Onnx2tf

Latest version: v1.27.1

Safety actively analyzes 723685 Python packages for vulnerabilities to keep your Python projects secure.

Scan your dependencies

Page 28 of 86

1.13.13

- `onnxruntime-gpu` support
- Support for `com.microsoft.GroupNorm`
- [com.microsoft.GroupNorm.onnx.zip](https://github.com/PINTO0309/onnx2tf/files/11967479/com.microsoft.GroupNorm.onnx.zip)
![image](https://github.com/PINTO0309/onnx2tf/assets/33194443/270d0118-b84d-4760-8edd-a0a34c523688)
![image](https://github.com/PINTO0309/onnx2tf/assets/33194443/5725a86e-d2a1-4a1b-8370-a857fc3659d3)
![image](https://github.com/PINTO0309/onnx2tf/assets/33194443/69884a8d-2d3b-4464-809f-b49f00cafc2c)
- [com.microsoft.GroupNorm support for Stable Diffusion model support 401](https://github.com/PINTO0309/onnx2tf/issues/401)

What's Changed
* Add OS information by PINTO0309 in https://github.com/PINTO0309/onnx2tf/pull/400
* Support for `com.microsoft.GroupNorm` by PINTO0309 in https://github.com/PINTO0309/onnx2tf/pull/403


**Full Changelog**: https://github.com/PINTO0309/onnx2tf/compare/1.13.12...1.13.13

1.13.12

- `MaxPool`
- `MaxPoolWithArgmax` support.
- `MaxPoolWithArgmax` with `dilations` is not yet implemented.
- Since TFLite runtime does not support `MaxPoolWithArgmax`, the OP in the .tflite file is `FlexMaxPoolWithArgmax`.
![image](https://github.com/PINTO0309/onnx2tf/assets/33194443/e6718ba4-f06a-4691-b44a-a9bf05c30781)
- Also, the replacement of `MaxPoolWithArgmax` with the standard OP was not performed because the computational complexity of ArgMax would be unrealistically large.
- Partial support.
- https://s3.ap-northeast-2.wasabisys.com/temp-models/onnx2tf_397/hair_segmenter.onnx
- `onnx2tf.py`
- Fixed a problem where models were not generated correctly if the model output name contained `:`.
- [[TODO] [hair_segmenter] Implementation of MaxPoolWithArgmax 397](https://github.com/PINTO0309/onnx2tf/issues/397)

What's Changed
* Support for `MaxPoolWithArgmax` by PINTO0309 in https://github.com/PINTO0309/onnx2tf/pull/398


**Full Changelog**: https://github.com/PINTO0309/onnx2tf/compare/1.13.11...1.13.12

1.13.11

- `BatchNormalization`
- Improved `BatchNormalization` processing stability
![image](https://github.com/PINTO0309/onnx2tf/assets/33194443/c8a1c02f-14a1-4921-82df-766d3c6bbee7)
- [CNN_AUTOENCODER.onnx.zip](https://github.com/PINTO0309/onnx2tf/files/11742263/CNN_AUTOENCODER.onnx.zip)
- [[CNN_AUTOENCODER] Error in cnn autoencoder output value validation](https://github.com/PINTO0309/onnx2tf/issues/394)
- `Gather`
- Fixed a transposition problem when indices is less than one dimension.
![image](https://github.com/PINTO0309/onnx2tf/assets/33194443/6f1f988d-0a32-4ce3-b2e7-658e1441cf54)
- [[PaDiM] The order of the Gather indices list may change. 391](https://github.com/PINTO0309/onnx2tf/issues/391)

What's Changed
* Improved `BatchNormalization` processing stability by PINTO0309 in https://github.com/PINTO0309/onnx2tf/pull/395
* Fixed a transposition problem when `indices` is less than one dimension by PINTO0309 in https://github.com/PINTO0309/onnx2tf/pull/393


**Full Changelog**: https://github.com/PINTO0309/onnx2tf/compare/1.13.10...1.13.11

1.13.10

- `Split`
- Modified `Split` to take over NHWC information to improve stability of the conversion process.
- [crestereo_combined_iter2_240x320.onnx.zip](https://github.com/PINTO0309/onnx2tf/files/11672229/crestereo_combined_iter2_240x320.onnx.zip)
- [CREStereo conversion from onnx to tensorflow failed 380](https://github.com/PINTO0309/onnx2tf/issues/380)

What's Changed
* Modified `Split` to take over NHWC information to improve stability of the conversion process. by PINTO0309 in https://github.com/PINTO0309/onnx2tf/pull/386


**Full Changelog**: https://github.com/PINTO0309/onnx2tf/compare/1.13.9...1.13.10

1.13.9

- `MatMul`
- Improved stability of transformations when `MatMul` input tensor contains undefined dimensions in cases where onnxsim (shape_inference) fails.
- `InstanceNormalization`
- Since the error between ONNX and TF in `InstanceNormalization` was originally large, the criteria for accuracy check was relaxed.
- `common_functions (explicit_broadcast)`
- Fixed `explicit_broadcast` to skip subsequent processing if `input_1` and `input_2` have exactly the same shape from the beginning.
- [CREStereo conversion from onnx to tensorflow failed 380](https://github.com/PINTO0309/onnx2tf/issues/380)

What's Changed
* Improved stability of `MatMul`, `explicit_broadcast`, and `InstanceNormalization` transformations by PINTO0309 in https://github.com/PINTO0309/onnx2tf/pull/385


**Full Changelog**: https://github.com/PINTO0309/onnx2tf/compare/1.13.8...1.13.9

1.13.8

- `common_functions`
- Improve conversion stability of `explicit_broadcast`
- [gaze_estimation_adas_0002_zero_remove.onnx.zip](https://github.com/PINTO0309/onnx2tf/files/11663571/gaze_estimation_adas_0002_zero_remove.onnx.zip)

What's Changed
* Improve conversion stability of `explicit_broadcast` by PINTO0309 in https://github.com/PINTO0309/onnx2tf/pull/384


**Full Changelog**: https://github.com/PINTO0309/onnx2tf/compare/1.13.7...1.13.8

Page 28 of 86

Links

Releases

Has known vulnerabilities

© 2025 Safety CLI Cybersecurity Inc. All Rights Reserved.