Cython 0.28.2 or later. The wheels will be linked with OpenBLAS 3.0, which
should fix some of the linalg problems reported for NumPy 1.14.
Highlights
==========
* NumPy has switched to pytest for testing.
* A new `numpy.printoptions` context manager.
* Many improvements to the histogram functions.
* Support for unicode field names in python 2.7.
* Improved support for PyPy.
New functions
=============
* `numpy.gcd` and `numpy.lcm`, to compute the greatest common divisor and least
common multiple.
* `numpy.ma.stack`, the `numpy.stack` array-joining function generalized to
masked arrays.
* `numpy.quantile` function, an interface to ``percentile`` without factors of
100
* `numpy.nanquantile` function, an interface to ``nanpercentile`` without
factors of 100
* `numpy.printoptions`, a context manager that sets print options temporarily
for the scope of the ``with`` block::
>>> with np.printoptions(precision=2):
... print(np.array([2.0]) / 3)
[0.67]
* `numpy.histogram_bin_edges`, a function to get the edges of the bins used by a
histogram without needing to calculate the histogram.
* C functions `npy_get_floatstatus_barrier` and `npy_clear_floatstatus_barrier`
have been added to deal with compiler optimization changing the order of
operations. See below for details.
Deprecations
============
* Aliases of builtin `pickle` functions are deprecated, in favor of their
unaliased ``pickle.<func>`` names:
* `numpy.loads`
* `numpy.core.numeric.load`
* `numpy.core.numeric.loads`
* `numpy.ma.loads`, `numpy.ma.dumps`
* `numpy.ma.load`, `numpy.ma.dump` - these functions already failed on
python 3 when called with a string.
* Multidimensional indexing with anything but a tuple is deprecated. This means
that the index list in ``ind = [slice(None), 0]; arr[ind]`` should be changed
to a tuple, e.g., ``ind = [slice(None), 0]; arr[tuple(ind)]`` or
``arr[(slice(None), 0)]``. That change is necessary to avoid ambiguity in
expressions such as ``arr[[[0, 1], [0, 1]]]``, currently interpreted as
``arr[array([0, 1]), array([0, 1])]``, that will be interpreted
as ``arr[array([[0, 1], [0, 1]])]`` in the future.
* Imports from the following sub-modules are deprecated, they will be removed
at some future date.
* `numpy.testing.utils`
* `numpy.testing.decorators`
* `numpy.testing.nosetester`
* `numpy.testing.noseclasses`
* `numpy.core.umath_tests`
* Giving a generator to `numpy.sum` is now deprecated. This was undocumented
behavior, but worked. Previously, it would calculate the sum of the generator
expression. In the future, it might return a different result. Use
``np.sum(np.from_iter(generator))`` or the built-in Python ``sum`` instead.
* Users of the C-API should call ``PyArrayResolveWriteBackIfCopy`` or
``PyArray_DiscardWritbackIfCopy`` on any array with the ``WRITEBACKIFCOPY``
flag set, before deallocating the array. A deprecation warning will be
emitted if those calls are not used when needed.
* Users of `numpy.nditer` should use the nditer object as a context manager
whenever one of the iterator operands is writeable so that numpy can manage
writeback semantics, or alternately, one can call ``it.close()`` to trigger a
writeback. A ``RuntimeWarning`` will otherwise be raised in those cases. Users
of the C-API should call ``NpyIter_Close`` before ``NpyIter_Deallocate``.
* Users of ``nditer`` should use the nditer object as a context manager
anytime one of the iterator operands is writeable, so that numpy can
manage writeback semantics, or should call ``it.close()``. A
`RuntimeWarning` may be emitted otherwise in these cases.
* The ``normed`` argument of ``np.histogram``, deprecated long ago in 1.6.0,
now emits a ``DeprecationWarning``.
Future Changes
==============
* NumPy 1.16 will drop support for Python 3.4.
* NumPy 1.17 will drop support for Python 2.7.
