Numpy

Latest version: v2.2.4

Safety actively analyzes 726274 Python packages for vulnerabilities to keep your Python projects secure.

Scan your dependencies

Page 6 of 24

1.26.0

The NumPy 1.26.0 release is a continuation of the 1.25.x release cycle
with the addition of Python 3.12.0 support. Python 3.12 dropped
distutils, consequently supporting it required finding a replacement for
the setup.py/distutils based build system NumPy was using. We have
chosen to use the Meson build system instead, and this is the first
NumPy release supporting it. This is also the first release that
supports Cython 3.0 in addition to retaining 0.29.X compatibility.
Supporting those two upgrades was a large project, over 100 files have
been touched in this release. The changelog doesn\'t capture the full
extent of the work, special thanks to Ralf Gommers, Sayed Adel, Stéfan
van der Walt, and Matti Picus who did much of the work in the main
development branch.

The highlights of this release are:

- Python 3.12.0 support.
- Cython 3.0.0 compatibility.
- Use of the Meson build system
- Updated SIMD support

The Python versions supported in this release are 3.9-3.12.

Build system changes

In this release, NumPy has switched to Meson as the build system and
meson-python as the build backend. Installing NumPy or building a wheel
can be done with standard tools like `pip` and `pypa/build`. The
following are supported:

- Regular installs: `pip install numpy` or (in a cloned repo)
`pip install .`
- Building a wheel: `python -m build` (preferred), or `pip wheel .`
- Editable installs: `pip install -e . --no-build-isolation`
- Development builds through the custom CLI implemented with
[spin](https://github.com/scientific-python/spin): `spin build`.

All the regular `pip` and `pypa/build` flags (e.g.,
`--no-build-isolation`) should work as expected.

NumPy-specific build customization

Many of the NumPy-specific ways of customizing builds have changed. The
`NPY_*` environment variables which control BLAS/LAPACK, SIMD,
threading, and other such options are no longer supported, nor is a
`site.cfg` file to select BLAS and LAPACK. Instead, there are
command-line flags that can be passed to the build via `pip`/`build`\'s
config-settings interface. These flags are all listed in the
`meson_options.txt` file in the root of the repo. Detailed documented
will be available before the final 1.26.0 release; for now please see
[the SciPy \"building from source\"docs](http://scipy.github.io/devdocs/building/index.html) since most
build customization works in an almost identical way in SciPy as it does
in NumPy.

Build dependencies

While the runtime dependencies of NumPy have not changed, the build
dependencies have. Because we temporarily vendor Meson and meson-python,
there are several new dependencies - please see the `[build-system]`
section of `pyproject.toml` for details.

Troubleshooting

This build system change is quite large. In case of unexpected issues,
it is still possible to use a `setup.py`-based build as a temporary
workaround (on Python 3.9-3.11, not 3.12), by copying
`pyproject.toml.setuppy` to `pyproject.toml`. However, please open an
issue with details on the NumPy issue tracker. We aim to phase out
`setup.py` builds as soon as possible, and therefore would like to see
all potential blockers surfaced early on in the 1.26.0 release cycle.

Contributors

A total of 11 people contributed to this release. People with a \"+\" by
their names contributed a patch for the first time.

- Bas van Beek
- Charles Harris
- Matti Picus
- Melissa Weber Mendonça
- Ralf Gommers
- Sayed Adel
- Sebastian Berg
- Stefan van der Walt
- Tyler Reddy
- Warren Weckesser

Pull requests merged

A total of 18 pull requests were merged for this release.

- [24305](https://github.com/numpy/numpy/pull/24305): MAINT: Prepare 1.26.x branch for development
- [24308](https://github.com/numpy/numpy/pull/24308): MAINT: Massive update of files from main for numpy 1.26
- [24322](https://github.com/numpy/numpy/pull/24322): CI: fix wheel builds on the 1.26.x branch
- [24326](https://github.com/numpy/numpy/pull/24326): BLD: update openblas to newer version
- [24327](https://github.com/numpy/numpy/pull/24327): TYP: Trim down the `_NestedSequence.__getitem__` signature
- [24328](https://github.com/numpy/numpy/pull/24328): BUG: fix choose refcount leak
- [24337](https://github.com/numpy/numpy/pull/24337): TST: fix running the test suite in builds without BLAS/LAPACK
- [24338](https://github.com/numpy/numpy/pull/24338): BUG: random: Fix generation of nan by dirichlet.
- [24340](https://github.com/numpy/numpy/pull/24340): MAINT: Dependabot updates from main
- [24342](https://github.com/numpy/numpy/pull/24342): MAINT: Add back NPY_RUN_MYPY_IN_TESTSUITE=1
- [24353](https://github.com/numpy/numpy/pull/24353): MAINT: Update `extbuild.py` from main.
- [24356](https://github.com/numpy/numpy/pull/24356): TST: fix distutils tests for deprecations in recent setuptools\...
- [24375](https://github.com/numpy/numpy/pull/24375): MAINT: Update cibuildwheel to version 2.15.0
- [24381](https://github.com/numpy/numpy/pull/24381): MAINT: Fix codespaces setup.sh script
- [24403](https://github.com/numpy/numpy/pull/24403): ENH: Vendor meson for multi-target build support
- [24404](https://github.com/numpy/numpy/pull/24404): BLD: vendor meson-python to make the Windows builds with SIMD\...
- [24405](https://github.com/numpy/numpy/pull/24405): BLD, SIMD: The meson CPU dispatcher implementation
- [24406](https://github.com/numpy/numpy/pull/24406): MAINT: Remove versioneer

