Numpy

Latest version: v2.2.1

Safety actively analyzes 693883 Python packages for vulnerabilities to keep your Python projects secure.

Scan your dependencies

Page 19 of 23

1.15.2

Not secure
==========================

This is a bugfix release for bugs and regressions reported following the 1.15.1
release.

* The matrix PendingDeprecationWarning is now suppressed in pytest 3.8.
* The new cached allocations machinery has been fixed to be thread safe.
* The boolean indexing of subclasses now works correctly.
* A small memory leak in PyArray_AdaptFlexibleDType has been fixed.

The Python versions supported by this release are 2.7, 3.4-3.7. The wheels are
linked with OpenBLAS v0.3.0, which should fix some of the linalg problems
reported for NumPy 1.14.

Compatibility Note
==================

The NumPy 1.15.x OS X wheels released on PyPI no longer contain 32-bit
binaries. That will also be the case in future releases. See
`11625 <https://github.com/numpy/numpy/issues/11625>`__ for the related
discussion. Those needing 32-bit support should look elsewhere or build
from source.

Contributors
============

A total of 4 people contributed to this release. People with a "+" by their
names contributed a patch for the first time.

* Charles Harris
* Julian Taylor
* Marten van Kerkwijk
* Matti Picus

Pull requests merged
====================

A total of 4 pull requests were merged for this release.

* 11902: BUG: Fix matrix PendingDeprecationWarning suppression for pytest...
* 11981: BUG: fix cached allocations without the GIL for 1.15.x
* 11982: BUG: fix refcount leak in PyArray_AdaptFlexibleDType
* 11992: BUG: Ensure boolean indexing of subclasses sets base correctly.

Checksums
=========

MD5
---

6935d733421b32533eebc7d9a5b1bde9 numpy-1.15.2-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
d80b588176313013d50a513d1b3d8cb8 numpy-1.15.2-cp27-cp27m-manylinux1_i686.whl
34b93ec0335f8dd028137bd3c1434800 numpy-1.15.2-cp27-cp27m-manylinux1_x86_64.whl
008df3819bf77abdb0546d96f660bec0 numpy-1.15.2-cp27-cp27mu-manylinux1_i686.whl
48530fca78a9abdfa34c2b19c2d45600 numpy-1.15.2-cp27-cp27mu-manylinux1_x86_64.whl
3b6032a8100df348ab0c17545dd7b72d numpy-1.15.2-cp27-none-win32.whl
2e1c8985c10e813a7b8de54f18f99921 numpy-1.15.2-cp27-none-win_amd64.whl
2e9bab1f2bb399945cd660062c1d63ac numpy-1.15.2-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
d774936507ac59e0ed8cd6b9592449fe numpy-1.15.2-cp34-cp34m-manylinux1_i686.whl
5f0b7cb501e3e459f043725330dd19f8 numpy-1.15.2-cp34-cp34m-manylinux1_x86_64.whl
5c54aa9f3825af973ed7c4c38bf499bc numpy-1.15.2-cp34-none-win32.whl
1f479fa8f54da6726aa9729d296d31e7 numpy-1.15.2-cp34-none-win_amd64.whl
e7100118df61980e784ac71a9eafe410 numpy-1.15.2-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
f55e7f845d9f18a6c3cf8a0dc4515226 numpy-1.15.2-cp35-cp35m-manylinux1_i686.whl
de9a79dd7abcaa099b34234d7ee43903 numpy-1.15.2-cp35-cp35m-manylinux1_x86_64.whl
48e7213f7029a38e6a63e1e92c50c15d numpy-1.15.2-cp35-none-win32.whl
3086e690e4eef8b10523349e93c34dcb numpy-1.15.2-cp35-none-win_amd64.whl
9e56f996c325345a5a3076a9f5d0abfe numpy-1.15.2-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
e7835fb3d56d4bbcd8d47120df709cbf numpy-1.15.2-cp36-cp36m-manylinux1_i686.whl
5151de4cfdec3623d4061d0e7a8677bb numpy-1.15.2-cp36-cp36m-manylinux1_x86_64.whl
7f911b24989f8d6aa0e6617fea6e8c10 numpy-1.15.2-cp36-none-win32.whl
948dbd9c23ac7948485d5a07a48a27eb numpy-1.15.2-cp36-none-win_amd64.whl
921214854ed05d5e0c294b2fcc345d37 numpy-1.15.2-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
38a69cfe0d954d05054a73e5f56b1533 numpy-1.15.2-cp37-cp37m-manylinux1_i686.whl
4ce844e4452baf8c25025e53e59d91ff numpy-1.15.2-cp37-cp37m-manylinux1_x86_64.whl
2de0167b4297d1732e25c9288bbe3add numpy-1.15.2-cp37-none-win32.whl
de26b3d5573b0c9a6cd38eeb4e8d865e numpy-1.15.2-cp37-none-win_amd64.whl
d40b15478148a48ec324327578de4583 numpy-1.15.2.tar.gz
5a55a994eca6095b1e82d44600217ece numpy-1.15.2.zip