Compatibility notes
===================
Compiled testing modules renamed and made private
-------------------------------------------------
The following compiled modules have been renamed and made private:
* ``umath_tests`` -> ``_umath_tests``
* ``test_rational`` -> ``_rational_tests``
* ``multiarray_tests`` -> ``_multiarray_tests``
* ``struct_ufunc_test`` -> ``_struct_ufunc_tests``
* ``operand_flag_tests`` -> ``_operand_flag_tests``
The ``umath_tests`` module is still available for backwards compatibility, but
will be removed in the future.
The ``NpzFile`` returned by ``np.savez`` is now a ``collections.abc.Mapping``
-----------------------------------------------------------------------------
This means it behaves like a readonly dictionary, and has a new ``.values()``
method and ``len()`` implementation.
For python 3, this means that ``.iteritems()``, ``.iterkeys()`` have been
deprecated, and ``.keys()`` and ``.items()`` now return views and not lists.
This is consistent with how the builtin ``dict`` type changed between python 2
and python 3.
Under certain conditions, ``nditer`` must be used in a context manager
----------------------------------------------------------------------
When using an `numpy.nditer` with the ``"writeonly"`` or ``"readwrite"`` flags, there
are some circumstances where nditer doesn't actually give you a view of the
writable array. Instead, it gives you a copy, and if you make changes to the
copy, nditer later writes those changes back into your actual array. Currently,
this writeback occurs when the array objects are garbage collected, which makes
this API error-prone on CPython and entirely broken on PyPy. Therefore,
``nditer`` should now be used as a context manager whenever it is used
with writeable arrays, e.g., ``with np.nditer(...) as it: ...``. You may also
explicitly call ``it.close()`` for cases where a context manager is unusable,
for instance in generator expressions.
Numpy has switched to using pytest instead of nose for testing
--------------------------------------------------------------
The last nose release was 1.3.7 in June, 2015, and development of that tool has
ended, consequently NumPy has now switched to using pytest. The old decorators
and nose tools that were previously used by some downstream projects remain
available, but will not be maintained. The standard testing utilities,
``assert_almost_equal`` and such, are not be affected by this change except for
the nose specific functions ``import_nose`` and ``raises``. Those functions are
not used in numpy, but are kept for downstream compatibility.
Numpy no longer monkey-patches ``ctypes`` with ``__array_interface__``
----------------------------------------------------------------------
Previously numpy added ``__array_interface__`` attributes to all the integer
types from ``ctypes``.
``np.ma.notmasked_contiguous`` and ``np.ma.flatnotmasked_contiguous`` always return lists
-----------------------------------------------------------------------------------------
This is the documented behavior, but previously the result could be any of
slice, None, or list.
All downstream users seem to check for the ``None`` result from
``flatnotmasked_contiguous`` and replace it with ``[]``. Those callers will
continue to work as before.
``np.squeeze`` restores old behavior of objects that cannot handle an ``axis`` argument
---------------------------------------------------------------------------------------
Prior to version ``1.7.0``, `numpy.squeeze` did not have an ``axis`` argument and
all empty axes were removed by default. The incorporation of an ``axis``
argument made it possible to selectively squeeze single or multiple empty axes,
but the old API expectation was not respected because axes could still be
selectively removed (silent success) from an object expecting all empty axes to
be removed. That silent, selective removal of empty axes for objects expecting
the old behavior has been fixed and the old behavior restored.
unstructured void array's ``.item`` method now returns a bytes object
---------------------------------------------------------------------
``.item`` now returns a ``bytes`` object instead of a buffer or byte array.
This may affect code which assumed the return value was mutable, which is no
longer the case.
``copy.copy`` and ``copy.deepcopy`` no longer turn ``masked`` into an array
---------------------------------------------------------------------------
Since ``np.ma.masked`` is a readonly scalar, copying should be a no-op. These
functions now behave consistently with ``np.copy()``.
Multifield Indexing of Structured Arrays will still return a copy
-----------------------------------------------------------------
The change that multi-field indexing of structured arrays returns a view
instead of a copy is pushed back to 1.16. A new method
``numpy.lib.recfunctions.repack_fields`` has been introduced to help mitigate
the effects of this change, which can be used to write code compatible with
both numpy 1.15 and 1.16. For more information on how to update code to account
for this future change see the "accessing multiple fields" section of the
`user guide <https://docs.scipy.org/doc/numpy/user/basics.rec.html>`__.
