- [Experimental] Added the ability to validate the model final output tensor in ONNX and TensorFlow.
https://numpy.org/doc/stable/reference/generated/numpy.allclose.html#numpy-allclose
numpy.allclose(a, b, rtol=1e-05, atol=1e-05, equal_nan=True)
- This option in combination with the `--output_names_to_interrupt_model_conversion` option can be used to investigate which operations at which locations in the model cause errors in the output.
- Since ONNX assumes NCHW and TensorFlow assumes NHWC output, a simple comparison of output tensors will not match values in most cases. Therefore, the tool automatically tries to match the final output tensor of TensorFlow to the shape of the output tensor of ONNX with a brute force check. If the shape still does not match or there is no exact matching value combination, `Unmatched` is assumed.
- Currently, the function only provides validation with the output OP specified by the user, but eventually a function will be added to automatically search for OPs with large output errors.
-coto, --check_onnx_tf_outputs_elementwise_close
Returns true if the two arrays, the output of onnx and the output of TF,
are elementwise close within an acceptable range.
-cotor CHECK_ONNX_TF_OUTPUTS_ELEMENTWISE_CLOSE_RTOL,\
--check_onnx_tf_outputs_elementwise_close_rtol CHECK_ONNX_TF_OUTPUTS_ELEMENTWISE_CLOSE_RTOL
The relative tolerance parameter.
Default: 1e-5
-cotoa CHECK_ONNX_TF_OUTPUTS_ELEMENTWISE_CLOSE_ATOL,\
--check_onnx_tf_outputs_elementwise_close_atol CHECK_ONNX_TF_OUTPUTS_ELEMENTWISE_CLOSE_ATOL
The absolute tolerance parameter.
Default: 1e-5
- e.g.
onnx2tf -i xxx.onnx -coto -onimc keypoints descriptors scores scores_map

What's Changed
* [Experimental] Added the ability to validate the model final output tensor in ONNX and TensorFlow by PINTO0309 in https://github.com/PINTO0309/onnx2tf/pull/106
**Full Changelog**: https://github.com/PINTO0309/onnx2tf/compare/1.4.2...1.5.0