Numpy

Latest version: v2.2.3

Safety actively analyzes 711993 Python packages for vulnerabilities to keep your Python projects secure.

Scan your dependencies

Page 21 of 24

1.14.2

Not secure
==========================

This is a bugfix release for some bugs reported following the 1.14.1 release. The major
problems dealt with are as follows.

* Residual bugs in the new array printing functionality.
* Regression resulting in a relocation problem with shared library.
* Improved PyPy compatibility.

The Python versions supported in this release are 2.7 and 3.4 - 3.6. The Python
3.6 wheels available from PIP are built with Python 3.6.2 and should be
compatible with all previous versions of Python 3.6. The source releases were
cythonized with Cython 0.26.1, which is known to **not** support the upcoming
Python 3.7 release. People who wish to run Python 3.7 should check out the
NumPy repo and try building with the, as yet, unreleased master branch of
Cython.

Contributors
============

A total of 4 people contributed to this release. People with a "+" by their
names contributed a patch for the first time.

* Allan Haldane
* Charles Harris
* Eric Wieser
* Pauli Virtanen

Pull requests merged
====================

A total of 5 pull requests were merged for this release.

* 10674: BUG: Further back-compat fix for subclassed array repr
* 10725: BUG: dragon4 fractional output mode adds too many trailing zeros
* 10726: BUG: Fix f2py generated code to work on PyPy
* 10727: BUG: Fix missing NPY_VISIBILITY_HIDDEN on npy_longdouble_to_PyLong
* 10729: DOC: Create 1.14.2 notes and changelog.

Checksums
=========

MD5
---

9bb06966218d0f3d0a25a6155c7d2439 numpy-1.14.2-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
b8a260b915d44475f4385fed4c6a7ec8 numpy-1.14.2-cp27-cp27m-manylinux1_i686.whl
7733aa702cebb5b0469b820ea9cfc293 numpy-1.14.2-cp27-cp27m-manylinux1_x86_64.whl
ef1065f3ecd08054eca9c6c14a2e3518 numpy-1.14.2-cp27-cp27mu-manylinux1_i686.whl
1227a63fcc8ce91a75d2ab006d406df7 numpy-1.14.2-cp27-cp27mu-manylinux1_x86_64.whl
6ac633c46c13dd2af93761460d63436e numpy-1.14.2-cp27-none-win32.whl
187a94722b84d65cc3a9ecfce27ee3b2 numpy-1.14.2-cp27-none-win_amd64.whl
580340cfe4a14f8a9e1d781d7b42955b numpy-1.14.2-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
7f38fb83008ed4bb8217840ac27aeba4 numpy-1.14.2-cp34-cp34m-manylinux1_i686.whl
cbe383ad27db21767b6ffdd943e3df9c numpy-1.14.2-cp34-cp34m-manylinux1_x86_64.whl
350a1e0f0c825ffa1de264108c648482 numpy-1.14.2-cp34-none-win32.whl
ececd9b8891d801d4a968c2ec5eac7bb numpy-1.14.2-cp34-none-win_amd64.whl
8a74bb1f94ad8c1ad8f37e73f967b850 numpy-1.14.2-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
c1231d7e7fc52c09dff9a529ad228818 numpy-1.14.2-cp35-cp35m-manylinux1_i686.whl
ef57856bf6dade82922ab58922756dd0 numpy-1.14.2-cp35-cp35m-manylinux1_x86_64.whl
8c98ab081112832e3a7faca624598119 numpy-1.14.2-cp35-none-win32.whl
2652e9660be5d074224d14436504f008 numpy-1.14.2-cp35-none-win_amd64.whl
1cdb6cf8d60dfbe99f60639dac38471e numpy-1.14.2-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
b11c80344b84853b7a24acc51bbe4945 numpy-1.14.2-cp36-cp36m-manylinux1_i686.whl
65c3802c0f25f2d26aa784433643f655 numpy-1.14.2-cp36-cp36m-manylinux1_x86_64.whl
8f9986b323d4215925d6cfa1cd1bc14d numpy-1.14.2-cp36-none-win32.whl
9d78ceef101313f49fd0b8fed25d889c numpy-1.14.2-cp36-none-win_amd64.whl
e39878fafb11828983aeec583dda4a06 numpy-1.14.2.tar.gz
080f01a19707cf467393e426382c7619 numpy-1.14.2.zip

SHA256
------

719d914f564f35cce4dc103808f8297c807c9f0297ac183ed81ae8b5650e698e numpy-1.14.2-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
0f6a5ed0cd7ab1da11f5c07a8ecada73fc55a70ef7bb6311a4109891341d7277 numpy-1.14.2-cp27-cp27m-manylinux1_i686.whl
d0928076d9bd8a98de44e79b1abe50c1456e7abbb40af7ef58092086f1a6c729 numpy-1.14.2-cp27-cp27m-manylinux1_x86_64.whl
d858423f5ed444d494b15c4cc90a206e1b8c31354c781ac7584da0d21c09c1c3 numpy-1.14.2-cp27-cp27mu-manylinux1_i686.whl
20cac3123d791e4bf8482a580d98d6b5969ba348b9d5364df791ba3a666b660d numpy-1.14.2-cp27-cp27mu-manylinux1_x86_64.whl
528ce59ded2008f9e8543e0146acb3a98a9890da00adf8904b1e18c82099418b numpy-1.14.2-cp27-none-win32.whl
56e392b7c738bd70e6f46cf48c8194d3d1dd4c5a59fae4b30c58bb6ef86e5233 numpy-1.14.2-cp27-none-win_amd64.whl
99051e03b445117b26028623f1a487112ddf61a09a27e2d25e6bc07d37d94f25 numpy-1.14.2-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
768e777cc1ffdbf97c507f65975c8686ebafe0f3dc8925d02ac117acc4669ce9 numpy-1.14.2-cp34-cp34m-manylinux1_i686.whl
675e0f23967ce71067d12b6944add505d5f0a251f819cfb44bdf8ee7072c090d numpy-1.14.2-cp34-cp34m-manylinux1_x86_64.whl
a958bf9d4834c72dee4f91a0476e7837b8a2966dc6fcfc42c421405f98d0da51 numpy-1.14.2-cp34-none-win32.whl
bb370120de6d26004358611441e07acda26840e41dfedc259d7f8cc613f96495 numpy-1.14.2-cp34-none-win_amd64.whl
f2b1378b63bdb581d5d7af2ec0373c8d40d651941d283a2afd7fc71184b3f570 numpy-1.14.2-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
a1413d06abfa942ca0553bf3bccaff5fdb36d55b84f2248e36228db871147dab numpy-1.14.2-cp35-cp35m-manylinux1_i686.whl
7f76d406c6b998d6410198dcb82688dcdaec7d846aa87e263ccf52efdcfeba30 numpy-1.14.2-cp35-cp35m-manylinux1_x86_64.whl
a7157c9ac6bddd2908c35ef099e4b643bc0e0ebb4d653deb54891d29258dd329 numpy-1.14.2-cp35-none-win32.whl
0fd65cbbfdbf76bbf80c445d923b3accefea0fe2c2082049e0ce947c81fe1d3f numpy-1.14.2-cp35-none-win_amd64.whl
8c18ee4dddd5c6a811930c0a7c7947bf16387da3b394725f6063f1366311187d numpy-1.14.2-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
0739146eaf4985962f07c62f7133aca89f3a600faac891ce6c7f3a1e2afe5272 numpy-1.14.2-cp36-cp36m-manylinux1_i686.whl
07e21f14490324cc1160db101e9b6c1233c33985af4cb1d301dd02650fea1d7f numpy-1.14.2-cp36-cp36m-manylinux1_x86_64.whl
e6120d63b50e2248219f53302af7ec6fa2a42ed1f37e9cda2c76dbaca65036a7 numpy-1.14.2-cp36-none-win32.whl
6be6b0ca705321c178c9858e5ad5611af664bbdfae1df1541f938a840a103888 numpy-1.14.2-cp36-none-win_amd64.whl
ddbcda194f49e0cf0663fa8131cb9d7a3b876d14dea0047d3c5fdfaf20adbb40 numpy-1.14.2.tar.gz
facc6f925c3099ac01a1f03758100772560a0b020fb9d70f210404be08006bcb numpy-1.14.2.zip

1.14.1

Not secure
==========================

This is a bugfix release for some problems reported following the 1.14.0 release. The major
problems fixed are the following.

* Problems with the new array printing, particularly the printing of complex
values, Please report any additional problems that may turn up.
* Problems with ``np.einsum`` due to the new ``optimized=True`` default. Some
fixes for optimization have been applied and ``optimize=False`` is now the
default.
* The sort order in ``np.unique`` when ``axis=<some-number>`` will now always
be lexicographic in the subarray elements. In previous NumPy versions there
was an optimization that could result in sorting the subarrays as unsigned
byte strings.
* The change in 1.14.0 that multi-field indexing of structured arrays returns a
view instead of a copy has been reverted but remains on track for NumPy 1.15.
Affected users should read the 1.14.1 Numpy User Guide section
"basics/structured arrays/accessing multiple fields" for advice on how to
manage this transition.

The Python versions supported in this release are 2.7 and 3.4 - 3.6. The Python
3.6 wheels available from PIP are built with Python 3.6.2 and should be
compatible with all previous versions of Python 3.6. The source releases were
cythonized with Cython 0.26.1, which is known to **not** support the upcoming
Python 3.7 release. People who wish to run Python 3.7 should check out the
NumPy repo and try building with the, as yet, unreleased master branch of
Cython.