C API changes
=============
New function ``NpyIter_Close``
------------------------------
The function ``NpyIter_Close`` has been added and should be called before
``NpyIter_Deallocate`` to resolve possible writeback-enabled arrays.
New functions ``npy_get_floatstatus_barrier`` and ``npy_clear_floatstatus_barrier``
-----------------------------------------------------------------------------------
Functions ``npy_get_floatstatus_barrier`` and ``npy_clear_floatstatus_barrier``
have been added and should be used in place of the ``npy_get_floatstatus``and
``npy_clear_status`` functions. Optimizing compilers like GCC 8.1 and Clang
were rearranging the order of operations when the previous functions were used
in the ufunc SIMD functions, resulting in the floatstatus flags being checked
before the operation whose status we wanted to check was run. See `10339
<https://github.com/numpy/numpy/issues/10370>`__.
Changes to ``PyArray_GetDTypeTransferFunction``
-----------------------------------------------
``PyArray_GetDTypeTransferFunction`` now defaults to using user-defined
``copyswapn`` / ``copyswap`` for user-defined dtypes. If this causes a
significant performance hit, consider implementing ``copyswapn`` to reflect the
implementation of ``PyArray_GetStridedCopyFn``. See `10898
<https://github.com/numpy/numpy/pull/10898>`__.
* Functions ``npy_get_floatstatus_barrier`` and ``npy_clear_floatstatus_barrier``
have been added and should be used in place of the ``npy_get_floatstatus``and
``npy_clear_status`` functions. Optimizing compilers like GCC 8.1 and Clang
were rearranging the order of operations when the previous functions were
used in the ufunc SIMD functions, resulting in the floatstatus flags being '
checked before the operation whose status we wanted to check was run.
See `10339 <https://github.com/numpy/numpy/issues/10370>`__.
New Features
============
``np.gcd`` and ``np.lcm`` ufuncs added for integer and objects types
--------------------------------------------------------------------
These compute the greatest common divisor, and lowest common multiple,
respectively. These work on all the numpy integer types, as well as the
builtin arbitrary-precision ``Decimal`` and ``long`` types.
Support for cross-platform builds for iOS
-----------------------------------------
The build system has been modified to add support for the
``_PYTHON_HOST_PLATFORM`` environment variable, used by ``distutils`` when
compiling on one platform for another platform. This makes it possible to
compile NumPy for iOS targets.
This only enables you to compile NumPy for one specific platform at a time.
Creating a full iOS-compatible NumPy package requires building for the 5
architectures supported by iOS (i386, x86_64, armv7, armv7s and arm64), and
combining these 5 compiled builds products into a single "fat" binary.
``return_indices`` keyword added for ``np.intersect1d``
-------------------------------------------------------
New keyword ``return_indices`` returns the indices of the two input arrays
that correspond to the common elements.
``np.quantile`` and ``np.nanquantile``
--------------------------------------
Like ``np.percentile`` and ``np.nanpercentile``, but takes quantiles in [0, 1]
rather than percentiles in [0, 100]. ``np.percentile`` is now a thin wrapper
around ``np.quantile`` with the extra step of dividing by 100.
Build system
------------
Added experimental support for the 64-bit RISC-V architecture.
Improvements
============
``np.ufunc.reduce`` and related functions now accept an initial value
---------------------------------------------------------------------
``np.ufunc.reduce``, ``np.sum``, ``np.prod``, ``np.min`` and ``np.max`` all
now accept an ``initial`` keyword argument that specifies the value to start
the reduction with.
``np.flip`` can operate over multiple axes
------------------------------------------
``np.flip`` now accepts None, or tuples of int, in its ``axis`` argument. If
axis is None, it will flip over all the axes.