Checksums

MD5

875d02016f215f8ce2513453393f0089 numpy-1.26.0b1-cp310-cp310-macosx_10_9_x86_64.whl
7df1856729096fbbbbb82b58c1695810 numpy-1.26.0b1-cp310-cp310-macosx_11_0_arm64.whl
928037510906572ecadb154b8089853f numpy-1.26.0b1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
93fb7c8a0e7af169c9bf42d8bfa17c2c numpy-1.26.0b1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
a865069d224bf3830671de8e1f374344 numpy-1.26.0b1-cp310-cp310-musllinux_1_1_x86_64.whl
c53d1d8cb653fc08bd3f931e4c965430 numpy-1.26.0b1-cp310-cp310-win_amd64.whl
c7e212fbb7e64231747c6c8aac0f8678 numpy-1.26.0b1-cp311-cp311-macosx_10_9_x86_64.whl
f2df03cdaee283c1f7486d2f66e497dd numpy-1.26.0b1-cp311-cp311-macosx_11_0_arm64.whl
8af359b78166474b7a621a482f3073fd numpy-1.26.0b1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
4eec2761b87ccd43028697410ed8909d numpy-1.26.0b1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
d9f0b03e455e9e99bdbe69e2e729c197 numpy-1.26.0b1-cp311-cp311-musllinux_1_1_x86_64.whl
dd1c5e4492988e2b3641602b295e7de3 numpy-1.26.0b1-cp311-cp311-win_amd64.whl
88e35ab901c8315ccdb172abc0d2350c numpy-1.26.0b1-cp312-cp312-macosx_10_9_x86_64.whl
ad426a4203844eaa8de6b519e94dc2c0 numpy-1.26.0b1-cp312-cp312-macosx_11_0_arm64.whl
2e0e7a297de88cfe930c205b1ab8fdb0 numpy-1.26.0b1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
5d4ea12ab53e506a9887ab8a587f68f6 numpy-1.26.0b1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
1b3c3a80d2fb928b753545ded60312f3 numpy-1.26.0b1-cp312-cp312-musllinux_1_1_x86_64.whl
e27356122ee42d84f6965ac802792bc3 numpy-1.26.0b1-cp312-cp312-win_amd64.whl
1cc0d71476548fa30c27a542e3c3f9bf numpy-1.26.0b1-cp39-cp39-macosx_10_9_x86_64.whl
ec4882af449c1754cc7af84a82305aed numpy-1.26.0b1-cp39-cp39-macosx_11_0_arm64.whl
142493180019de1ec22c4510bf650366 numpy-1.26.0b1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
4a0c76b75fa36c54c0d2a9107c838910 numpy-1.26.0b1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
cb4d1c3b95e3a2662f94475b4b525da0 numpy-1.26.0b1-cp39-cp39-musllinux_1_1_x86_64.whl
afa3f60467530e022eb1a584a8c48f84 numpy-1.26.0b1-cp39-cp39-win_amd64.whl
35c77e2f2b25225ae62354f91c26a693 numpy-1.26.0b1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
1986181def7286ae37ced5df7c0ca312 numpy-1.26.0b1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e013942d0d71cb6a680afa89c9aa5259 numpy-1.26.0b1-pp39-pypy39_pp73-win_amd64.whl
3268568cee06327fa34175aa3805829d numpy-1.26.0b1.tar.gz

