**Breaking Changes**
- The `dagster-celery` module has been broken apart to manage dependencies more coherently. There
are now three modules: `dagster-celery`, `dagster-celery-k8s`, and `dagster-celery-docker`.
- Related to above, the `dagster-celery worker start` command now takes a required `-A` parameter
which must point to the `app.py` file within the appropriate module. E.g if you are using the
`celery_k8s_job_executor` then you must use the `-A dagster_celery_k8s.app` option when using the
`celery` or `dagster-celery` cli tools. Similar for the `celery_docker_executor`:
`-A dagster_celery_docker.app` must be used.
- Renamed the `input_hydration_config` and `output_materialization_config` decorators to
`dagster_type_` and `dagster_type_materializer` respectively. Renamed DagsterType's
`input_hydration_config` and `output_materialization_config` arguments to `loader` and `materializer` respectively.
**New**
- New pipeline scoped runs tab in Dagit
- Add the following Dask Job Queue clusters: moab, sge, lsf, slurm, oar (thanks DavidKatz-il!)
- K8s resource-requirements for run coordinator pods can be specified using the `dagster-k8s/ resource_requirements` tag on pipeline definitions:
python
pipeline(
tags={
'dagster-k8s/resource_requirements': {
'requests': {'cpu': '250m', 'memory': '64Mi'},
'limits': {'cpu': '500m', 'memory': '2560Mi'},
}
},
)
def foo_bar_pipeline():
- Added better error messaging in dagit for partition set and schedule configuration errors
- An initial version of the CeleryDockerExecutor was added (thanks mrdrprofuroboros!). The celery
workers will launch tasks in docker containers.
- **Experimental:** Great Expectations integration is currently under development in the new library
dagster-ge. Example usage can be found [here](https://github.com/dagster-io/dagster/blob/master/python_modules/libraries/dagster-ge/dagster_ge/examples/ge_demo.py)