SHA256
------

b5ff7dae352fd9e1edddad1348698e9fea14064460a7e39121ef9526745802e6 numpy-1.15.2-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
1b1cf8f7300cf7b11ddb4250b3898c711a6187df05341b5b7153db23ffe5d498 numpy-1.15.2-cp27-cp27m-manylinux1_i686.whl
ec8bf53ef7c92c99340972519adbe122e82c81d5b87cbd955c74ba8a8cd2a4ad numpy-1.15.2-cp27-cp27m-manylinux1_x86_64.whl
733dc5d47e71236263837825b69c975bc08728ae638452b34aeb1d6fa347b780 numpy-1.15.2-cp27-cp27mu-manylinux1_i686.whl
82f00a1e2695a0e5b89879aa25ea614530b8ebdca6d49d4834843d498e8a5e92 numpy-1.15.2-cp27-cp27mu-manylinux1_x86_64.whl
63f833a7c622e9082df3cbaf03b4fd92d7e0c11e2f9d87cb57dbf0e84441964b numpy-1.15.2-cp27-none-win32.whl
c898f9cca806102fcacb6309899743aa39efb2ad2a302f4c319f54db9f05cd84 numpy-1.15.2-cp27-none-win_amd64.whl
f2e55726a9ee2e8129d6ce6abb466304868051bcc7a09d652b3b07cd86e801a2 numpy-1.15.2-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
981224224bbf44d95278eb37996162e8beb6f144d2719b144e86dfe2fce6c510 numpy-1.15.2-cp34-cp34m-manylinux1_i686.whl
f592fd7fe1f20b5041928cce1330937eca62f9058cb41e69c2c2d83cffc0d1e3 numpy-1.15.2-cp34-cp34m-manylinux1_x86_64.whl
9ad36dbfdbb0cba90a08e7343fadf86f43cf6d87450e8d2b5d71d7c7202907e4 numpy-1.15.2-cp34-none-win32.whl
d1569013e8cc8f37e9769d19effdd85e404c976cd0ca28a94e3ddc026c216ae8 numpy-1.15.2-cp34-none-win_amd64.whl
8d2cfb0aef7ec8759736cce26946efa084cdf49797712333539ef7d135e0295e numpy-1.15.2-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
f4dee74f2626c783a3804df9191e9008946a104d5a284e52427a53ff576423cb numpy-1.15.2-cp35-cp35m-manylinux1_i686.whl
497d7c86df4f85eb03b7f58a7dd0f8b948b1f582e77629341f624ba301b4d204 numpy-1.15.2-cp35-cp35m-manylinux1_x86_64.whl
866bf72b9c3bfabe4476d866c70ee1714ad3e2f7b7048bb934892335e7b6b1f7 numpy-1.15.2-cp35-none-win32.whl
71bf3b7ca15b1967bba3a1ef6a8e87286382a8b5e46ac76b42a02fe787c5237d numpy-1.15.2-cp35-none-win_amd64.whl
4e28e66cf80c09a628ae680efeb0aa9a066eb4bb7db2a5669024c5b034891576 numpy-1.15.2-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
8aeac8b08f4b8c52129518efcd93706bb6d506ccd17830b67d18d0227cf32d9e numpy-1.15.2-cp36-cp36m-manylinux1_i686.whl
a251570bb3cb04f1627f23c234ad09af0e54fc8194e026cf46178f2e5748d647 numpy-1.15.2-cp36-cp36m-manylinux1_x86_64.whl
5b4dfb6551eaeaf532054e2c6ef4b19c449c2e3a709ebdde6392acb1372ecabc numpy-1.15.2-cp36-none-win32.whl
981daff58fa3985a26daa4faa2b726c4e7a1d45178100125c0e1fdaf2ac64978 numpy-1.15.2-cp36-none-win_amd64.whl
dca261e85fe0d34b2c242ecb31c9ab693509af2cf955d9caf01ee3ef3669abd0 numpy-1.15.2-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
ffab5b80bba8c86251291b8ce2e6c99a61446459d4c6637f5d5cc8c9ce37c972 numpy-1.15.2-cp37-cp37m-manylinux1_i686.whl
58be95faf0ca2d886b5b337e7cba2923e3ad1224b806a91223ea39f1e0c77d03 numpy-1.15.2-cp37-cp37m-manylinux1_x86_64.whl
3fde172e28c899580d32dc21cb6d4a1225d62362f61050b654545c662eac215a numpy-1.15.2-cp37-none-win32.whl
cf4b970042ce148ad8dce4369c02a4078b382dadf20067ce2629c239d76460d1 numpy-1.15.2-cp37-none-win_amd64.whl
6a1e96568332fd8974b355a422b397288e214746715a7fa6abc10b34d06bad76 numpy-1.15.2.tar.gz
27a0d018f608a3fe34ac5e2b876f4c23c47e38295c47dd0775cc294cd2614bc1 numpy-1.15.2.zip