SHA256

9a74361204dc604ba53916ed55aef0ca73e7aa3d0b7e47e1c28aece8c2ad4f59 numpy-1.26.0b1-cp310-cp310-macosx_10_9_x86_64.whl
ab9e86bb7c9d3e009945b24a92318ff5d8c245e0e0aaaa765825c4561c292d53 numpy-1.26.0b1-cp310-cp310-macosx_11_0_arm64.whl
b0b73599c80b29dfa7f812cb2e8738ce3f058b413e9f2f478e3cc4e038bb8f8e numpy-1.26.0b1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
4a6d4c99396c57e02b0181f01ba42b482f327774057e51fb7fb390a130c95cff numpy-1.26.0b1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
02af7482f34aeb9658ece615c922942f1a3908c449a9a6cd9f33fa233ce486d4 numpy-1.26.0b1-cp310-cp310-musllinux_1_1_x86_64.whl
5a8f04e957259ef93a1e4a29da0b64d49ee842af456257bbb7253925cfe2f7bd numpy-1.26.0b1-cp310-cp310-win_amd64.whl
f71e10402e705aaa5908464e489d38e6583c48e40a4721f83195772178c7da9f numpy-1.26.0b1-cp311-cp311-macosx_10_9_x86_64.whl
94d5572fea8dca0fa929da9d17fa49e525ceee1e59b04372dfa5bd8a5f688f5f numpy-1.26.0b1-cp311-cp311-macosx_11_0_arm64.whl
1f88e6fe42b0d6418e53332e525b299762dbd9e33055d2e0398e6298da5b0cc9 numpy-1.26.0b1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
c466707e5ce5a44caadb85fd672a5ce0bfc060012df465771e7b10506e1e5dad numpy-1.26.0b1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
16313a28cf703ae722b3ac139809360ffef81a45e758f196e538be3bcbee85c9 numpy-1.26.0b1-cp311-cp311-musllinux_1_1_x86_64.whl
ea85e8e297af49d30830177ecb0c54d1cbca051e4306161f3ceabfa66560b17c numpy-1.26.0b1-cp311-cp311-win_amd64.whl
321a063fabc302931029f831f284cf43c301fdeead1b15df2f8aa87673294d4d numpy-1.26.0b1-cp312-cp312-macosx_10_9_x86_64.whl
dc36a9e8df48b72dad668d6f4036ed477d8bc2cb1f7a23b688e8e8057afdfee3 numpy-1.26.0b1-cp312-cp312-macosx_11_0_arm64.whl
3c6c5804671fa1697e3d0cbc608a65c55794fb6682f4e04e9f6d65d0ddfc47c7 numpy-1.26.0b1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
3aa806da215e9c10ba89e9037a69c7a56367e059615679ef1a5cf937eedfbf61 numpy-1.26.0b1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
b66135c02ee55f9113dce3c8c5130b5feaead8767cd2c7ad36547a3d5e264230 numpy-1.26.0b1-cp312-cp312-musllinux_1_1_x86_64.whl
87f2799f475e9e7aee69254dfe357975b163d409550d4641a0bca4cb4f64b725 numpy-1.26.0b1-cp312-cp312-win_amd64.whl
2b258f67ca4a8245c74470da66a87684ddb3f06dde98760efc7ca792a44ee254 numpy-1.26.0b1-cp39-cp39-macosx_10_9_x86_64.whl
a31d9109ffed9fc5566e73346a076fffbc7db00e626579ae4d5dfec933b29bfc numpy-1.26.0b1-cp39-cp39-macosx_11_0_arm64.whl
18e29ab806ec5e0b05df900d44b3b257a5901c32fc3ddaeb818c520cd9279b4e numpy-1.26.0b1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
216b47882877ea5272f279c08bf7e42935728f35c6db2e4843b37db7b29ce016 numpy-1.26.0b1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
eea337d6d5ab2b6eb657b3f18e8b57a280f16fb5f94df484d9c1a8d3450d9ae9 numpy-1.26.0b1-cp39-cp39-musllinux_1_1_x86_64.whl
db698c9008217c54a8005ea58bd5836241d7b519c8bb16a698a1b4ec4ca296a8 numpy-1.26.0b1-cp39-cp39-win_amd64.whl
f250b3099649137f1021f8f95a9404273bcb7539f0bef6d6cf2c91260285edc4 numpy-1.26.0b1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
22584a41b1be30543dd8c030affc90d8cb7ec19a56fda7f27fc33f64f8b0fbaa numpy-1.26.0b1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
8aefe8ab1228e00146e5ae88290c7fdb8221aef45b357aed7f3dff6ac3b3b25a numpy-1.26.0b1-pp39-pypy39_pp73-win_amd64.whl
c67eea90827e1e9aa220a3fc380ce8776428deba8ac9e7c931ce7b69e8dce115 numpy-1.26.0b1.tar.gz

1.26.0rc1

1.26.0b1

1.25.2

discovered after the 1.25.1 release. This is the last planned release in
the 1.25.x series, the next release will be 1.26.0, which will use the
meson build system and support Python 3.12. The Python versions
supported by this release are 3.9-3.11.

Contributors

A total of 13 people contributed to this release. People with a \"+\" by
their names contributed a patch for the first time.

- Aaron Meurer
- Andrew Nelson
- Charles Harris
- Kevin Sheppard
- Matti Picus
- Nathan Goldbaum
- Peter Hawkins
- Ralf Gommers
- Randy Eckenrode +
- Sam James +
- Sebastian Berg
- Tyler Reddy
- dependabot\[bot\]

Pull requests merged

A total of 19 pull requests were merged for this release.

- [24148](https://github.com/numpy/numpy/pull/24148): MAINT: prepare 1.25.x for further development
- [24174](https://github.com/numpy/numpy/pull/24174): ENH: Improve clang-cl compliance
- [24179](https://github.com/numpy/numpy/pull/24179): MAINT: Upgrade various build dependencies.
- [24182](https://github.com/numpy/numpy/pull/24182): BLD: use `-ftrapping-math` with Clang on macOS
- [24183](https://github.com/numpy/numpy/pull/24183): BUG: properly handle negative indexes in ufunc_at fast path
- [24184](https://github.com/numpy/numpy/pull/24184): BUG: PyObject_IsTrue and PyObject_Not error handling in setflags
- [24185](https://github.com/numpy/numpy/pull/24185): BUG: histogram small range robust
- [24186](https://github.com/numpy/numpy/pull/24186): MAINT: Update meson.build files from main branch
- [24234](https://github.com/numpy/numpy/pull/24234): MAINT: exclude min, max and round from `np.__all__`
- [24241](https://github.com/numpy/numpy/pull/24241): MAINT: Dependabot updates
- [24242](https://github.com/numpy/numpy/pull/24242): BUG: Fix the signature for np.array_api.take
- [24243](https://github.com/numpy/numpy/pull/24243): BLD: update OpenBLAS to an intermeidate commit
- [24244](https://github.com/numpy/numpy/pull/24244): BUG: Fix reference count leak in str(scalar).
- [24245](https://github.com/numpy/numpy/pull/24245): BUG: fix invalid function pointer conversion error
- [24255](https://github.com/numpy/numpy/pull/24255): BUG: Factor out slow `getenv` call used for memory policy warning
- [24292](https://github.com/numpy/numpy/pull/24292): CI: correct URL in cirrus.star
- [24293](https://github.com/numpy/numpy/pull/24293): BUG: Fix C types in scalartypes
- [24294](https://github.com/numpy/numpy/pull/24294): BUG: do not modify the input to ufunc_at
- [24295](https://github.com/numpy/numpy/pull/24295): BUG: Further fixes to indexing loop and added tests