Contributors
============

A total of 14 people contributed to this release. People with a "+" by their
names contributed a patch for the first time.

* Allan Haldane
* Charles Harris
* Daniel Smith
* Dennis Weyland +
* Eric Larson
* Eric Wieser
* Jarrod Millman
* Kenichi Maehashi +
* Marten van Kerkwijk
* Mathieu Lamarre
* Sebastian Berg
* Simon Conseil
* Simon Gibbons
* xoviat

Pull requests merged
====================

A total of 36 pull requests were merged for this release.

* 10339: BUG: restrict the __config__ modifications to win32
* 10368: MAINT: Adjust type promotion in linalg.norm
* 10375: BUG: add missing paren and remove quotes from repr of fieldless...
* 10395: MAINT: Update download URL in setup.py.
* 10396: BUG: fix einsum issue with unicode input and py2
* 10397: BUG: fix error message not formatted in einsum
* 10398: DOC: add documentation about how to handle new array printing
* 10403: BUG: Set einsum optimize parameter default to `False`.
* 10424: ENH: Fix repr of np.record objects to match np.void types 10412
* 10425: MAINT: Update zesty to artful for i386 testing
* 10431: REL: Add 1.14.1 release notes template
* 10435: MAINT: Use ValueError for duplicate field names in lookup (backport)
* 10534: BUG: Provide a better error message for out-of-order fields
* 10536: BUG: Resize bytes_ columns in genfromtxt (backport of 10401)
* 10537: BUG: multifield-indexing adds padding bytes: revert for 1.14.1
* 10539: BUG: fix np.save issue with python 2.7.5
* 10540: BUG: Add missing DECREF in Py2 int() cast
* 10541: TST: Add circleci document testing to maintenance/1.14.x
* 10542: BUG: complex repr has extra spaces, missing + (1.14 backport)
* 10550: BUG: Set missing exception after malloc
* 10557: BUG: In numpy.i, clear CARRAY flag if wrapped buffer is not C_CONTIGUOUS.
* 10558: DEP: Issue FutureWarning when malformed records detected.
* 10559: BUG: Fix einsum optimize logic for singleton dimensions
* 10560: BUG: Fix calling ufuncs with a positional output argument.
* 10561: BUG: Fix various Big-Endian test failures (ppc64)
* 10562: BUG: Make dtype.descr error for out-of-order fields.
* 10563: BUG: arrays not being flattened in `union1d`
* 10607: MAINT: Update sphinxext submodule hash.
* 10608: BUG: Revert sort optimization in np.unique.
* 10609: BUG: infinite recursion in str of 0d subclasses
* 10610: BUG: Align type definition with generated lapack
* 10612: BUG/ENH: Improve output for structured non-void types
* 10622: BUG: deallocate recursive closure in arrayprint.py (1.14 backport)
* 10624: BUG: Correctly identify comma seperated dtype strings
* 10629: BUG: deallocate recursive closure in arrayprint.py (backport...
* 10630: REL: Prepare for 1.14.1 release.

Checksums
=========

MD5
---

8a56c4b06e859ccad60a85d3486b214a numpy-1.14.1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
94189ecffbc1032df54f570bb6ff490d numpy-1.14.1-cp27-cp27m-manylinux1_i686.whl
61473860888d024caa1261274620352e numpy-1.14.1-cp27-cp27m-manylinux1_x86_64.whl
f9f6ada0f110230569cea9d8d2f5416a numpy-1.14.1-cp27-cp27mu-manylinux1_i686.whl
0c2c6637c5c8ca639e1b7b3fa4ac64cc numpy-1.14.1-cp27-cp27mu-manylinux1_x86_64.whl
dbae0fec3c033b42695d9df9636ba9a5 numpy-1.14.1-cp27-none-win32.whl
c7ee8517a1a52b90f08651c1f17b6e39 numpy-1.14.1-cp27-none-win_amd64.whl
bb051505823a3f990ea22750a08cd40b numpy-1.14.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
655f4c67598dfe583fce3075e0152b06 numpy-1.14.1-cp34-cp34m-manylinux1_i686.whl
94cdf22837fdec46d03709fe0338ee09 numpy-1.14.1-cp34-cp34m-manylinux1_x86_64.whl
5b7fc9eb18463356ed8d018a3b486d53 numpy-1.14.1-cp34-none-win32.whl
b261be176aa57dce8a64f4fac169c74b numpy-1.14.1-cp34-none-win_amd64.whl
196639515a2084dc5b4b86a5ea0247ce numpy-1.14.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
d897ae36d1487a101714deeb8782b7c5 numpy-1.14.1-cp35-cp35m-manylinux1_i686.whl
12f2c45cc7501dc5a5e670042300f1e6 numpy-1.14.1-cp35-cp35m-manylinux1_x86_64.whl
e94355704fe2f6b3d1bcf6c8f6189df4 numpy-1.14.1-cp35-none-win32.whl
13b79737d10e857ee808a1dfdd2ff01e numpy-1.14.1-cp35-none-win_amd64.whl
8819860639f492ddf6045a95227624d0 numpy-1.14.1-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
2b3d5774779e808cef193872dd4f6dbe numpy-1.14.1-cp36-cp36m-manylinux1_i686.whl
dd2321ea4590ec05d825d8c9a64fd64b numpy-1.14.1-cp36-cp36m-manylinux1_x86_64.whl
a5803be2b83c1ec5f36ed9f58a0f848c numpy-1.14.1-cp36-none-win32.whl
299c92352d2c08baa6a8142971b39295 numpy-1.14.1-cp36-none-win_amd64.whl
0e09f20f62ab9f8a02cb7bd3fd023482 numpy-1.14.1.tar.gz
b8324ef90ac9064cd0eac46b8b388674 numpy-1.14.1.zip

SHA256
------

e2335d56d2fd9fc4e3a3f2d3148aafec4962682375f429f05c45a64dacf19436 numpy-1.14.1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
9b762e78739b6e021124adbea07611682db99cd3fca7f3c3a8b98b8f74ea5699 numpy-1.14.1-cp27-cp27m-manylinux1_i686.whl
7d4c549e41507db4f04ec7cfab5597de8acf7871b16c9cf64cebcb9d39031ca6 numpy-1.14.1-cp27-cp27m-manylinux1_x86_64.whl
b803306c4c201e7dcda0ce1b9a9c87f61a7c7ce43de2c60c8e56147b76849a1a numpy-1.14.1-cp27-cp27mu-manylinux1_i686.whl
2da8dff91d489fea3e20155d41f4cd680de7d01d9a89fdd0ebb1bee6e72d3800 numpy-1.14.1-cp27-cp27mu-manylinux1_x86_64.whl
6b8c2daacbbffc83b4a2ba83a61aa3ce60c66340b07b962bd27b6c6bb175bee1 numpy-1.14.1-cp27-none-win32.whl
89b9419019c47ec87cf4cfca77d85da4611cc0be636ec87b5290346490b98450 numpy-1.14.1-cp27-none-win_amd64.whl
49880b47d7272f902946dd995f346842c95fe275e2deb3082ef0495f0c718a69 numpy-1.14.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
3d7ddd5bdfb12ec9668edf1aa49a4a3eddb0db4661b57ea431477eb9a2468894 numpy-1.14.1-cp34-cp34m-manylinux1_i686.whl
788e1757f8e409cd805a7cd82993cd9252fa19e334758a4c6eb5a8b334abb084 numpy-1.14.1-cp34-cp34m-manylinux1_x86_64.whl
377def0873bbb1fbdedb14b3275b10a29b1b55619a3f7f775c4e7f9ce2461b9c numpy-1.14.1-cp34-none-win32.whl
9501c9ccd081977ca5579a3ec4009d6baff6bacb04bf07214aade3324734195a numpy-1.14.1-cp34-none-win_amd64.whl
a1f5173df8190ef9c6235d260d70ca70c6fb029683ceb66e244c5cc6e335947a numpy-1.14.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
12cf4b27039b88e407ad66894d99a957ef60fea0eeb442026af325add2ab264d numpy-1.14.1-cp35-cp35m-manylinux1_i686.whl
4e2fc841c8c642f7fd44591ef856ca409cedba6aea27928df34004c533839eee numpy-1.14.1-cp35-cp35m-manylinux1_x86_64.whl
e5ade7a69dccbd99c4fdbb95b6d091d941e62ffa588b0ed8fb0a2854118fef3f numpy-1.14.1-cp35-none-win32.whl
6b1011ffc87d7e2b1b7bcc6dc21bdf177163658746ef778dcd21bf0516b9126c numpy-1.14.1-cp35-none-win_amd64.whl
a8bc80f69570e11967763636db9b24c1e3e3689881d10ae793cec74cf7a627b6 numpy-1.14.1-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
81b9d8f6450e752bd82e7d9618fa053df8db1725747880e76fb09710b57f78d0 numpy-1.14.1-cp36-cp36m-manylinux1_i686.whl
e8522cad377cc2ef20fe13aae742cc265172910c98e8a0d6014b1a8d564019e2 numpy-1.14.1-cp36-cp36m-manylinux1_x86_64.whl
a3d5dd437112292c707e54f47141be2f1100221242f07eda7bd8477f3ddc2252 numpy-1.14.1-cp36-none-win32.whl
c8000a6cbc5140629be8c038c9c9cdb3a1c85ff90bd4180ec99f0f0c73050b5e numpy-1.14.1-cp36-none-win_amd64.whl
8708a775be9a9a457b80a49193c57bd9d51a8a195ed1f1c4b8e89eaf3aa646ee numpy-1.14.1.tar.gz
fa0944650d5d3fb95869eaacd8eedbd2d83610c85e271bd9d3495ffa9bc4dc9c numpy-1.14.1.zip

1.14.0

Not secure
of bug fixes and new features, along with several changes with potential
compatibility issues. The major change that users will notice are the
stylistic changes in the way numpy arrays and scalars are printed, a change
that will affect doctests. See below for details on how to preserve the
old style printing when needed.