1.15.1

Not secure
==========================

This is a bugfix release for bugs and regressions reported following the 1.15.0
release.

* The annoying but harmless RuntimeWarning that "numpy.dtype size changed" has
been suppressed. The long standing suppression was lost in the transition to
pytest.
* The update to Cython 0.28.3 exposed a problematic use of a gcc attribute used
to prefer code size over speed in module initialization, possibly resulting in
incorrect compiled code. This has been fixed in latest Cython but has been
disabled here for safety.
* Support for big-endian and ARMv8 architectures has been improved.

The Python versions supported by this release are 2.7, 3.4-3.7. The wheels are
linked with OpenBLAS v0.3.0, which should fix some of the linalg problems
reported for NumPy 1.14.


Compatibility Note
==================

The NumPy 1.15.x OS X wheels released on PyPI no longer contain 32-bit
binaries. That will also be the case in future releases. See
`11625 <https://github.com/numpy/numpy/issues/11625>`__ for the related
discussion. Those needing 32-bit support should look elsewhere or build
from source.


Contributors
============

A total of 7 people contributed to this release. People with a "+" by their
names contributed a patch for the first time.

* Charles Harris
* Chris Billington
* Elliott Sales de Andrade +
* Eric Wieser
* Jeremy Manning +
* Matti Picus
* Ralf Gommers

Pull requests merged
====================

A total of 24 pull requests were merged for this release.

* 11647: MAINT: Filter Cython warnings in ``__init__.py``
* 11648: BUG: Fix doc source links to unwrap decorators
* 11657: BUG: Ensure singleton dimensions are not dropped when converting...
* 11661: BUG: Warn on Nan in minimum,maximum for scalars
* 11665: BUG: cython sometimes emits invalid gcc attribute
* 11682: BUG: Fix regression in void_getitem
* 11698: BUG: Make matrix_power again work for object arrays.
* 11700: BUG: Add missing PyErr_NoMemory after failing malloc
* 11719: BUG: Fix undefined functions on big-endian systems.
* 11720: MAINT: Make einsum optimize default to False.
* 11746: BUG: Fix regression in loadtxt for bz2 text files in Python 2.
* 11757: BUG: Revert use of `console_scripts`.
* 11758: BUG: Fix Fortran kind detection for aarch64 & s390x.
* 11759: BUG: Fix printing of longdouble on ppc64le.
* 11760: BUG: Fixes for unicode field names in Python 2
* 11761: BUG: Increase required cython version on python 3.7
* 11763: BUG: check return value of _buffer_format_string
* 11775: MAINT: Make assert_array_compare more generic.
* 11776: TST: Fix urlopen stubbing.
* 11777: BUG: Fix regression in intersect1d.
* 11779: BUG: Fix test sensitive to platform byte order.
* 11781: BUG: Avoid signed overflow in histogram
* 11785: BUG: Fix pickle and memoryview for datetime64, timedelta64 scalars
* 11786: BUG: Deprecation triggers segfault