Checksums

MD5

33518ccb4da8ee11f1dee4b9fef1e468 numpy-1.25.2-cp310-cp310-macosx_10_9_x86_64.whl
b5cb0c3b33ef6d93ec2888f25b065636 numpy-1.25.2-cp310-cp310-macosx_11_0_arm64.whl
ae027dd38bd73f09c07220b2f516f148 numpy-1.25.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
88cf69dc3c0d293492c4c7e75dccf3d8 numpy-1.25.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
3e4e3ad02375ba71ae2cd05ccd97aba4 numpy-1.25.2-cp310-cp310-musllinux_1_1_x86_64.whl
f52bb644682deb26c35ddec77198b65c numpy-1.25.2-cp310-cp310-win32.whl
4944cf36652be7560a6bcd0d5d56e8ea numpy-1.25.2-cp310-cp310-win_amd64.whl
5a56e639defebb7b871c8c5613960ca3 numpy-1.25.2-cp311-cp311-macosx_10_9_x86_64.whl
3988b96944e7218e629255214f2598bd numpy-1.25.2-cp311-cp311-macosx_11_0_arm64.whl
302d65015ddd908a862fb3761a2a0363 numpy-1.25.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
e54a2e23272d1c5e5b278bd7e304c948 numpy-1.25.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
961d390e8ccaf11b1b0d6200d2c8b1c0 numpy-1.25.2-cp311-cp311-musllinux_1_1_x86_64.whl
e113865b90f97079d344100c41226fbe numpy-1.25.2-cp311-cp311-win32.whl
834a147aa1adaec97655018b882232bd numpy-1.25.2-cp311-cp311-win_amd64.whl
fb55f93a8033bde854c8a2b994045686 numpy-1.25.2-cp39-cp39-macosx_10_9_x86_64.whl
d96e754217d29bf045e082b695667e62 numpy-1.25.2-cp39-cp39-macosx_11_0_arm64.whl
beab540edebecbb257e482dd9e498b44 numpy-1.25.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
e0d608c9e09cd8feba48567586cfefc0 numpy-1.25.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
fe1fc32c8bb005ca04b8f10ebdcff6dd numpy-1.25.2-cp39-cp39-musllinux_1_1_x86_64.whl
41df58a9935c8ed869c92307c95f02eb numpy-1.25.2-cp39-cp39-win32.whl
a4371272c64493beb8b04ac46c4c1521 numpy-1.25.2-cp39-cp39-win_amd64.whl
bbe051cbd5f8661dd054277f0b0f0c3d numpy-1.25.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
3f68e6b4af6922989dc0133e37db34ee numpy-1.25.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
fc89421b79e8800240999d3a1d06a4d2 numpy-1.25.2-pp39-pypy39_pp73-win_amd64.whl
cee1996a80032d47bdf1d9d17249c34e numpy-1.25.2.tar.gz

SHA256

db3ccc4e37a6873045580d413fe79b68e47a681af8db2e046f1dacfa11f86eb3 numpy-1.25.2-cp310-cp310-macosx_10_9_x86_64.whl
90319e4f002795ccfc9050110bbbaa16c944b1c37c0baeea43c5fb881693ae1f numpy-1.25.2-cp310-cp310-macosx_11_0_arm64.whl
dfe4a913e29b418d096e696ddd422d8a5d13ffba4ea91f9f60440a3b759b0187 numpy-1.25.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
f08f2e037bba04e707eebf4bc934f1972a315c883a9e0ebfa8a7756eabf9e357 numpy-1.25.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
bec1e7213c7cb00d67093247f8c4db156fd03075f49876957dca4711306d39c9 numpy-1.25.2-cp310-cp310-musllinux_1_1_x86_64.whl
7dc869c0c75988e1c693d0e2d5b26034644399dd929bc049db55395b1379e044 numpy-1.25.2-cp310-cp310-win32.whl
834b386f2b8210dca38c71a6e0f4fd6922f7d3fcff935dbe3a570945acb1b545 numpy-1.25.2-cp310-cp310-win_amd64.whl
c5462d19336db4560041517dbb7759c21d181a67cb01b36ca109b2ae37d32418 numpy-1.25.2-cp311-cp311-macosx_10_9_x86_64.whl
c5652ea24d33585ea39eb6a6a15dac87a1206a692719ff45d53c5282e66d4a8f numpy-1.25.2-cp311-cp311-macosx_11_0_arm64.whl
0d60fbae8e0019865fc4784745814cff1c421df5afee233db6d88ab4f14655a2 numpy-1.25.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
60e7f0f7f6d0eee8364b9a6304c2845b9c491ac706048c7e8cf47b83123b8dbf numpy-1.25.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
bb33d5a1cf360304754913a350edda36d5b8c5331a8237268c48f91253c3a364 numpy-1.25.2-cp311-cp311-musllinux_1_1_x86_64.whl
5883c06bb92f2e6c8181df7b39971a5fb436288db58b5a1c3967702d4278691d numpy-1.25.2-cp311-cp311-win32.whl
5c97325a0ba6f9d041feb9390924614b60b99209a71a69c876f71052521d42a4 numpy-1.25.2-cp311-cp311-win_amd64.whl
b79e513d7aac42ae918db3ad1341a015488530d0bb2a6abcbdd10a3a829ccfd3 numpy-1.25.2-cp39-cp39-macosx_10_9_x86_64.whl
eb942bfb6f84df5ce05dbf4b46673ffed0d3da59f13635ea9b926af3deb76926 numpy-1.25.2-cp39-cp39-macosx_11_0_arm64.whl
3e0746410e73384e70d286f93abf2520035250aad8c5714240b0492a7302fdca numpy-1.25.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
d7806500e4f5bdd04095e849265e55de20d8cc4b661b038957354327f6d9b295 numpy-1.25.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
8b77775f4b7df768967a7c8b3567e309f617dd5e99aeb886fa14dc1a0791141f numpy-1.25.2-cp39-cp39-musllinux_1_1_x86_64.whl
2792d23d62ec51e50ce4d4b7d73de8f67a2fd3ea710dcbc8563a51a03fb07b01 numpy-1.25.2-cp39-cp39-win32.whl
76b4115d42a7dfc5d485d358728cdd8719be33cc5ec6ec08632a5d6fca2ed380 numpy-1.25.2-cp39-cp39-win_amd64.whl
1a1329e26f46230bf77b02cc19e900db9b52f398d6722ca853349a782d4cff55 numpy-1.25.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
4c3abc71e8b6edba80a01a52e66d83c5d14433cbcd26a40c329ec7ed09f37901 numpy-1.25.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
1b9735c27cea5d995496f46a8b1cd7b408b3f34b6d50459d9ac8fe3a20cc17bf numpy-1.25.2-pp39-pypy39_pp73-win_amd64.whl
fd608e19c8d7c55021dffd43bfe5492fab8cc105cc8986f813f8c3c048b38760 numpy-1.25.2.tar.gz