A major decision affecting future development concerns the schedule for
dropping Python 2.7 support in the runup to 2020. The decision has been made to
support 2.7 for all releases made in 2018, with the last release being
designated a long term release with support for bug fixes extending through
2019. In 2019 support for 2.7 will be dropped in all new releases. More details
can be found in the relevant [NEP](https://github.com/numpy/numpy/blob/master/doc/neps/dropping-python2.7-proposal.rst).

This release supports Python 2.7 and 3.4 - 3.6.


Highlights
==========

* The `np.einsum` function uses BLAS when possible

* ``genfromtxt``, ``loadtxt``, ``fromregex`` and ``savetxt`` can now handle
files with arbitrary Python supported encoding.

* Major improvements to printing of NumPy arrays and scalars.


New functions
=============

* ``parametrize``: decorator added to numpy.testing

* ``chebinterpolate``: Interpolate function at Chebyshev points.

* ``format_float_positional`` and ``format_float_scientific`` : format
floating-point scalars unambiguously with control of rounding and padding.

* ``PyArray_ResolveWritebackIfCopy`` and ``PyArray_SetWritebackIfCopyBase``,
new C-API functions useful in achieving PyPy compatibity.


Deprecations
============

* Using ``np.bool_`` objects in place of integers is deprecated. Previously
``operator.index(np.bool_)`` was legal and allowed constructs such as
``[1, 2, 3][np.True_]``. That was misleading, as it behaved differently from
``np.array([1, 2, 3])[np.True_]``.

* Truth testing of an empty array is deprecated. To check if an array is not
empty, use ``array.size > 0``.

* Calling ``np.bincount`` with ``minlength=None`` is deprecated.
``minlength=0`` should be used instead.

* Calling ``np.fromstring`` with the default value of the ``sep`` argument is
deprecated. When that argument is not provided, a broken version of
``np.frombuffer`` is used that silently accepts unicode strings and -- after
encoding them as either utf-8 (python 3) or the default encoding
(python 2) -- treats them as binary data. If reading binary data is
desired, ``np.frombuffer`` should be used directly.

* The ``style`` option of array2string is deprecated in non-legacy printing mode.

* ``PyArray_SetUpdateIfCopyBase`` has been deprecated. For NumPy versions >= 1.14
use ``PyArray_SetWritebackIfCopyBase`` instead, see `C API changes` below for
more details.



* The use of ``UPDATEIFCOPY`` arrays is deprecated, see `C API changes` below
for details. We will not be dropping support for those arrays, but they are
not compatible with PyPy.


Future Changes
==============

* ``np.issubdtype`` will stop downcasting dtype-like arguments.
It might be expected that ``issubdtype(np.float32, 'float64')`` and
``issubdtype(np.float32, np.float64)`` mean the same thing - however, there
was an undocumented special case that translated the former into
``issubdtype(np.float32, np.floating)``, giving the surprising result of True.

This translation now gives a warning that explains what translation is
occurring. In the future, the translation will be disabled, and the first
example will be made equivalent to the second.

* ``np.linalg.lstsq`` default for ``rcond`` will be changed. The ``rcond``
parameter to ``np.linalg.lstsq`` will change its default to machine precision
times the largest of the input array dimensions. A FutureWarning is issued
when ``rcond`` is not passed explicitly.

* ``a.flat.__array__()`` will return a writeable copy of ``a`` when ``a`` is
non-contiguous. Previously it returned an UPDATEIFCOPY array when ``a`` was
writeable. Currently it returns a non-writeable copy. See gh-7054 for a
discussion of the issue.

* Unstructured void array's ``.item`` method will return a bytes object. In the
future, calling ``.item()`` on arrays or scalars of ``np.void`` datatype will
return a ``bytes`` object instead of a buffer or int array, the same as
returned by ``bytes(void_scalar)``. This may affect code which assumed the
return value was mutable, which will no longer be the case. A
``FutureWarning`` is now issued when this would occur.


Compatibility notes
===================

The mask of a masked array view is also a view rather than a copy
-----------------------------------------------------------------
There was a FutureWarning about this change in NumPy 1.11.x. In short, it is
now the case that, when changing a view of a masked array, changes to the mask
are propagated to the original. That was not previously the case. This change
affects slices in particular. Note that this does not yet work properly if the
mask of the original array is ``nomask`` and the mask of the view is changed.
See gh-5580 for an extended discussion. The original behavior of having a copy
of the mask can be obtained by calling the ``unshare_mask`` method of the view.

``np.ma.masked`` is no longer writeable
---------------------------------------
Attempts to mutate the ``masked`` constant now error, as the underlying arrays
are marked readonly. In the past, it was possible to get away with::

emulating a function that sometimes returns np.ma.masked
val = random.choice([np.ma.masked, 10])
var_arr = np.asarray(val)
val_arr += 1 now errors, previously changed np.ma.masked.data

``np.ma`` functions producing ``fill_value``s have changed
----------------------------------------------------------
Previously, ``np.ma.default_fill_value`` would return a 0d array, but
``np.ma.minimum_fill_value`` and ``np.ma.maximum_fill_value`` would return a
tuple of the fields. Instead, all three methods return a structured ``np.void``
object, which is what you would already find in the ``.fill_value`` attribute.

Additionally, the dtype guessing now matches that of ``np.array`` - so when
passing a python scalar ``x``, ``maximum_fill_value(x)`` is always the same as
``maximum_fill_value(np.array(x))``. Previously ``x = long(1)`` on Python 2
violated this assumption.

``a.flat.__array__()`` returns non-writeable arrays when ``a`` is non-contiguous
--------------------------------------------------------------------------------
The intent is that the UPDATEIFCOPY array previously returned when ``a`` was
non-contiguous will be replaced by a writeable copy in the future. This
temporary measure is aimed to notify folks who expect the underlying array be
modified in this situation that that will no longer be the case. The most
likely places for this to be noticed is when expressions of the form
``np.asarray(a.flat)`` are used, or when ``a.flat`` is passed as the out
parameter to a ufunc.

``np.tensordot`` now returns zero array when contracting over 0-length dimension
--------------------------------------------------------------------------------
Previously ``np.tensordot`` raised a ValueError when contracting over 0-length
dimension. Now it returns a zero array, which is consistent with the behaviour
of ``np.dot`` and ``np.einsum``.

``numpy.testing`` reorganized
-----------------------------
This is not expected to cause problems, but possibly something has been left
out. If you experience an unexpected import problem using ``numpy.testing``
let us know.

``np.asfarray`` no longer accepts non-dtypes through the ``dtype`` argument
---------------------------------------------------------------------------
This previously would accept ``dtype=some_array``, with the implied semantics
of ``dtype=some_array.dtype``. This was undocumented, unique across the numpy
functions, and if used would likely correspond to a typo.

1D ``np.linalg.norm`` preserves float input types, even for arbitrary orders
----------------------------------------------------------------------------
Previously, this would promote to ``float64`` when arbitrary orders were
passed, despite not doing so under the simple cases::

>>> f32 = np.float32([1, 2])
>>> np.linalg.norm(f32, 2.0).dtype
dtype('float32')
>>> np.linalg.norm(f32, 2.0001).dtype
dtype('float64') numpy 1.13
dtype('float32') numpy 1.14

This change affects only ``float32`` and ``float16`` arrays.

``count_nonzero(arr, axis=())`` now counts over no axes, not all axes
---------------------------------------------------------------------
Elsewhere, ``axis==()`` is always understood as "no axes", but
`count_nonzero` had a special case to treat this as "all axes". This was
inconsistent and surprising. The correct way to count over all axes has always
been to pass ``axis == None``.

``__init__.py`` files added to test directories
-----------------------------------------------
This is for pytest compatibility in the case of duplicate test file names in
the different directories. As a result, ``run_module_suite`` no longer works,
i.e., ``python <path-to-test-file>`` results in an error.

``.astype(bool)`` on unstructured void arrays now calls ``bool`` on each element
--------------------------------------------------------------------------------
On Python 2, ``void_array.astype(bool)`` would always return an array of
``True``, unless the dtype is ``V0``. On Python 3, this operation would usually
crash. Going forwards, `astype` matches the behavior of ``bool(np.void)``,
considering a buffer of all zeros as false, and anything else as true.
Checks for ``V0`` can still be done with ``arr.dtype.itemsize == 0``.

``MaskedArray.squeeze`` never returns ``np.ma.masked``
------------------------------------------------------
``np.squeeze`` is documented as returning a view, but the masked variant would
sometimes return ``masked``, which is not a view. This has been fixed, so that
the result is always a view on the original masked array.
This breaks any code that used ``masked_arr.squeeze() is np.ma.masked``, but
fixes code that writes to the result of `.squeeze()`.