``histogram`` and ``histogramdd`` functions have moved to ``np.lib.histograms``
-------------------------------------------------------------------------------
These were originally found in ``np.lib.function_base``. They are still
available under their un-scoped ``np.histogram(dd)`` names, and
to maintain compatibility, aliased at ``np.lib.function_base.histogram(dd)``.
Code that does ``from np.lib.function_base import *`` will need to be updated
with the new location, and should consider not using ``import *`` in future.
``histogram`` will accept NaN values when explicit bins are given
-----------------------------------------------------------------
Previously it would fail when trying to compute a finite range for the data.
Since the range is ignored anyway when the bins are given explicitly, this error
was needless.
Note that calling ``histogram`` on NaN values continues to raise the
``RuntimeWarning`` s typical of working with nan values, which can be silenced
as usual with ``errstate``.
``histogram`` works on datetime types, when explicit bin edges are given
------------------------------------------------------------------------
Dates, times, and timedeltas can now be histogrammed. The bin edges must be
passed explicitly, and are not yet computed automatically.
``histogram`` "auto" estimator handles limited variance better
--------------------------------------------------------------
No longer does an IQR of 0 result in ``n_bins=1``, rather the number of bins
chosen is related to the data size in this situation.
The edges retuned by `histogram`` and ``histogramdd`` now match the data float type
-----------------------------------------------------------------------------------
When passed ``np.float16``, ``np.float32``, or ``np.longdouble`` data, the
returned edges are now of the same dtype. Previously, ``histogram`` would only
return the same type if explicit bins were given, and ``histogram`` would
produce ``float64`` bins no matter what the inputs.
``histogramdd`` allows explicit ranges to be given in a subset of axes
----------------------------------------------------------------------
The ``range`` argument of `numpy.histogramdd` can now contain ``None`` values to
indicate that the range for the corresponding axis should be computed from the
data. Previously, this could not be specified on a per-axis basis.
``np.r_`` works with 0d arrays, and ``np.ma.mr_`` works with ``np.ma.masked``
-----------------------------------------------------------------------------
0d arrays passed to the `r_` and `mr_` concatenation helpers are now treated as
though they are arrays of length 1. Previously, passing these was an error.
As a result, `numpy.ma.mr_` now works correctly on the ``masked`` constant.
``np.ptp`` accepts a ``keepdims`` argument, and extended axis tuples
--------------------------------------------------------------------
``np.ptp`` (peak-to-peak) can now work over multiple axes, just like ``np.max``
and ``np.min``.
``MaskedArray.astype`` now is identical to ``ndarray.astype``
-------------------------------------------------------------
This means it takes all the same arguments, making more code written for
ndarray work for masked array too.
Enable AVX2/AVX512 at compile time
----------------------------------
Change to simd.inc.src to allow use of AVX2 or AVX512 at compile time. Previously
compilation for avx2 (or 512) with -march=native would still use the SSE
code for the simd functions even when the rest of the code got AVX2.
``nan_to_num`` always returns scalars when receiving scalar or 0d inputs
------------------------------------------------------------------------
Previously an array was returned for integer scalar inputs, which is
inconsistent with the behavior for float inputs, and that of ufuncs in general.
For all types of scalar or 0d input, the result is now a scalar.
``np.flatnonzero`` works on numpy-convertible types
---------------------------------------------------
``np.flatnonzero`` now uses ``np.ravel(a)`` instead of ``a.ravel()``, so it
works for lists, tuples, etc.
``np.interp`` returns numpy scalars rather than builtin scalars
---------------------------------------------------------------
Previously ``np.interp(0.5, [0, 1], [10, 20])`` would return a ``float``, but
now it returns a ``np.float64`` object, which more closely matches the behavior
of other functions.
Additionally, the special case of ``np.interp(object_array_0d, ...)`` is no
longer supported, as ``np.interp(object_array_nd)`` was never supported anyway.
As a result of this change, the ``period`` argument can now be used on 0d
arrays.
Allow dtype field names to be unicode in Python 2
-------------------------------------------------
Previously ``np.dtype([(u'name', float)])`` would raise a ``TypeError`` in
Python 2, as only bytestrings were allowed in field names. Now any unicode
string field names will be encoded with the ``ascii`` codec, raising a
``UnicodeEncodeError`` upon failure.