1.25.1

discovered after the 1.25.0 release. The Python versions supported by
this release are 3.9-3.11.

Contributors

A total of 10 people contributed to this release. People with a \"+\" by
their names contributed a patch for the first time.

- Andrew Nelson
- Charles Harris
- Developer-Ecosystem-Engineering
- Hood Chatham
- Nathan Goldbaum
- Rohit Goswami
- Sebastian Berg
- Tim Paine +
- dependabot\[bot\]
- matoro +

Pull requests merged

A total of 14 pull requests were merged for this release.

- [23968](https://github.com/numpy/numpy/pull/23968): MAINT: prepare 1.25.x for further development
- [24036](https://github.com/numpy/numpy/pull/24036): BLD: Port long double identification to C for meson
- [24037](https://github.com/numpy/numpy/pull/24037): BUG: Fix reduction `return NULL` to be `goto fail`
- [24038](https://github.com/numpy/numpy/pull/24038): BUG: Avoid undefined behavior in array.astype()
- [24039](https://github.com/numpy/numpy/pull/24039): BUG: Ensure `__array_ufunc__` works without any kwargs passed
- [24117](https://github.com/numpy/numpy/pull/24117): MAINT: Pin urllib3 to avoid anaconda-client bug.
- [24118](https://github.com/numpy/numpy/pull/24118): TST: Pin pydantic\<2 in Pyodide workflow
- [24119](https://github.com/numpy/numpy/pull/24119): MAINT: Bump pypa/cibuildwheel from 2.13.0 to 2.13.1
- [24120](https://github.com/numpy/numpy/pull/24120): MAINT: Bump actions/checkout from 3.5.2 to 3.5.3
- [24122](https://github.com/numpy/numpy/pull/24122): BUG: Multiply or Divides using SIMD without a full vector can\...
- [24127](https://github.com/numpy/numpy/pull/24127): MAINT: testing for IS_MUSL closes #24074
- [24128](https://github.com/numpy/numpy/pull/24128): BUG: Only replace dtype temporarily if dimensions changed
- [24129](https://github.com/numpy/numpy/pull/24129): MAINT: Bump actions/setup-node from 3.6.0 to 3.7.0
- [24134](https://github.com/numpy/numpy/pull/24134): BUG: Fix private procedures in f2py modules

Checksums

MD5

d09d98643db31e892fad11b8c2b7af22 numpy-1.25.1-cp310-cp310-macosx_10_9_x86_64.whl
d5b8d3b0424e2af41018f35a087c4500 numpy-1.25.1-cp310-cp310-macosx_11_0_arm64.whl
1007893b1a8bfd97d445a63d29d33642 numpy-1.25.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
6a62d7a6cee310b41dc872aa7f3d7e8b numpy-1.25.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e81f6264aecfa2269c5d29d10c362cbc numpy-1.25.1-cp310-cp310-musllinux_1_1_x86_64.whl
ab8ecd125ca86eac0b3ada67ab66dad6 numpy-1.25.1-cp310-cp310-win32.whl
5466bebeaafcc3d6e1b98858d77ff945 numpy-1.25.1-cp310-cp310-win_amd64.whl
f31b059256ae09b7b83df63f52d8371e numpy-1.25.1-cp311-cp311-macosx_10_9_x86_64.whl
099f74d654888869704469c321af845d numpy-1.25.1-cp311-cp311-macosx_11_0_arm64.whl
20d04dccd2bfca5cfd88780d1dc9a3f8 numpy-1.25.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
61dfd7c00638e83a7af59b86615ee9d2 numpy-1.25.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
4eb459c3d9479c4da2fdf20e4c4085d0 numpy-1.25.1-cp311-cp311-musllinux_1_1_x86_64.whl
5e84e797866c68ba65fa89a4bf4ba8ce numpy-1.25.1-cp311-cp311-win32.whl
87bb1633b2e8029dbfa1e59f7ab22625 numpy-1.25.1-cp311-cp311-win_amd64.whl
3fcf2eb5970d848a26abdff1b10228e7 numpy-1.25.1-cp39-cp39-macosx_10_9_x86_64.whl
d71e1cbe18fe05944219e5a5be1796bf numpy-1.25.1-cp39-cp39-macosx_11_0_arm64.whl
5b457e10834c991bca84aae7eaa49f34 numpy-1.25.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
5cbb4c2f2892fafdf6f34fcb37c9e743 numpy-1.25.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
7d9d1ae23cf5420652088bfe8e048d89 numpy-1.25.1-cp39-cp39-musllinux_1_1_x86_64.whl
7e5bed491b85f0d7c718d6809f9b3ed2 numpy-1.25.1-cp39-cp39-win32.whl
838e97b751bebadf47e2196b2c88ffa2 numpy-1.25.1-cp39-cp39-win_amd64.whl
9ba95d8d6004d9659d7728fe93f67be9 numpy-1.25.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
fbccb20254a2dc85bdec549a03b8eb56 numpy-1.25.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
95e36689e6dd078caf11e7e2a2d5f5f1 numpy-1.25.1-pp39-pypy39_pp73-win_amd64.whl
768d0ebf15e2242f4c7ca7565bb5dd3e numpy-1.25.1.tar.gz