Renamed first parameter of ``can_cast`` from ``from`` to ``from_``
------------------------------------------------------------------
The previous parameter name ``from`` is a reserved keyword in Python, which made
it difficult to pass the argument by name. This has been fixed by renaming
the parameter to ``from_``.

``isnat`` raises ``TypeError`` when passed wrong type
------------------------------------------------------
The ufunc ``isnat`` used to raise a ``ValueError`` when it was not passed
variables of type ``datetime`` or ``timedelta``. This has been changed to
raising a ``TypeError``.

``dtype.__getitem__`` raises ``TypeError`` when passed wrong type
-----------------------------------------------------------------
When indexed with a float, the dtype object used to raise ``ValueError``.

User-defined types now need to implement ``__str__`` and ``__repr__``
---------------------------------------------------------------------
Previously, user-defined types could fall back to a default implementation of
``__str__`` and ``__repr__`` implemented in numpy, but this has now been
removed. Now user-defined types will fall back to the python default
``object.__str__`` and ``object.__repr__``.

Many changes to array printing, disableable with the new "legacy" printing mode
-------------------------------------------------------------------------------
The ``str`` and ``repr`` of ndarrays and numpy scalars have been changed in
a variety of ways. These changes are likely to break downstream user's
doctests.

These new behaviors can be disabled to mostly reproduce numpy 1.13 behavior by
enabling the new 1.13 "legacy" printing mode. This is enabled by calling
``np.set_printoptions(legacy="1.13")``, or using the new ``legacy`` argument to
``np.array2string``, as ``np.array2string(arr, legacy='1.13')``.

In summary, the major changes are:

* For floating-point types:

* The ``repr`` of float arrays often omits a space previously printed
in the sign position. See the new ``sign`` option to ``np.set_printoptions``.
* Floating-point arrays and scalars use a new algorithm for decimal
representations, giving the shortest unique representation. This will
usually shorten ``float16`` fractional output, and sometimes ``float32`` and
``float128`` output. ``float64`` should be unaffected. See the new
``floatmode`` option to ``np.set_printoptions``.
* Float arrays printed in scientific notation no longer use fixed-precision,
and now instead show the shortest unique representation.
* The ``str`` of floating-point scalars is no longer truncated in python2.

* For other data types:

* Non-finite complex scalars print like ``nanj`` instead of ``nan*j``.
* ``NaT`` values in datetime arrays are now properly aligned.
* Arrays and scalars of ``np.void`` datatype are now printed using hex
notation.

* For line-wrapping:

* The "dtype" part of ndarray reprs will now be printed on the next line
if there isn't space on the last line of array output.
* The ``linewidth`` format option is now always respected.
The `repr` or `str` of an array will never exceed this, unless a single
element is too wide.
* The last line of an array string will never have more elements than earlier
lines.
* An extra space is no longer inserted on the first line if the elements are
too wide.

* For summarization (the use of ``...`` to shorten long arrays):

* A trailing comma is no longer inserted for ``str``.
Previously, ``str(np.arange(1001))`` gave
``'[ 0 1 2 ..., 998 999 1000]'``, which has an extra comma.
* For arrays of 2-D and beyond, when ``...`` is printed on its own line in
order to summarize any but the last axis, newlines are now appended to that
line to match its leading newlines and a trailing space character is
removed.

* ``MaskedArray`` arrays now separate printed elements with commas, always
print the dtype, and correctly wrap the elements of long arrays to multiple
lines. If there is more than 1 dimension, the array attributes are now
printed in a new "left-justified" printing style.
* ``recarray`` arrays no longer print a trailing space before their dtype, and
wrap to the right number of columns.
* 0d arrays no longer have their own idiosyncratic implementations of ``str``
and ``repr``. The ``style`` argument to ``np.array2string`` is deprecated.
* Arrays of ``bool`` datatype will omit the datatype in the ``repr``.
* User-defined ``dtypes`` (subclasses of ``np.generic``) now need to
implement ``__str__`` and ``__repr__``.

Some of these changes are described in more detail below.


C API changes
=============

PyPy compatible alternative to ``UPDATEIFCOPY`` arrays
------------------------------------------------------
``UPDATEIFCOPY`` arrays are contiguous copies of existing arrays, possibly with
different dimensions, whose contents are copied back to the original array when
their refcount goes to zero and they are deallocated. Because PyPy does not use
refcounts, they do not function correctly with PyPy. NumPy is in the process of
eliminating their use internally and two new C-API functions,

* ``PyArray_SetWritebackIfCopyBase``
* ``PyArray_ResolveWritebackIfCopy``,

have been added together with a complimentary flag,
``NPY_ARRAY_WRITEBACKIFCOPY``. Using the new functionality also requires that
some flags be changed when new arrays are created, to wit:
``NPY_ARRAY_INOUT_ARRAY`` should be replaced by ``NPY_ARRAY_INOUT_ARRAY2`` and
``NPY_ARRAY_INOUT_FARRAY`` should be replaced by ``NPY_ARRAY_INOUT_FARRAY2``.
Arrays created with these new flags will then have the ``WRITEBACKIFCOPY``
semantics.

If PyPy compatibility is not a concern, these new functions can be ignored,
although there will be a ``DeprecationWarning``. If you do wish to pursue PyPy
compatibility, more information on these functions and their use may be found
in the c-api_ documentation and the example in how-to-extend_.

.. _c-api: https://github.com/numpy/numpy/blob/master/doc/source/reference/c-api.array.rst
.. _how-to-extend: https://github.com/numpy/numpy/blob/master/doc/source/user/c-info.how-to-extend.rst


New Features
============

Encoding argument for text IO functions
---------------------------------------
``genfromtxt``, ``loadtxt``, ``fromregex`` and ``savetxt`` can now handle files
with arbitrary encoding supported by Python via the encoding argument.
For backward compatibility the argument defaults to the special ``bytes`` value
which continues to treat text as raw byte values and continues to pass latin1
encoded bytes to custom converters.
Using any other value (including ``None`` for system default) will switch the
functions to real text IO so one receives unicode strings instead of bytes in
the resulting arrays.

External ``nose`` plugins are usable by ``numpy.testing.Tester``
----------------------------------------------------------------
``numpy.testing.Tester`` is now aware of ``nose`` plugins that are outside the
``nose`` built-in ones. This allows using, for example, ``nose-timer`` like
so: ``np.test(extra_argv=['--with-timer', '--timer-top-n', '20'])`` to
obtain the runtime of the 20 slowest tests. An extra keyword ``timer`` was
also added to ``Tester.test``, so ``np.test(timer=20)`` will also report the 20
slowest tests.

``parametrize`` decorator added to ``numpy.testing``
----------------------------------------------------
A basic ``parametrize`` decorator is now available in ``numpy.testing``. It is
intended to allow rewriting yield based tests that have been deprecated in
pytest so as to facilitate the transition to pytest in the future. The nose
testing framework has not been supported for several years and looks like
abandonware.

The new ``parametrize`` decorator does not have the full functionality of the
one in pytest. It doesn't work for classes, doesn't support nesting, and does
not substitute variable names. Even so, it should be adequate to rewrite the
NumPy tests.

``chebinterpolate`` function added to ``numpy.polynomial.chebyshev``
--------------------------------------------------------------------
The new ``chebinterpolate`` function interpolates a given function at the
Chebyshev points of the first kind. A new ``Chebyshev.interpolate`` class
method adds support for interpolation over arbitrary intervals using the scaled
and shifted Chebyshev points of the first kind.

Support for reading lzma compressed text files in Python 3
----------------------------------------------------------
With Python versions containing the ``lzma`` module the text IO functions can
now transparently read from files with ``xz`` or ``lzma`` extension.

``sign`` option added to ``np.setprintoptions`` and ``np.array2string``
-----------------------------------------------------------------------
This option controls printing of the sign of floating-point types, and may be
one of the characters '-', '+' or ' '. With '+' numpy always prints the sign of
positive values, with ' ' it always prints a space (whitespace character) in
the sign position of positive values, and with '-' it will omit the sign
character for positive values. The new default is '-'.

This new default changes the float output relative to numpy 1.13. The old
behavior can be obtained in 1.13 "legacy" printing mode, see compatibility
notes above.

``hermitian`` option added to``np.linalg.matrix_rank``
------------------------------------------------------
The new ``hermitian`` option allows choosing between standard SVD based matrix
rank calculation and the more efficient eigenvalue based method for
symmetric/hermitian matrices.

``threshold`` and ``edgeitems`` options added to ``np.array2string``
--------------------------------------------------------------------
These options could previously be controlled using ``np.set_printoptions``, but
now can be changed on a per-call basis as arguments to ``np.array2string``.

``concatenate`` and ``stack`` gained an ``out`` argument
--------------------------------------------------------
A preallocated buffer of the desired dtype can now be used for the output of
these functions.

Support for PGI flang compiler on Windows
-----------------------------------------
The PGI flang compiler is a Fortran front end for LLVM released by NVIDIA under
the Apache 2 license. It can be invoked by ::

python setup.py config --compiler=clang --fcompiler=flang install

There is little experience with this new compiler, so any feedback from people
using it will be appreciated.


Improvements
============

Numerator degrees of freedom in ``random.noncentral_f`` need only be positive.
------------------------------------------------------------------------------
Prior to NumPy 1.14.0, the numerator degrees of freedom needed to be > 1, but
the distribution is valid for values > 0, which is the new requirement.