This change makes it easier to write Python 2/3 compatible code using
``from __future__ import unicode_literals``, which previously would cause
string literal field names to raise a TypeError in Python 2.
Comparison ufuncs accept ``dtype=object``, overriding the default ``bool``
--------------------------------------------------------------------------
This allows object arrays of symbolic types, which override ``==`` and other
operators to return expressions, to be compared elementwise with
``np.equal(a, b, dtype=object)``.
``sort`` functions accept ``kind='stable'``
-------------------------------------------
Up until now, to perform a stable sort on the data, the user must do:
>>> np.sort([5, 2, 6, 2, 1], kind='mergesort')
[1, 2, 2, 5, 6]
because merge sort is the only stable sorting algorithm available in
NumPy. However, having kind='mergesort' does not make it explicit that
the user wants to perform a stable sort thus harming the readability.
This change allows the user to specify kind='stable' thus clarifying
the intent.
Do not make temporary copies for in-place accumulation
------------------------------------------------------
When ufuncs perform accumulation they no longer make temporary copies because
of the overlap between input an output, that is, the next element accumulated
is added before the accumulated result is stored in its place, hence the
overlap is safe. Avoiding the copy results in faster execution.
``linalg.matrix_power`` can now handle stacks of matrices
---------------------------------------------------------
Like other functions in ``linalg``, ``matrix_power`` can now deal with arrays
of dimension larger than 2, which are treated as stacks of matrices. As part
of the change, to further improve consistency, the name of the first argument
has been changed to ``a`` (from ``M``), and the exceptions for non-square
matrices have been changed to ``LinAlgError`` (from ``ValueError``).
Increased performance in ``random.permutation`` for multidimensional arrays
---------------------------------------------------------------------------
``permutation`` uses the fast path in ``random.shuffle`` for all input
array dimensions. Previously the fast path was only used for 1-d arrays.
Generalized ufuncs now accept ``axes``, ``axis`` and ``keepdims`` arguments
---------------------------------------------------------------------------
One can control over which axes a generalized ufunc operates by passing in an
``axes`` argument, a list of tuples with indices of particular axes. For
instance, for a signature of ``(i,j),(j,k)->(i,k)`` appropriate for matrix
multiplication, the base elements are two-dimensional matrices and these are
taken to be stored in the two last axes of each argument. The corresponding
axes keyword would be ``[(-2, -1), (-2, -1), (-2, -1)]``. If one wanted to
use leading dimensions instead, one would pass in ``[(0, 1), (0, 1), (0, 1)]``.
For simplicity, for generalized ufuncs that operate on 1-dimensional arrays
(vectors), a single integer is accepted instead of a single-element tuple, and
for generalized ufuncs for which all outputs are scalars, the (empty) output
tuples can be omitted. Hence, for a signature of ``(i),(i)->()`` appropriate
for an inner product, one could pass in ``axes=[0, 0]`` to indicate that the
vectors are stored in the first dimensions of the two inputs arguments.
As a short-cut for generalized ufuncs that are similar to reductions, i.e.,
that act on a single, shared core dimension such as the inner product example
above, one can pass an ``axis`` argument. This is equivalent to passing in
``axes`` with identical entries for all arguments with that core dimension
(e.g., for the example above, ``axes=[(axis,), (axis,)]``).
Furthermore, like for reductions, for generalized ufuncs that have inputs that
all have the same number of core dimensions and outputs with no core dimension,
one can pass in ``keepdims`` to leave a dimension with size 1 in the outputs,
thus allowing proper broadcasting against the original inputs. The location of
the extra dimension can be controlled with ``axes``. For instance, for the
inner-product example, ``keepdims=True, axes=[-2, -2, -2]`` would act on the
inner-product example, ``keepdims=True, axis=-2`` would act on the
one-but-last dimension of the input arguments, and leave a size 1 dimension in
that place in the output.
float128 values now print correctly on ppc systems
--------------------------------------------------
Previously printing float128 values was buggy on ppc, since the special
double-double floating-point-format on these systems was not accounted for.
float128s now print with correct rounding and uniqueness.