SHA256

77d339465dff3eb33c701430bcb9c325b60354698340229e1dff97745e6b3efa numpy-1.25.1-cp310-cp310-macosx_10_9_x86_64.whl
d736b75c3f2cb96843a5c7f8d8ccc414768d34b0a75f466c05f3a739b406f10b numpy-1.25.1-cp310-cp310-macosx_11_0_arm64.whl
4a90725800caeaa160732d6b31f3f843ebd45d6b5f3eec9e8cc287e30f2805bf numpy-1.25.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
6c6c9261d21e617c6dc5eacba35cb68ec36bb72adcff0dee63f8fbc899362588 numpy-1.25.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
0def91f8af6ec4bb94c370e38c575855bf1d0be8a8fbfba42ef9c073faf2cf19 numpy-1.25.1-cp310-cp310-musllinux_1_1_x86_64.whl
fd67b306320dcadea700a8f79b9e671e607f8696e98ec255915c0c6d6b818503 numpy-1.25.1-cp310-cp310-win32.whl
c1516db588987450b85595586605742879e50dcce923e8973f79529651545b57 numpy-1.25.1-cp310-cp310-win_amd64.whl
6b82655dd8efeea69dbf85d00fca40013d7f503212bc5259056244961268b66e numpy-1.25.1-cp311-cp311-macosx_10_9_x86_64.whl
e8f6049c4878cb16960fbbfb22105e49d13d752d4d8371b55110941fb3b17800 numpy-1.25.1-cp311-cp311-macosx_11_0_arm64.whl
41a56b70e8139884eccb2f733c2f7378af06c82304959e174f8e7370af112e09 numpy-1.25.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
d5154b1a25ec796b1aee12ac1b22f414f94752c5f94832f14d8d6c9ac40bcca6 numpy-1.25.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
38eb6548bb91c421261b4805dc44def9ca1a6eef6444ce35ad1669c0f1a3fc5d numpy-1.25.1-cp311-cp311-musllinux_1_1_x86_64.whl
791f409064d0a69dd20579345d852c59822c6aa087f23b07b1b4e28ff5880fcb numpy-1.25.1-cp311-cp311-win32.whl
c40571fe966393b212689aa17e32ed905924120737194b5d5c1b20b9ed0fb171 numpy-1.25.1-cp311-cp311-win_amd64.whl
3d7abcdd85aea3e6cdddb59af2350c7ab1ed764397f8eec97a038ad244d2d105 numpy-1.25.1-cp39-cp39-macosx_10_9_x86_64.whl
1a180429394f81c7933634ae49b37b472d343cccb5bb0c4a575ac8bbc433722f numpy-1.25.1-cp39-cp39-macosx_11_0_arm64.whl
d412c1697c3853c6fc3cb9751b4915859c7afe6a277c2bf00acf287d56c4e625 numpy-1.25.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
20e1266411120a4f16fad8efa8e0454d21d00b8c7cee5b5ccad7565d95eb42dd numpy-1.25.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
f76aebc3358ade9eacf9bc2bb8ae589863a4f911611694103af05346637df1b7 numpy-1.25.1-cp39-cp39-musllinux_1_1_x86_64.whl
247d3ffdd7775bdf191f848be8d49100495114c82c2bd134e8d5d075fb386a1c numpy-1.25.1-cp39-cp39-win32.whl
1d5d3c68e443c90b38fdf8ef40e60e2538a27548b39b12b73132456847f4b631 numpy-1.25.1-cp39-cp39-win_amd64.whl
35a9527c977b924042170a0887de727cd84ff179e478481404c5dc66b4170009 numpy-1.25.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
0d3fe3dd0506a28493d82dc3cf254be8cd0d26f4008a417385cbf1ae95b54004 numpy-1.25.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
012097b5b0d00a11070e8f2e261128c44157a8689f7dedcf35576e525893f4fe numpy-1.25.1-pp39-pypy39_pp73-win_amd64.whl
9a3a9f3a61480cc086117b426a8bd86869c213fc4072e606f01c4e4b66eb92bf numpy-1.25.1.tar.gz

1.25.0

The NumPy 1.25.0 release continues the ongoing work to improve the
handling and promotion of dtypes, increase the execution speed, and
clarify the documentation. There has also been work to prepare for the
future NumPy 2.0.0 release, resulting in a large number of new and
expired deprecation. Highlights are:

- Support for MUSL, there are now MUSL wheels.
- Support the Fujitsu C/C++ compiler.
- Object arrays are now supported in einsum
- Support for inplace matrix multiplication (`=`).