The GIL is released for all ``np.einsum`` variations
----------------------------------------------------
Some specific loop structures which have an accelerated loop version
did not release the GIL prior to NumPy 1.14.0. This oversight has been
fixed.

The `np.einsum` function will use BLAS when possible and optimize by default
----------------------------------------------------------------------------
The ``np.einsum`` function will now call ``np.tensordot`` when appropriate.
Because ``np.tensordot`` uses BLAS when possible, that will speed up execution.
By default, ``np.einsum`` will also attempt optimization as the overhead is
small relative to the potential improvement in speed.

``f2py`` now handles arrays of dimension 0
------------------------------------------
``f2py`` now allows for the allocation of arrays of dimension 0. This allows
for more consistent handling of corner cases downstream.

``numpy.distutils`` supports using MSVC and mingw64-gfortran together
---------------------------------------------------------------------
Numpy distutils now supports using Mingw64 gfortran and MSVC compilers
together. This enables the production of Python extension modules on Windows
containing Fortran code while retaining compatibility with the
binaries distributed by Python.org. Not all use cases are supported,
but most common ways to wrap Fortran for Python are functional.

Compilation in this mode is usually enabled automatically, and can be
selected via the ``--fcompiler`` and ``--compiler`` options to
``setup.py``. Moreover, linking Fortran codes to static OpenBLAS is
supported; by default a gfortran compatible static archive
``openblas.a`` is looked for.

``np.linalg.pinv`` now works on stacked matrices
------------------------------------------------
Previously it was limited to a single 2d array.

``numpy.save`` aligns data to 64 bytes instead of 16
----------------------------------------------------
Saving NumPy arrays in the ``npy`` format with ``numpy.save`` inserts
padding before the array data to align it at 64 bytes. Previously
this was only 16 bytes (and sometimes less due to a bug in the code
for version 2). Now the alignment is 64 bytes, which matches the
widest SIMD instruction set commonly available, and is also the most
common cache line size. This makes ``npy`` files easier to use in
programs which open them with ``mmap``, especially on Linux where an
``mmap`` offset must be a multiple of the page size.

NPZ files now can be written without using temporary files
----------------------------------------------------------
In Python 3.6+ ``numpy.savez`` and ``numpy.savez_compressed`` now write
directly to a ZIP file, without creating intermediate temporary files.

Better support for empty structured and string types
----------------------------------------------------
Structured types can contain zero fields, and string dtypes can contain zero
characters. Zero-length strings still cannot be created directly, and must be
constructed through structured dtypes::

str0 = np.empty(10, np.dtype([('v', str, N)]))['v']
void0 = np.empty(10, np.void)

It was always possible to work with these, but the following operations are
now supported for these arrays:

* `arr.sort()`
* `arr.view(bytes)`
* `arr.resize(...)`
* `pickle.dumps(arr)`

Support for ``decimal.Decimal`` in ``np.lib.financial``
-------------------------------------------------------
Unless otherwise stated all functions within the ``financial`` package now
support using the ``decimal.Decimal`` built-in type.

Float printing now uses "dragon4" algorithm for shortest decimal representation
-------------------------------------------------------------------------------
The ``str`` and ``repr`` of floating-point values (16, 32, 64 and 128 bit) are
now printed to give the shortest decimal representation which uniquely
identifies the value from others of the same type. Previously this was only
true for ``float64`` values. The remaining float types will now often be shorter
than in numpy 1.13. Arrays printed in scientific notation now also use the
shortest scientific representation, instead of fixed precision as before.

Additionally, the `str` of float scalars scalars will no longer be truncated
in python2, unlike python2 `float`s. `np.double` scalars now have a ``str``
and ``repr`` identical to that of a python3 float.

New functions ``np.format_float_scientific`` and ``np.format_float_positional``
are provided to generate these decimal representations.

A new option ``floatmode`` has been added to ``np.set_printoptions`` and
``np.array2string``, which gives control over uniqueness and rounding of
printed elements in an array. The new default is ``floatmode='maxprec'`` with
``precision=8``, which will print at most 8 fractional digits, or fewer if an
element can be uniquely represented with fewer. A useful new mode is
``floatmode="unique"``, which will output enough digits to specify the array
elements uniquely.

Numpy complex-floating-scalars with values like ``inf*j`` or ``nan*j`` now
print as ``infj`` and ``nanj``, like the pure-python ``complex`` type.

The ``FloatFormat`` and ``LongFloatFormat`` classes are deprecated and should
both be replaced by ``FloatingFormat``. Similarly ``ComplexFormat`` and
``LongComplexFormat`` should be replaced by ``ComplexFloatingFormat``.

``void`` datatype elements are now printed in hex notation
----------------------------------------------------------
A hex representation compatible with the python ``bytes`` type is now printed
for unstructured ``np.void`` elements, e.g., ``V4`` datatype. Previously, in
python2 the raw void data of the element was printed to stdout, or in python3
the integer byte values were shown.

printing style for ``void`` datatypes is now independently customizable
-----------------------------------------------------------------------
The printing style of ``np.void`` arrays is now independently customizable
using the ``formatter`` argument to ``np.set_printoptions``, using the
``'void'`` key, instead of the catch-all ``numpystr`` key as before.

Reduced memory usage of ``np.loadtxt``
--------------------------------------
``np.loadtxt`` now reads files in chunks instead of all at once which decreases
its memory usage significantly for large files.


Changes
=======

Multiple-field indexing/assignment of structured arrays
-------------------------------------------------------
The indexing and assignment of structured arrays with multiple fields has
changed in a number of ways, as warned about in previous releases.

First, indexing a structured array with multiple fields, e.g.,
``arr[['f1', 'f3']]``, returns a view into the original array instead of a
copy. The returned view will have extra padding bytes corresponding to
intervening fields in the original array, unlike the copy in 1.13, which will
affect code such as ``arr[['f1', 'f3']].view(newdtype)``.

Second, assignment between structured arrays will now occur "by position"
instead of "by field name". The Nth field of the destination will be set to the
Nth field of the source regardless of field name, unlike in numpy versions 1.6
to 1.13 in which fields in the destination array were set to the
identically-named field in the source array or to 0 if the source did not have
a field.

Correspondingly, the order of fields in a structured dtypes now matters when
computing dtype equality. For example, with the dtypes ::

x = dtype({'names': ['A', 'B'], 'formats': ['i4', 'f4'], 'offsets': [0, 4]})
y = dtype({'names': ['B', 'A'], 'formats': ['f4', 'i4'], 'offsets': [4, 0]})

the expression ``x == y`` will now return ``False``, unlike before.
This makes dictionary based dtype specifications like
``dtype({'a': ('i4', 0), 'b': ('f4', 4)})`` dangerous in python < 3.6
since dict key order is not preserved in those versions.

Assignment from a structured array to a boolean array now raises a ValueError,
unlike in 1.13, where it always set the destination elements to ``True``.

Assignment from structured array with more than one field to a non-structured
array now raises a ValueError. In 1.13 this copied just the first field of the
source to the destination.

Using field "titles" in multiple-field indexing is now disallowed, as is
repeating a field name in a multiple-field index.

The documentation for structured arrays in the user guide has been
significantly updated to reflect these changes.

Integer and Void scalars are now unaffected by ``np.set_string_function``
-------------------------------------------------------------------------
Previously, unlike most other numpy scalars, the ``str`` and ``repr`` of
integer and void scalars could be controlled by ``np.set_string_function``.
This is no longer possible.

0d array printing changed, ``style`` arg of array2string deprecated
-------------------------------------------------------------------
Previously the ``str`` and ``repr`` of 0d arrays had idiosyncratic
implementations which returned ``str(a.item())`` and ``'array(' +
repr(a.item()) + ')'`` respectively for 0d array ``a``, unlike both numpy
scalars and higher dimension ndarrays.

Now, the ``str`` of a 0d array acts like a numpy scalar using ``str(a[()])``
and the ``repr`` acts like higher dimension arrays using ``formatter(a[()])``,
where ``formatter`` can be specified using ``np.set_printoptions``. The
``style`` argument of ``np.array2string`` is deprecated.

This new behavior is disabled in 1.13 legacy printing mode, see compatibility
notes above.

Seeding ``RandomState`` using an array requires a 1-d array
-----------------------------------------------------------
``RandomState`` previously would accept empty arrays or arrays with 2 or more
dimensions, which resulted in either a failure to seed (empty arrays) or for
some of the passed values to be ignored when setting the seed.

``MaskedArray`` objects show a more useful ``repr``
---------------------------------------------------
The ``repr`` of a ``MaskedArray`` is now closer to the python code that would
produce it, with arrays now being shown with commas and dtypes. Like the other
formatting changes, this can be disabled with the 1.13 legacy printing mode in
order to help transition doctests.