Checksums
=========

MD5
---

8e894e6873420259fa13bc685ca922a7 numpy-1.15.1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
75154de03468c18c8b8d337b75d29bad numpy-1.15.1-cp27-cp27m-manylinux1_i686.whl
50e3db64b9be2d399f7035ea71e16092 numpy-1.15.1-cp27-cp27m-manylinux1_x86_64.whl
35e15be82a5fc807572c7723171902b4 numpy-1.15.1-cp27-cp27mu-manylinux1_i686.whl
315cc1fb777c5251f27e49075b4d13fb numpy-1.15.1-cp27-cp27mu-manylinux1_x86_64.whl
7b6fbdca75eeb0a0c28c09bfaf2e17c2 numpy-1.15.1-cp27-none-win32.whl
8bc75bc94bd189a4cc3ded0f0e9b1353 numpy-1.15.1-cp27-none-win_amd64.whl
3c8950f10241185376ae6dd425209543 numpy-1.15.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
3e488ea8de86391335a56e7e2b2c47de numpy-1.15.1-cp34-cp34m-manylinux1_i686.whl
0edee0d56ea5670b93b47410e66fa337 numpy-1.15.1-cp34-cp34m-manylinux1_x86_64.whl
67670224f931699c3836a1c9e4e8230b numpy-1.15.1-cp34-none-win32.whl
5b9e984e562aac63b7549e456bd89dfe numpy-1.15.1-cp34-none-win_amd64.whl
063f6a86f0713211b69050545e7c6c2c numpy-1.15.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
4afe4fd3ea108a967bd0b9425305b979 numpy-1.15.1-cp35-cp35m-manylinux1_i686.whl
e1ebc2bc6d0947159b33f208e844251a numpy-1.15.1-cp35-cp35m-manylinux1_x86_64.whl
910aab0be682f29a182239e4bd4631cf numpy-1.15.1-cp35-none-win32.whl
bfaac6c5f4e8ab65cd76b010ea5c5dfe numpy-1.15.1-cp35-none-win_amd64.whl
ce48f8b807c9ac8b7d00301584ab7976 numpy-1.15.1-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
d7d0c86acb89a86894811b8a792fba89 numpy-1.15.1-cp36-cp36m-manylinux1_i686.whl
3cd21facc099e72ab56a957978207c8c numpy-1.15.1-cp36-cp36m-manylinux1_x86_64.whl
04471e530164dd25c7a9c1309712cc64 numpy-1.15.1-cp36-none-win32.whl
013ea5fbb8a953c2112acaa591c675a8 numpy-1.15.1-cp36-none-win_amd64.whl
3fdd39812b8fe172824d2cc52cb807c4 numpy-1.15.1-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
381bd5ea598b17333264b1cbc9f62fac numpy-1.15.1-cp37-cp37m-manylinux1_i686.whl
e600bd09303c622ff4d16ed63fefb205 numpy-1.15.1-cp37-cp37m-manylinux1_x86_64.whl
c05625370ff437b3e1a4f08cf194e3e4 numpy-1.15.1-cp37-none-win32.whl
f476babe66c6104c00accbf0bcfafce5 numpy-1.15.1-cp37-none-win_amd64.whl
e369ffae42ab89c7d1be5fe786e27702 numpy-1.15.1.tar.gz
898004d5be091fde59ae353e3008fe9b numpy-1.15.1.zip