We will be releasing a NumPy 1.26 when Python 3.12 comes out. That is
needed because distutils has been dropped by Python 3.12 and we will be
switching to using meson for future builds. The next mainline release
will be NumPy 2.0.0. We plan that the 2.0 series will still support
downstream projects built against earlier versions of NumPy.

The Python versions supported in this release are 3.9-3.11.

Deprecations

- `np.core.MachAr` is deprecated. It is private API. In names defined
in `np.core` should generally be considered private.

([gh-22638](https://github.com/numpy/numpy/pull/22638))

- `np.finfo(None)` is deprecated.

([gh-23011](https://github.com/numpy/numpy/pull/23011))

- `np.round_` is deprecated. Use `np.round` instead.

([gh-23302](https://github.com/numpy/numpy/pull/23302))

- `np.product` is deprecated. Use `np.prod` instead.

([gh-23314](https://github.com/numpy/numpy/pull/23314))

- `np.cumproduct` is deprecated. Use `np.cumprod` instead.

([gh-23314](https://github.com/numpy/numpy/pull/23314))

- `np.sometrue` is deprecated. Use `np.any` instead.

([gh-23314](https://github.com/numpy/numpy/pull/23314))

- `np.alltrue` is deprecated. Use `np.all` instead.

([gh-23314](https://github.com/numpy/numpy/pull/23314))

- Only ndim-0 arrays are treated as scalars. NumPy used to treat all
arrays of size 1 (e.g., `np.array([3.14])`) as scalars. In the
future, this will be limited to arrays of ndim 0 (e.g.,
`np.array(3.14)`). The following expressions will report a
deprecation warning:

python
a = np.array([3.14])
float(a) better: a[0] to get the numpy.float or a.item()

b = np.array([[3.14]])
c = numpy.random.rand(10)
c[0] = b better: c[0] = b[0, 0]


([gh-10615](https://github.com/numpy/numpy/pull/10615))

- `numpy.find_common_type` is now deprecated and its use
should be replaced with either `numpy.result_type` or
`numpy.promote_types`. Most users leave the second
`scalar_types` argument to `find_common_type` as `[]` in which case
`np.result_type` and `np.promote_types` are both faster and more
robust. When not using `scalar_types` the main difference is that
the replacement intentionally converts non-native byte-order to
native byte order. Further, `find_common_type` returns `object`
dtype rather than failing promotion. This leads to differences when
the inputs are not all numeric. Importantly, this also happens for
e.g. timedelta/datetime for which NumPy promotion rules are
currently sometimes surprising.

When the `scalar_types` argument is not `[]` things are more
complicated. In most cases, using `np.result_type` and passing the
Python values `0`, `0.0`, or `0j` has the same result as using
`int`, `float`, or `complex` in `scalar_types`.

When `scalar_types` is constructed, `np.result_type` is the correct
replacement and it may be passed scalar values like
`np.float32(0.0)`. Passing values other than 0, may lead to
value-inspecting behavior (which `np.find_common_type` never used
and NEP 50 may change in the future). The main possible change in
behavior in this case, is when the array types are signed integers
and scalar types are unsigned.

If you are unsure about how to replace a use of `scalar_types` or
when non-numeric dtypes are likely, please do not hesitate to open a
NumPy issue to ask for help.

([gh-22539](https://github.com/numpy/numpy/pull/22539))

Expired deprecations

- `np.core.machar` and `np.finfo.machar` have been removed.

([gh-22638](https://github.com/numpy/numpy/pull/22638))

- `+arr` will now raise an error when the dtype is not numeric (and
positive is undefined).

([gh-22998](https://github.com/numpy/numpy/pull/22998))

- A sequence must now be passed into the stacking family of functions
(`stack`, `vstack`, `hstack`, `dstack` and `column_stack`).

([gh-23019](https://github.com/numpy/numpy/pull/23019))

- `np.clip` now defaults to same-kind casting. Falling back to unsafe
casting was deprecated in NumPy 1.17.

([gh-23403](https://github.com/numpy/numpy/pull/23403))

- `np.clip` will now propagate `np.nan` values passed as `min` or
`max`. Previously, a scalar NaN was usually ignored. This was
deprecated in NumPy 1.17.

([gh-23403](https://github.com/numpy/numpy/pull/23403))

- The `np.dual` submodule has been removed.

([gh-23480](https://github.com/numpy/numpy/pull/23480))

- NumPy now always ignores sequence behavior for an array-like
(defining one of the array protocols). (Deprecation started NumPy
1.20)

([gh-23660](https://github.com/numpy/numpy/pull/23660))

- The niche `FutureWarning` when casting to a subarray dtype in
`astype` or the array creation functions such as `asarray` is now
finalized. The behavior is now always the same as if the subarray
dtype was wrapped into a single field (which was the workaround,
previously). (FutureWarning since NumPy 1.20)

([gh-23666](https://github.com/numpy/numpy/pull/23666))

- `==` and `!=` warnings have been finalized. The `==` and `!=`
operators on arrays now always:

- raise errors that occur during comparisons such as when the
arrays have incompatible shapes
(`np.array([1, 2]) == np.array([1, 2, 3])`).

- return an array of all `True` or all `False` when values are
fundamentally not comparable (e.g. have different dtypes). An
example is `np.array(["a"]) == np.array([1])`.

This mimics the Python behavior of returning `False` and `True`
when comparing incompatible types like `"a" == 1` and
`"a" != 1`. For a long time these gave `DeprecationWarning` or
`FutureWarning`.