The ``repr`` of ``np.polynomial`` classes is more explicit
----------------------------------------------------------
It now shows the domain and window parameters as keyword arguments to make
them more clear::

>>> np.polynomial.Polynomial(range(4))
Polynomial([0., 1., 2., 3.], domain=[-1, 1], window=[-1, 1])

Checksums
=========

MD5
---

386ee4bc729dc436968792a3d1ead595 numpy-1.14.0rc1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
f34177798b3a4c4fc1f206a0406726ce numpy-1.14.0rc1-cp27-cp27m-manylinux1_i686.whl
6fab1b73e429fa263fe95ddc659ffccd numpy-1.14.0rc1-cp27-cp27m-manylinux1_x86_64.whl
b4c09c8193e2aaf210d52aa8e0756b77 numpy-1.14.0rc1-cp27-cp27mu-manylinux1_i686.whl
5c6c70f4ff653761787a06607c393c3e numpy-1.14.0rc1-cp27-cp27mu-manylinux1_x86_64.whl
a9c4e1bb9af79ab92b33554fcca3e946 numpy-1.14.0rc1-cp27-none-win32.whl
b088d7ba2a0b1bcf9fa5dfce016d7724 numpy-1.14.0rc1-cp27-none-win_amd64.whl
52d6e7dd15cdd6d7f67a432c30839382 numpy-1.14.0rc1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
4a083b1d8c327ac0258539ce002eaa50 numpy-1.14.0rc1-cp34-cp34m-manylinux1_i686.whl
5fc05e98d0c7a3285e7617777dc28ee4 numpy-1.14.0rc1-cp34-cp34m-manylinux1_x86_64.whl
926e999d5823d8ab38b36c680c8c2743 numpy-1.14.0rc1-cp34-none-win32.whl
653feb0279961bfcd66b8ef0f1c01d84 numpy-1.14.0rc1-cp34-none-win_amd64.whl
8f0ed0bcc95276261f66dcaeb72b8b75 numpy-1.14.0rc1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
73333bcd9f719d58002f78b5160118ea numpy-1.14.0rc1-cp35-cp35m-manylinux1_i686.whl
7d38e62f4fbef2fc2dc2b6853c51070a numpy-1.14.0rc1-cp35-cp35m-manylinux1_x86_64.whl
aa39db783e2107aab606f5664eaa9b93 numpy-1.14.0rc1-cp35-none-win32.whl
8d8bd1a3ff313bb915d67df055a48512 numpy-1.14.0rc1-cp35-none-win_amd64.whl
090acb877923354975502656070c8a5d numpy-1.14.0rc1-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
5560836ac5e2b6b703a0d8f85c35440c numpy-1.14.0rc1-cp36-cp36m-manylinux1_i686.whl
28bc40ddf2698a935a4d4fb41a6ec554 numpy-1.14.0rc1-cp36-cp36m-manylinux1_x86_64.whl
3653b793c7b85c6070ad63b5b56905b2 numpy-1.14.0rc1-cp36-none-win32.whl
246ad4cfaa8abd1551b5c94eef7272f2 numpy-1.14.0rc1-cp36-none-win_amd64.whl
6a12f7bcc8030892668191ca0203701b numpy-1.14.0rc1.tar.gz
2df98be4fa45e95fe5e97a984570f1cd numpy-1.14.0rc1.zip

SHA256
------

bcdc3fb50f334863ed7494fcc34ba353463aaf0a10a8df7f987bb15d70fc5eac numpy-1.14.0rc1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
16eada2481554bdd0ed64eb31cfc21eda0a0e5355a5d621e83c29060c75cf222 numpy-1.14.0rc1-cp27-cp27m-manylinux1_i686.whl
06193aafc49e43401af290793680a59b01a5366fc89e0f2c11e69f50a51f25b6 numpy-1.14.0rc1-cp27-cp27m-manylinux1_x86_64.whl
0209f9fb76b149993a5e6bae7a8f12e5fc27de13383d37fb1a26cd5e8d440cc9 numpy-1.14.0rc1-cp27-cp27mu-manylinux1_i686.whl
b72a6f0be39b86e8c5d59c9e76771cbfa402285aeca2c037941fdb2082a72311 numpy-1.14.0rc1-cp27-cp27mu-manylinux1_x86_64.whl
9517cc030e381e64f1c9a3ac66906abb869cec9af0c1c5c06ab3036d8f8a82a1 numpy-1.14.0rc1-cp27-none-win32.whl
214f0a2eb538dcc50d3def9682d8be444ee98f116a42addc58a2cb1a863e0bdb numpy-1.14.0rc1-cp27-none-win_amd64.whl
80f8150e9982e34f7283ed54cae5b4ac28ae2e818fc127c0f4ff6a071aea0e42 numpy-1.14.0rc1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
d09148f821408c1dc3f527a142f67446fb5fd5bc6151e61ce6ade8828c3f5ac3 numpy-1.14.0rc1-cp34-cp34m-manylinux1_i686.whl
24bee688bda518bc24799b49f9f6ea78531a615ed5d727b1959923af67aa8991 numpy-1.14.0rc1-cp34-cp34m-manylinux1_x86_64.whl
598b8bb17be6e70b5207193f55b4c6e86980be5b015159c92ab4bfdd4ec2c746 numpy-1.14.0rc1-cp34-none-win32.whl
49b03326a62cd24918582352720bea4ad950a7072b560143ea52aa59c2dad94d numpy-1.14.0rc1-cp34-none-win_amd64.whl
4620b548da24679027d0ec37766fd6d4dfce789433e1732eec82f4fddf070bb9 numpy-1.14.0rc1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
fa93dcecec03ec2955bb56cd8f51574bdfedff2dd2ed1abddd632ab4760d75f0 numpy-1.14.0rc1-cp35-cp35m-manylinux1_i686.whl
8af71007406b54d3a0ac155efd13b9c3d32dd32387f3fe8e166bec74e5e67eb6 numpy-1.14.0rc1-cp35-cp35m-manylinux1_x86_64.whl
b98298d91d37cb2698671aedda441e53ba7d278dca217186a94638f7e12d5025 numpy-1.14.0rc1-cp35-none-win32.whl
d8c848ab6427fc28f2bc6325db00684a0f8594e0de553bf7d124bebfabf1dbb3 numpy-1.14.0rc1-cp35-none-win_amd64.whl
3fa04d4f9921c7ade238c2e1c7ca69369a1364e2b2951c856d81f761cadfdc89 numpy-1.14.0rc1-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
bd77c7c95071e8ba8e5788b2c84429a28420ca35c4480cf439c1796a14361abb numpy-1.14.0rc1-cp36-cp36m-manylinux1_i686.whl
c3029997437bcd48bbed43c9c6db9b191dd84d428b01afdf20c8b7f5c14aabff numpy-1.14.0rc1-cp36-cp36m-manylinux1_x86_64.whl
6e5b728256c24a9072029edb2fb17047d8ef1a79bc1ab7688b98d204da0699e9 numpy-1.14.0rc1-cp36-none-win32.whl
c7423ed929639b5c76207b803508fdd388586ece32975418a03d05bf9ffe78a1 numpy-1.14.0rc1-cp36-none-win_amd64.whl
1c8bee7b0f2f056c92383e038a943cd24cbc7cac3ca5db70450dcfe2674ceb36 numpy-1.14.0rc1.tar.gz
011df832827befa97cbb8c5646a81f05a041f9a6ae66c8abaea5a04db1d002bd numpy-1.14.0rc1.zip

1.14.0rc1

==========================

1.13.3

Not secure
==========================

This is a bugfix release for some problems found since 1.13.1. The most
important fixes are for CVE-2017-12852 and temporary elision. Users of earlier
versions of 1.13 should upgrade.

The Python versions supported are 2.7 and 3.4 - 3.6. The Python 3.6 wheels
available from PIP are built with Python 3.6.2 and should be compatible with
all previous versions of Python 3.6. It was cythonized with Cython 0.26.1,
which should be free of the bugs found in 0.27 while also being compatible with
Python 3.7-dev. The Windows wheels were built with OpenBlas instead ATLAS,
which should improve the performance of the linear algebra functions.

The NumPy 1.13.3 release is a re-release of 1.13.2, which suffered from a
bug in Cython 0.27.0.

Contributors
============

A total of 12 people contributed to this release. People with a "+" by their
names contributed a patch for the first time.

* Allan Haldane
* Brandon Carter
* Charles Harris
* Eric Wieser
* Iryna Shcherbina +
* James Bourbeau +
* Jonathan Helmus
* Julian Taylor
* Matti Picus
* Michael Lamparski +
* Michael Seifert
* Ralf Gommers

Pull requests merged
====================

A total of 22 pull requests were merged for this release.

* 9390 BUG: Return the poly1d coefficients array directly
* 9555 BUG: Fix regression in 1.13.x in distutils.mingw32ccompiler.
* 9556 BUG: Fix true_divide when dtype=np.float64 specified.
* 9557 DOC: Fix some rst markup in numpy/doc/basics.py.
* 9558 BLD: Remove -xhost flag from IntelFCompiler.
* 9559 DOC: Removes broken docstring example (source code, png, pdf)...
* 9580 BUG: Add hypot and cabs functions to WIN32 blacklist.
* 9732 BUG: Make scalar function elision check if temp is writeable.
* 9736 BUG: Various fixes to np.gradient
* 9742 BUG: Fix np.pad for CVE-2017-12852
* 9744 BUG: Check for exception in sort functions, add tests
* 9745 DOC: Add whitespace after "versionadded::" directive so it actually...
* 9746 BUG: Memory leak in np.dot of size 0
* 9747 BUG: Adjust gfortran version search regex
* 9757 BUG: Cython 0.27 breaks NumPy on Python 3.
* 9764 BUG: Ensure `_npy_scaled_cexp{,f,l}` is defined when needed.
* 9765 BUG: PyArray_CountNonzero does not check for exceptions
* 9766 BUG: Fixes histogram monotonicity check for unsigned bin values
* 9767 BUG: Ensure consistent result dtype of count_nonzero
* 9771 BUG: MAINT: Fix mtrand for Cython 0.27.
* 9772 DOC: Create the 1.13.2 release notes.
* 9794 DOC: Create 1.13.3 release notes.