SHA256
------

5e359e9c531075220785603e5966eef20ccae9b3b6b8a06fdfb66c084361ce92 numpy-1.15.1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
419e6faee16097124ee627ed31572c7e80a1070efa25260b78097cca240e219a numpy-1.15.1-cp27-cp27m-manylinux1_i686.whl
719b6789acb2bc86ea9b33a701d7c43dc2fc56d95107fd3c5b0a8230164d4dfb numpy-1.15.1-cp27-cp27m-manylinux1_x86_64.whl
62d55e96ec7b117d3d5e618c15efcf769e70a6effaee5842857b64fb4883887a numpy-1.15.1-cp27-cp27mu-manylinux1_i686.whl
df0b02c6705c5d1c25cc35c7b5d6b6f9b3b30833f9d178843397ae55ecc2eebb numpy-1.15.1-cp27-cp27mu-manylinux1_x86_64.whl
dae8618c0bcbfcf6cf91350f8abcdd84158323711566a8c5892b5c7f832af76f numpy-1.15.1-cp27-none-win32.whl
a3bd01d6d3ed3d7c06d7f9979ba5d68281f15383fafd53b81aa44b9191047cf8 numpy-1.15.1-cp27-none-win_amd64.whl
1c362ad12dd09a43b348bb28dd2295dd9cdf77f41f0f45965e04ba97f525b864 numpy-1.15.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
83b8fc18261b70f45bece2d392537c93dc81eb6c539a16c9ac994c47fc79f09a numpy-1.15.1-cp34-cp34m-manylinux1_i686.whl
ce75ed495a746e3e78cfa22a77096b3bff2eda995616cb7a542047f233091268 numpy-1.15.1-cp34-cp34m-manylinux1_x86_64.whl
340ec1697d9bb3a9c464028af7a54245298502e91178bddb4c37626d36e197b7 numpy-1.15.1-cp34-none-win32.whl
2156a06bd407918df4ac0122df6497a9c137432118f585e5b17d543e593d1587 numpy-1.15.1-cp34-none-win_amd64.whl
549f3e9778b148a47f4fb4682955ed88057eb627c9fe5467f33507c536deda9d numpy-1.15.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
378378973546ecc1dfaf9e24c160d683dd04df871ecd2dcc86ce658ca20f92c0 numpy-1.15.1-cp35-cp35m-manylinux1_i686.whl
35db8d419345caa4eeaa65cd63f34a15208acd87530a30f0bc25fc84f55c8c80 numpy-1.15.1-cp35-cp35m-manylinux1_x86_64.whl
4287104c24e6a09b9b418761a1e7b1bbde65105f110690ca46a23600a3c606b8 numpy-1.15.1-cp35-none-win32.whl
7a70f2b60d48828cba94a54a8776b61a9c2657a803d47f5785f8062e3a9c7c55 numpy-1.15.1-cp35-none-win_amd64.whl
e3660744cda0d94b90141cdd0db9308b958a372cfeee8d7188fdf5ad9108ea82 numpy-1.15.1-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
5ee7f3dbbdba0da75dec7e94bd7a2b10fe57a83e1b38e678200a6ad8e7b14fdc numpy-1.15.1-cp36-cp36m-manylinux1_i686.whl
36e8dcd1813ca92ce7e4299120cee6c03adad33d89b54862c1b1a100443ac399 numpy-1.15.1-cp36-cp36m-manylinux1_x86_64.whl
9473ad28375710ab18378e72b59422399b27e957e9339c413bf00793b4b12df0 numpy-1.15.1-cp36-none-win32.whl
c81a6afc1d2531a9ada50b58f8c36197f8418ef3d0611d4c1d7af93fdcda764f numpy-1.15.1-cp36-none-win_amd64.whl
98b86c62c08c2e5dc98a9c856d4a95329d11b1c6058cb9b5191d5ea6891acd09 numpy-1.15.1-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
24e4149c38489b51fc774b1e1faa9103e82f73344d7a00ba66f6845ab4769f3f numpy-1.15.1-cp37-cp37m-manylinux1_i686.whl
95b085b253080e5d09f7826f5e27dce067bae813a132023a77b739614a29de6e numpy-1.15.1-cp37-cp37m-manylinux1_x86_64.whl
361370e9b7f5e44c41eee29f2bb5cb3b755abb4b038bce6d6cbe08db7ff9cb74 numpy-1.15.1-cp37-none-win32.whl
f2362d0ca3e16c37782c1054d7972b8ad2729169567e3f0f4e5dd3cdf85f188e numpy-1.15.1-cp37-none-win_amd64.whl
3c1ccce5d935ef8df16ae0595b459ef08a5cdb05aee195ebc04b9d89a72be7fa numpy-1.15.1.tar.gz
7b9e37f194f8bcdca8e9e6af92e2cbad79e360542effc2dd6b98d63955d8d8a3 numpy-1.15.1.zip

1.15.0

Not secure
of old functions, and improvements to many existing functions. Please read the
detailed descriptions below to see if you are affected.

For testing, we have switched to pytest as a replacement for the no longer
maintained nose framework. The old nose based interface remains for downstream
projects who may still be using it.

The Python versions supported by this release are 2.7, 3.4-3.6. The upcoming

1.15.0rc2

==========================

1.15.0rc1

==========================

1.14.6

Not secure
==========================

This is a bugfix release for bugs reported following the 1.14.5 release. The
most significant fixes are:

* Fix for behavior change in ``ma.masked_values(shrink=True)``
* Fix the new cached allocations machinery to be thread safe.

The Python versions supported in this release are 2.7 and 3.4 - 3.7. The Python
3.6 wheels on PyPI should be compatible with all Python 3.6 versions.

Contributors
============

A total of 4 people contributed to this release. People with a "+" by their
names contributed a patch for the first time.

* Charles Harris
* Eric Wieser
* Julian Taylor
* Matti Picus

Pull requests merged
====================

A total of 4 pull requests were merged for this release.