([gh-22707](https://github.com/numpy/numpy/pull/22707))

- Nose support has been removed. NumPy switched to using pytest in
2018 and nose has been unmaintained for many years. We have kept
NumPy\'s nose support to avoid breaking downstream projects who
might have been using it and not yet switched to pytest or some
other testing framework. With the arrival of Python 3.12, unpatched
nose will raise an error. It is time to move on.

*Decorators removed*:

- raises
- slow
- setastest
- skipif
- knownfailif
- deprecated
- parametrize
- \_needs_refcount

These are not to be confused with pytest versions with similar
names, e.g., pytest.mark.slow, pytest.mark.skipif,
pytest.mark.parametrize.

*Functions removed*:

- Tester
- import_nose
- run_module_suite

([gh-23041](https://github.com/numpy/numpy/pull/23041))

- The `numpy.testing.utils` shim has been removed. Importing from the
`numpy.testing.utils` shim has been deprecated since 2019, the shim
has now been removed. All imports should be made directly from
`numpy.testing`.

([gh-23060](https://github.com/numpy/numpy/pull/23060))

- The environment variable to disable dispatching has been removed.
Support for the `NUMPY_EXPERIMENTAL_ARRAY_FUNCTION` environment
variable has been removed. This variable disabled dispatching with
`__array_function__`.

([gh-23376](https://github.com/numpy/numpy/pull/23376))

- Support for `y=` as an alias of `out=` has been removed. The `fix`,
`isposinf` and `isneginf` functions allowed using `y=` as a
(deprecated) alias for `out=`. This is no longer supported.

([gh-23376](https://github.com/numpy/numpy/pull/23376))

Compatibility notes

- The `busday_count` method now correctly handles cases where the
`begindates` is later in time than the `enddates`. Previously, the
`enddates` was included, even though the documentation states it is
always excluded.

([gh-23229](https://github.com/numpy/numpy/pull/23229))

- When comparing datetimes and timedelta using `np.equal` or
`np.not_equal` numpy previously allowed the comparison with
`casting="unsafe"`. This operation now fails. Forcing the output
dtype using the `dtype` kwarg can make the operation succeed, but we
do not recommend it.

([gh-22707](https://github.com/numpy/numpy/pull/22707))

- When loading data from a file handle using `np.load`, if the handle
is at the end of file, as can happen when reading multiple arrays by
calling `np.load` repeatedly, numpy previously raised `ValueError`
if `allow_pickle=False`, and `OSError` if `allow_pickle=True`. Now
it raises `EOFError` instead, in both cases.

([gh-23105](https://github.com/numpy/numpy/pull/23105))

`np.pad` with `mode=wrap` pads with strict multiples of original data

Code based on earlier version of `pad` that uses `mode="wrap"` will
return different results when the padding size is larger than initial
array.

`np.pad` with `mode=wrap` now always fills the space with strict
multiples of original data even if the padding size is larger than the
initial array.

([gh-22575](https://github.com/numpy/numpy/pull/22575))

Cython `long_t` and `ulong_t` removed

`long_t` and `ulong_t` were aliases for `longlong_t` and `ulonglong_t`
and confusing (a remainder from of Python 2). This change may lead to
the errors:

'long_t' is not a type identifier
'ulong_t' is not a type identifier

We recommend use of bit-sized types such as `cnp.int64_t` or the use of
`cnp.intp_t` which is 32 bits on 32 bit systems and 64 bits on 64 bit
systems (this is most compatible with indexing). If C `long` is desired,
use plain `long` or `npy_long`. `cnp.int_t` is also `long` (NumPy\'s
default integer). However, `long` is 32 bit on 64 bit windows and we may
wish to adjust this even in NumPy. (Please do not hesitate to contact
NumPy developers if you are curious about this.)

([gh-22637](https://github.com/numpy/numpy/pull/22637))

Changed error message and type for bad `axes` argument to `ufunc`

The error message and type when a wrong `axes` value is passed to
`ufunc(..., axes=[...])` has changed. The message is now more
indicative of the problem, and if the value is mismatched an
`AxisError` will be raised. A `TypeError` will still be raised for
invalidinput types.

([gh-22675](https://github.com/numpy/numpy/pull/22675))

Array-likes that define `__array_ufunc__` can now override ufuncs if used as `where`

If the `where` keyword argument of a `numpy.ufunc`{.interpreted-text
role="class"} is a subclass of `numpy.ndarray`{.interpreted-text
role="class"} or is a duck type that defines
`numpy.class.__array_ufunc__`{.interpreted-text role="func"} it can
override the behavior of the ufunc using the same mechanism as the input
and output arguments. Note that for this to work properly, the
`where.__array_ufunc__` implementation will have to unwrap the `where`
argument to pass it into the default implementation of the `ufunc` or,
for `numpy.ndarray`{.interpreted-text role="class"} subclasses before
using `super().__array_ufunc__`.

([gh-23240](https://github.com/numpy/numpy/pull/23240))

Compiling against the NumPy C API is now backwards compatible by default

NumPy now defaults to exposing a backwards compatible subset of the
C-API. This makes the use of `oldest-supported-numpy` unnecessary.
Libraries can override the default minimal version to be compatible with
using:

define NPY_TARGET_VERSION NPY_1_22_API_VERSION

before including NumPy or by passing the equivalent `-D` option to the
compiler. The NumPy 1.25 default is `NPY_1_19_API_VERSION`. Because the

Page 6 of 24

© 2025 Safety CLI Cybersecurity Inc. All Rights Reserved.