Warning to ppc users: You should upgrade glibc if it is version <=2.23,
especially if using float128. On ppc, glibc's malloc in these version often
misaligns allocated memory which can crash numpy when using float128 values.
New ``np.take_along_axis`` and ``np.put_along_axis`` functions
--------------------------------------------------------------
When used on multidimensional arrays, ``argsort``, ``argmin``, ``argmax``, and
``argpartition`` return arrays that are difficult to use as indices.
``take_along_axis`` provides an easy way to use these indices to lookup values
within an array, so that::
np.take_along_axis(a, np.argsort(a, axis=axis), axis=axis)
is the same as::
np.sort(a, axis=axis)
``np.put_along_axis`` acts as the dual operation for writing to these indices
within an array.
Checksums
=========
MD5
---
ae603a7948555f5a877aa9e62d4de4a5 numpy-1.15.0rc1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
2b2bdf4a2e2d2be118740c036952b12a numpy-1.15.0rc1-cp27-cp27m-manylinux1_i686.whl
d0f34f5a96b108e39c5f7c349de4b079 numpy-1.15.0rc1-cp27-cp27m-manylinux1_x86_64.whl
91156245b11f2606fb9679ad11cd3788 numpy-1.15.0rc1-cp27-cp27mu-manylinux1_i686.whl
34f0cc01a35fd61bbf25ee64f2dac5ff numpy-1.15.0rc1-cp27-cp27mu-manylinux1_x86_64.whl
3d003bfc970de7364c7a509f1905b017 numpy-1.15.0rc1-cp27-none-win32.whl
2e63c6cef05817b00aec3550075e4a32 numpy-1.15.0rc1-cp27-none-win_amd64.whl
976c3898f88d06f2fd4e7e4acd454e37 numpy-1.15.0rc1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
faa3445ef691307efc371c82d34dbbfb numpy-1.15.0rc1-cp34-cp34m-manylinux1_i686.whl
fe5ef50a0f8b21dd16283cbfd05ff438 numpy-1.15.0rc1-cp34-cp34m-manylinux1_x86_64.whl
77bad7aeff1472e6777aedd62f6b7a06 numpy-1.15.0rc1-cp34-none-win32.whl
e8890f675820efb7718a02b071edb3d3 numpy-1.15.0rc1-cp34-none-win_amd64.whl
5a095e7fef444bb70cf43e33fd71a2b0 numpy-1.15.0rc1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
cf92df0e604414593f21976b998f97ba numpy-1.15.0rc1-cp35-cp35m-manylinux1_i686.whl
0cb3a14f65a556652a143fd8cdff21e6 numpy-1.15.0rc1-cp35-cp35m-manylinux1_x86_64.whl
e146ae6eb6bd78b928ae624a9db6a323 numpy-1.15.0rc1-cp35-none-win32.whl
e77c2df92eec2f87a89b5ecffe31de8e numpy-1.15.0rc1-cp35-none-win_amd64.whl
ed423c6807ae7b5488546436259d281f numpy-1.15.0rc1-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
d7455ee275bae39c68e130e4848ebb80 numpy-1.15.0rc1-cp36-cp36m-manylinux1_i686.whl
a7e88e6d9c6f5bd59b354b16538a3cc5 numpy-1.15.0rc1-cp36-cp36m-manylinux1_x86_64.whl
e5f8e934ff03979bdb3dc6041ef40859 numpy-1.15.0rc1-cp36-none-win32.whl
a0a932cc07062bb70ad9ff893b57d2b7 numpy-1.15.0rc1-cp36-none-win_amd64.whl
f6c1139993cce7bea5b78418ecf56ed1 numpy-1.15.0rc1.tar.gz
ff5045d88b409bfeff664b13a110400e numpy-1.15.0rc1.zip