Checksums
=========

MD5
- ---

53600ccf171825920dddf0e9a1d9e0c8 numpy-1.13.3-2-cp27-none-win32.whl
13cd744cbb51b90ea446c01241ca2cde numpy-1.13.3-2-cp34-none-win32.whl
3fd27b05b46c473a584505ff6a50a5fa numpy-1.13.3-2-cp35-none-win32.whl
5add1046e7c1b33b865edafd1a6a7577 numpy-1.13.3-2-cp36-none-win32.whl
b660f17365f0dfc5e5904c21f15ac46e numpy-1.13.3-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
408f1f0070dfbc0569b440083febeb82 numpy-1.13.3-cp27-cp27m-manylinux1_i686.whl
64bc7dc4a503398e0b4cc48778136374 numpy-1.13.3-cp27-cp27m-manylinux1_x86_64.whl
95e59446abb9152ed6af36b655e35dfe numpy-1.13.3-cp27-cp27mu-manylinux1_i686.whl
f6d06d326e873d626576bd705e4f29a2 numpy-1.13.3-cp27-cp27mu-manylinux1_x86_64.whl
1ec7662240b1dd91fb801061409ab3e3 numpy-1.13.3-cp27-none-win_amd64.whl
819c122467a1053d4802fd7ce984a30a numpy-1.13.3-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
2992819fbaa8acd34529479592b3d376 numpy-1.13.3-cp34-cp34m-manylinux1_i686.whl
264590d2df37212e97a91c0e5828a452 numpy-1.13.3-cp34-cp34m-manylinux1_x86_64.whl
cf208337059f8a48235a7741f04c9e49 numpy-1.13.3-cp34-none-win_amd64.whl
d2f98af88264169f5cef760d95cef0f0 numpy-1.13.3-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
6ac434243bc3ed40e9854b319f76b1b5 numpy-1.13.3-cp35-cp35m-manylinux1_i686.whl
94c0a5c9aa6fd35862cbe7862fd68f36 numpy-1.13.3-cp35-cp35m-manylinux1_x86_64.whl
5b5ad3cdc43c950b8a26ab1bf3413e46 numpy-1.13.3-cp35-none-win_amd64.whl
dd2f6c5e72526d45fdd09c22b85e4bb8 numpy-1.13.3-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
ad1b9be95891adc1f7f7e9a23c1fe92d numpy-1.13.3-cp36-cp36m-manylinux1_i686.whl
bcbfbd9d0dbe026fd59a7756e190cdfa numpy-1.13.3-cp36-cp36m-manylinux1_x86_64.whl
8748204cc74d46f617c316507360ccb3 numpy-1.13.3-cp36-none-win_amd64.whl
c1d433e5973e548809e80c9118474b73 numpy-1.13.3.tar.gz
300a6f0528122128ac07c6deb5c95917 numpy-1.13.3.zip

SHA256
- ------

910e7ae5eeee8d322775187692c5c66719cd58d230fbfd57245ea3cf75716910 numpy-1.13.3-2-cp27-none-win32.whl
f5c9ca457057cd5e12ddab36cded8b1f38bf1f45bf550d4ca2839b11ec57f597 numpy-1.13.3-2-cp34-none-win32.whl
d29e72413b66df23c75b9b469253c823698ea2e00f58e9e0df64b7a50696e8ac numpy-1.13.3-2-cp35-none-win32.whl
539345898a4ae17421c159ae2a350901a5e6ce3da8f24168c6c67b3536e13de8 numpy-1.13.3-2-cp36-none-win32.whl
929928932f91082a168e36984179deddd58f8e98822ad2f33a2955d7c4eec596 numpy-1.13.3-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
62b09f3d1ea01d79c16a6642cb21599f53b9338c59971b2418a573155d2202ec numpy-1.13.3-cp27-cp27m-manylinux1_i686.whl
c4b1914d86c43399438518a2ac8bcba2fb64dd5a18efddded3783b9daae70933 numpy-1.13.3-cp27-cp27m-manylinux1_x86_64.whl
6c6feb0647380db6e1d5d49ef9fb59c42240f25fb8df8b6e82ecb436c7e0621a numpy-1.13.3-cp27-cp27mu-manylinux1_i686.whl
da2f47e46d7a93b73891d1981378717dc73c6ad5cc4fd23c934bfea7847fa958 numpy-1.13.3-cp27-cp27mu-manylinux1_x86_64.whl
4c767b6d9c9a071bb36ea34eb240ee5192fe0bc4c13be5e6c51e0350a30f7ac0 numpy-1.13.3-cp27-none-win_amd64.whl
b2f98838f4bbc3bf23af7e97ffcad18a2dc6bbb0726796781e02b9347af6685f numpy-1.13.3-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
11fcbed36c101a3b9c4636e791efccba82409ebbedaba938c97be8bdddd029cc numpy-1.13.3-cp34-cp34m-manylinux1_i686.whl
8969c8f987f8bcc3e30c014532cfc20e4a8f86a50c361596e086310853adacb7 numpy-1.13.3-cp34-cp34m-manylinux1_x86_64.whl
2875e8055a1ea8d933b1c9d0f8714c0aa11c097bfadfcb8564c4d868fbf09a41 numpy-1.13.3-cp34-none-win_amd64.whl
09b87d652c03508447d0f618e1d3ae57595acd3e0f0c11ac91bf68ed7bdb3a28 numpy-1.13.3-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
9cad35b911e150f00bb8080950c7e9f172714bbd0234f5ab74b4e3e2d9288b37 numpy-1.13.3-cp35-cp35m-manylinux1_i686.whl
479863de17f66810db00bccf35289555365da45d3b053ccf539b95ab3b9c24f6 numpy-1.13.3-cp35-cp35m-manylinux1_x86_64.whl
b162c6b044960b4ea0f42be049ce2af1d18c60f82748f0a27bd5ad182a731bf3 numpy-1.13.3-cp35-none-win_amd64.whl
fa656dccfa9141774440575a6e7875d08b93f4a332eb5ae40877b26bed291c01 numpy-1.13.3-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
7dfa5b49fb2a080bd0d39bfbcff1177bacb14fcb28c857fd65fd0c18938935de numpy-1.13.3-cp36-cp36m-manylinux1_i686.whl
e8e0e75db757e41463888939d26c8058b4ecd25e563c597e9119f512dc0ee1da numpy-1.13.3-cp36-cp36m-manylinux1_x86_64.whl
c8dc6aa96882df6323bf9545934e37c6e05959bd789ae4b14d50509b093907aa numpy-1.13.3-cp36-none-win_amd64.whl
4c6b4eef790528bebb7ec9590d74cc193868940fe68e4109a91c196df72d8094 numpy-1.13.3.tar.gz
36ee86d5adbabc4fa2643a073f93d5504bdfed37a149a3a49f4dde259f35a750 numpy-1.13.3.zip
-----BEGIN PGP SIGNATURE-----

iQEcBAEBAgAGBQJZz/tOAAoJEGefIoN3xSR7b7cIALNvpkl8yHIxBaA89vSFVkhK
XRPrYgmk7kc5Kr4IImNcj1ijvrG/GSeB1QHZq1ndBkC5mKNRt4ZrfGjxpbj13OQx
UQ3QjjEJOS3nRB4ILBjvioUKjV4OThscOZqzwEeek3zXd2RgqSXuEEUJg3F1jtGR
bgBt6+FiU1DdCWR2jg1FtnFoVetpY2/9dKMmdEsGZF5QePT5U6sPFw7ySZDOWUNA
PdHmgVhJZGLQ9llr+TnjeV5kpSiPyT33sCUbp9eoP0TXV2jnF24/q5lkxe1RLGo/
Bh/zdgopjfdW605gKD2xkri00r+1yYywzypXt0o7HsKNS7V9hUM/b0mIxbEPJ7I=
=k4c2
-----END PGP SIGNATURE-----

1.13.2

==========================

This is a bugfix release for some problems found since 1.13.1. The most
important fixes are for CVE-2017-12852 and temporary elision. Users of earlier
versions of 1.13 should upgrade.

The Python versions supported are 2.7 and 3.4 - 3.6. The Python 3.6 wheels
available from PIP are built with Python 3.6.2 and should be compatible with
all previous versions of Python 3.6. The Windows wheels are now built
with OpenBlas instead ATLAS, which should improve the performance of the linear
algebra functions.

Contributors
============

A total of 12 people contributed to this release. People with a "+" by their
names contributed a patch for the first time.

* Allan Haldane
* Brandon Carter
* Charles Harris
* Eric Wieser
* Iryna Shcherbina +
* James Bourbeau +
* Jonathan Helmus
* Julian Taylor
* Matti Picus
* Michael Lamparski +
* Michael Seifert
* Ralf Gommers

Pull requests merged
====================

A total of 20 pull requests were merged for this release.

