoa 1e-4
- Before

- After

What's Changed
* Improved full validation algorithm by PINTO0309 in https://github.com/PINTO0309/onnx2tf/pull/143
**Full Changelog**: https://github.com/PINTO0309/onnx2tf/compare/1.5.26...1.5.27