SHA256
------
d5e4c5c34745d626d8f6613e4dd9b8d88b2dd9a52ea8764ed934cc5a8cb9cc22 numpy-1.15.0rc1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
744d8c46272a5f2240fc750f7da1d831d90d0f1ce938d5540bcaabfb0f762a53 numpy-1.15.0rc1-cp27-cp27m-manylinux1_i686.whl
9fe328aa046c5c9359d07f5161bdcdaaae8cd6d4fcf0761a41db424628f805d3 numpy-1.15.0rc1-cp27-cp27m-manylinux1_x86_64.whl
85dbc672c5f2683147f5ee1af0793a5159411340f84fea99469dfd699def5bfd numpy-1.15.0rc1-cp27-cp27mu-manylinux1_i686.whl
9870ddc0055dbe5d77f1a7f5abd493737f0728f88e15fdafc459ea5e64a82efa numpy-1.15.0rc1-cp27-cp27mu-manylinux1_x86_64.whl
23ef8080613e5f8743b94d6e075e5894418a4a8a95a2eb7da3e524d180370512 numpy-1.15.0rc1-cp27-none-win32.whl
647dfec3cad0ab6a443a5661ad09cc35c2dd317f843909535d4183b05fea1860 numpy-1.15.0rc1-cp27-none-win_amd64.whl
fb78cb51abd23395a320b3608f35b8a2afcd76f32954184cf84b5db07e3c8649 numpy-1.15.0rc1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
baf9a2aa084e184cbf9b91702a26491fa263826ae941160527645cff84bf96b5 numpy-1.15.0rc1-cp34-cp34m-manylinux1_i686.whl
2afb65982702da7905640afc63688b6b38c183f410e8df9dfb88c45a430d34f3 numpy-1.15.0rc1-cp34-cp34m-manylinux1_x86_64.whl
00fa0b94566db5512fd402150dbadaeb38e0e78521673242f8ef687c343efcfe numpy-1.15.0rc1-cp34-none-win32.whl
fc1fa913fd0b3d80aed6744b7837176d755e0a6e023364db006c8d17679d64aa numpy-1.15.0rc1-cp34-none-win_amd64.whl
2d17cf40bd5b97c504fb4da00f1c0686c1ef9ebf363b8d5667269e66b07a2544 numpy-1.15.0rc1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
01f46c1149d7571860f758299e5a0b6153d6d34f8821adf0c87d8d6f3e9517c5 numpy-1.15.0rc1-cp35-cp35m-manylinux1_i686.whl
d80d04f9ea96c5d8fc27b0bc47122ad3459946f63fb49d26259decda25677221 numpy-1.15.0rc1-cp35-cp35m-manylinux1_x86_64.whl
f2394a623f83c75dec54ab366ccac879ae01dcff9fa3391c97bda40c2b4b41b3 numpy-1.15.0rc1-cp35-none-win32.whl
3cff020d7beba3668c7e67a5921a4596a6abd917815691b93a5c87c5ae2f2ed3 numpy-1.15.0rc1-cp35-none-win_amd64.whl
ce9295610854f1dc749cc05a1f705539c983cfd4e99f3e7c01106f2d0f49d132 numpy-1.15.0rc1-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
8a211172894d6b21e8d2133dbdced490b95492707982cffce32b97fcada718ca numpy-1.15.0rc1-cp36-cp36m-manylinux1_i686.whl
e16b6b066a19fb595eea0bd29ec0f9429af6bda3d0f7be3f31e57bff2b735ac5 numpy-1.15.0rc1-cp36-cp36m-manylinux1_x86_64.whl
b1dcad0333986cbbbfa547d57807047d9777d5e1fd56c47eb47c59050e4485b1 numpy-1.15.0rc1-cp36-none-win32.whl
0e1871bb9307fbc3173c198f5536792185d20750cd5ad9907a14d49f767464b5 numpy-1.15.0rc1-cp36-none-win_amd64.whl
c57f33f83f61ad819e3fcb41afa54d224d03377d6f33be57289924cc193ead63 numpy-1.15.0rc1.tar.gz
592657828982b13ff48a56c5f75fb2f286709f7b830ec211029ac7970027b54d numpy-1.15.0rc1.zip