* 9390 BUG: Return the poly1d coefficients array directly
* 9555 BUG: Fix regression in 1.13.x in distutils.mingw32ccompiler.
* 9556 BUG: Fix true_divide when dtype=np.float64 specified.
* 9557 DOC: Fix some rst markup in numpy/doc/basics.py.
* 9558 BLD: Remove -xhost flag from IntelFCompiler.
* 9559 DOC: Removes broken docstring example (source code, png, pdf)...
* 9580 BUG: Add hypot and cabs functions to WIN32 blacklist.
* 9732 BUG: Make scalar function elision check if temp is writeable.
* 9736 BUG: Various fixes to np.gradient
* 9742 BUG: Fix np.pad for CVE-2017-12852
* 9744 BUG: Check for exception in sort functions, add tests
* 9745 DOC: Add whitespace after "versionadded::" directive so it actually...
* 9746 BUG: Memory leak in np.dot of size 0
* 9747 BUG: Adjust gfortran version search regex
* 9757 BUG: Cython 0.27 breaks NumPy on Python 3.
* 9764 BUG: Ensure `_npy_scaled_cexp{,f,l}` is defined when needed.
* 9765 BUG: PyArray_CountNonzero does not check for exceptions
* 9766 BUG: Fixes histogram monotonicity check for unsigned bin values
* 9767 BUG: Ensure consistent result dtype of count_nonzero
* 9771 BUG, MAINT: Fix mtrand for Cython 0.27.

Checksums
=========

MD5
- ---

d3ac88f752fc713ca353d6623cdff1d2 numpy-1.13.2-1.tar.gz
94c48ee8dc28793032a591c096130b84 numpy-1.13.2-1.zip
774a0d6341be6b09060efdb0040f23b3 numpy-1.13.2-1.zip.asc
dee547a38bd0ca89a7453ceecf3021ce numpy-1.13.2-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
9d1249456f45be2edde0fa44757b5838 numpy-1.13.2-cp27-cp27m-manylinux1_i686.whl
81898f48b56e55f4044b7b6e6078af8f numpy-1.13.2-cp27-cp27m-manylinux1_x86_64.whl
ae1699f501592cc53d0807a1aa2eb457 numpy-1.13.2-cp27-cp27mu-manylinux1_i686.whl
5d4ebc829dfd04dadc0e280b47992ed7 numpy-1.13.2-cp27-cp27mu-manylinux1_x86_64.whl
567df692734c11c3f340d9108b2d41ea numpy-1.13.2-cp27-none-win32.whl
022016ffb96ffc1584cebfc085b80e1d numpy-1.13.2-cp27-none-win_amd64.whl
521884f3ff3debb8e49e6d905b4c8248 numpy-1.13.2-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
32630160e7b2c6b159f1816d0f6c2719 numpy-1.13.2-cp34-cp34m-manylinux1_i686.whl
02908f86c6e6f4b5b59d139a67e63388 numpy-1.13.2-cp34-cp34m-manylinux1_x86_64.whl
7d5efcd69f664484057ed8541740bcd1 numpy-1.13.2-cp34-none-win32.whl
37c410d7e4526b4d221da08fcbf1641f numpy-1.13.2-cp34-none-win_amd64.whl
68ae514b92be35e6c0ec37946e49bc62 numpy-1.13.2-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
468fbb60b613f5c506022822e5ecd31a numpy-1.13.2-cp35-cp35m-manylinux1_i686.whl
8fee946c44aeb516048e1451805be50e numpy-1.13.2-cp35-cp35m-manylinux1_x86_64.whl
6386a7650bb29ad0fe7212ed86f9bda7 numpy-1.13.2-cp35-none-win32.whl
4972770e7b310f32421837f3106ad069 numpy-1.13.2-cp35-none-win_amd64.whl
cffc35cdbea63e4f99c3cf8ded5bdb76 numpy-1.13.2-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
227d77b146aa7536d4481641b559d728 numpy-1.13.2-cp36-cp36m-manylinux1_i686.whl
f3f057a84f8bb939612163582dc02618 numpy-1.13.2-cp36-cp36m-manylinux1_x86_64.whl
0123a37adf70070aba648e60b16977a7 numpy-1.13.2-cp36-none-win32.whl
9160e9c633bac901caf90d249aa1a745 numpy-1.13.2-cp36-none-win_amd64.whl

SHA256
- ------

f976eb3de5ae3a7f17a402380a49f0582e3f2aafcf9d0a99e969b99e32018e29 numpy-1.13.2-1.tar.gz
0a1c96a3698455f06ce21b8eb3f4a00b9b165f6e082be3a22af80f0d8eedf9b8 numpy-1.13.2-1.zip
d79d07ea093fc07a991c23fdd05bce3f400c4c11e0f9f10cde2e1f1af0358266 numpy-1.13.2-1.zip.asc
a51b0788f098b76b5750d0b2352709fbe3fb4736ed93ab60028513ea2bf10259 numpy-1.13.2-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
077dfc6c05fec867a9caaffbce22b0581894f885931111b0749eb95e3ad390be numpy-1.13.2-cp27-cp27m-manylinux1_i686.whl
cf7a17d41027551bcb198e2de061ebbe1fee1affc332b4d3add650bc21794ec2 numpy-1.13.2-cp27-cp27m-manylinux1_x86_64.whl
6eeb63d026ba8e0bf177b50819a8a9a5a808ea82d3477001eb35a9ca3e4c698c numpy-1.13.2-cp27-cp27mu-manylinux1_i686.whl
4f9dd034b88604d0f67454e879a1d07d54794650fea51186b5199bb780530a07 numpy-1.13.2-cp27-cp27mu-manylinux1_x86_64.whl
1b21a68ed1aa9e0d9eb4b72729f7e6bf6ad7a48d902a7ae2b7252926ed4616fd numpy-1.13.2-cp27-none-win32.whl
e9a2ebff47bf737e0e04e2c7545e843aab637716ab1b732e1ac0a8e1956444a9 numpy-1.13.2-cp27-none-win_amd64.whl
90eed22ffb0001e8330737b3323bd712eee7af898e726a0e8cb4c4d435f72d00 numpy-1.13.2-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
9f3b213396ad52beba7b70b1bd9cbab11bd422ba756935aff9858af26ba98d35 numpy-1.13.2-cp34-cp34m-manylinux1_i686.whl
4bdce25f2aa0cc0f83c599cf2a57dc6c44d1e71264879da6ca411fafa4a6380e numpy-1.13.2-cp34-cp34m-manylinux1_x86_64.whl
d01d6c03422d5a6663aba0022a552fb77c2e503f19a79ca4418d7da6a6165fee numpy-1.13.2-cp34-none-win32.whl
46f4da749206ca75def0eae3ce4d0985d9555c57e5121257eec56e3c351cd3c2 numpy-1.13.2-cp34-none-win_amd64.whl
8a8e5a848e362a864d40a0b99fcc4eccfc6618cd5f8c3587d74bc8c9796ee015 numpy-1.13.2-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
6fc660f6713250307f340b3dae1811ff08a55697e4ee8393ede52f757d39c3e1 numpy-1.13.2-cp35-cp35m-manylinux1_i686.whl
5c159ac450569594c1f10c118e221c234a481f9fcfa157a736c80f52c6e698ec numpy-1.13.2-cp35-cp35m-manylinux1_x86_64.whl
6930af9a8252454dc6ce037845c7d6c007671f6a156e64b1d8ff973ff42569a0 numpy-1.13.2-cp35-none-win32.whl
2f10c7042587044e9791df60c3733d9b03b4a5d5f5bf3793c9c30ac7c376cfce numpy-1.13.2-cp35-none-win_amd64.whl
2e80e8904636ce1f01d59c019f128161ae472171710b5541f6a535b3ab7f11e4 numpy-1.13.2-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
1847a3dd54240b523b383e95635c5305b785c3fe932a2b6ac0a379c5788f1401 numpy-1.13.2-cp36-cp36m-manylinux1_i686.whl
9725d3cb40dccee76df0ce7816c8d80464b2ebf3d1c68a0620c9633d1b7ffc10 numpy-1.13.2-cp36-cp36m-manylinux1_x86_64.whl
da025523172dc61dab586d31e326bc3517004dfeb8e0337d2b556d76bb5217df numpy-1.13.2-cp36-none-win32.whl
4cecc6c842762154649fd1c976d40b5903c75076924464b46645af101019e1ad numpy-1.13.2-cp36-none-win_amd64.whl
-----BEGIN PGP SIGNATURE-----

iQEcBAEBAgAGBQJZzQThAAoJEGefIoN3xSR7rX8H/3f6D0kNlOyn3YJ9eDCHwOBO
WJxJ7suMfNKgoZa6NUdNkGXA+WkhjGzROIaftF69CnPa3thzGTZguRJDHOscUEi7
YHpdqnzSP9nuDFkfbUQC1t7M6XPR7NrGd/u46fkhEeUBrR7OyBYwTTbCJc97Zwjn
9OXHAJ3vVnUFOzcYnYMue/OLHpAGYjx9y3WlM4A37aKyL6Gf3ugRGUTfOOmzrAAb
Vgqgkmt01nGCHiVGyI/exCkHsoNoUJV9abLygzwRkHirSOhL8DhSv/aULya4ZwSX
AZzdA8jHVXOxymkKPz+zQJ7EKs/Dg8kuVneqv/IisnDwJy/1xCR6kxha09ZewWQ=
=qR0v
-----END PGP SIGNATURE-----

Page 21 of 24

© 2025 Safety CLI Cybersecurity Inc. All Rights Reserved.