* 11985: BUG: fix cached allocations without the GIL
* 11986: BUG: Undo behavior change in ma.masked_values(shrink=True)
* 11987: BUG: fix refcount leak in PyArray_AdaptFlexibleDType
* 11995: TST: Add Python 3.7 testing to NumPy 1.14.

Checksums
=========

MD5
---

f67c12a012b32b44e39eb057d6c5e5a9 numpy-1.14.6-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
a9325f87cd57dca3164e8920bd93ed30 numpy-1.14.6-cp27-cp27m-manylinux1_i686.whl
a02a64177b422b6059242f01fc39eba9 numpy-1.14.6-cp27-cp27m-manylinux1_x86_64.whl
4d45b10bc3be5e2e87aaf530bbcd9e48 numpy-1.14.6-cp27-cp27mu-manylinux1_i686.whl
d9e0e8d2aa9a198bcebb9e6627669c7b numpy-1.14.6-cp27-cp27mu-manylinux1_x86_64.whl
cfe9797b5bb22896aae777a356e77eab numpy-1.14.6-cp27-none-win32.whl
7e2bb331cc8fc5939a362df46cf60081 numpy-1.14.6-cp27-none-win_amd64.whl
1ba6477836db55255943977535bf6821 numpy-1.14.6-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
e341e9d58654c8afd15728495a523473 numpy-1.14.6-cp34-cp34m-manylinux1_i686.whl
e326047645ebee9bfac01922663488c7 numpy-1.14.6-cp34-cp34m-manylinux1_x86_64.whl
29f8f49c0c3b3282fcd644d66bf15001 numpy-1.14.6-cp34-none-win32.whl
92ad00143740a54180bb6f2015004940 numpy-1.14.6-cp34-none-win_amd64.whl
0f25ad62a1f7627729296d47a72d5fe4 numpy-1.14.6-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
9027e902724fe6d0468f30f9fed878c9 numpy-1.14.6-cp35-cp35m-manylinux1_i686.whl
25cc365ada785dd26ed74eae5b90630d numpy-1.14.6-cp35-cp35m-manylinux1_x86_64.whl
b969c8694c91918927b74f82dcbd6e51 numpy-1.14.6-cp35-none-win32.whl
db451ea9b296b95644bbdb0dfe133d38 numpy-1.14.6-cp35-none-win_amd64.whl
afc5355fe367e833bf8b503e2be19e11 numpy-1.14.6-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
200cdb3ed59ced85a6fe4255b4e93c32 numpy-1.14.6-cp36-cp36m-manylinux1_i686.whl
b40851c94f1c7586a1f5b4e9602a748a numpy-1.14.6-cp36-cp36m-manylinux1_x86_64.whl
7ece416512eb587d237e0ea35a764387 numpy-1.14.6-cp36-none-win32.whl
fb0334939e7f0716415971c1566a3da5 numpy-1.14.6-cp36-none-win_amd64.whl
7cd2d7d164af228289e2a2dd7dc2f6b0 numpy-1.14.6-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
f816dd37be0320767994c18aaca1f530 numpy-1.14.6-cp37-cp37m-manylinux1_i686.whl
29539a787aa1c04c5026c7b9c4e611e4 numpy-1.14.6-cp37-cp37m-manylinux1_x86_64.whl
d957e060a892311bd19df11fd2efbce3 numpy-1.14.6-cp37-none-win32.whl
4660539e780b295ab849fe9cd6491994 numpy-1.14.6-cp37-none-win_amd64.whl
dd01e3e29e8f46f2be8f176d3649cab1 numpy-1.14.6.tar.gz
9118b06f0ff86f9545beee4a10a80717 numpy-1.14.6.zip

SHA256
------

bd6b3906a50f9ad755e2c21a78661eff1bbaab3c803c0fcf22927ec50372dba6 numpy-1.14.6-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
f1dd9a8ecbe9f8f13652afe04c470bb837578e402a3641649ddc41764d0e4326 numpy-1.14.6-cp27-cp27m-manylinux1_i686.whl
4c774c852cad87f692e6b3e374ba7074c7a9897cf4bafcc47ad48142d455f3ae numpy-1.14.6-cp27-cp27m-manylinux1_x86_64.whl
40f9c0ae71453e4d28d40e502e531e72810bf3b12b2d55cad939ab86a26ead42 numpy-1.14.6-cp27-cp27mu-manylinux1_i686.whl
964c2c6a9e0ecac54a368effa26a89a97b2e15266dc68dc78f2519f3040be623 numpy-1.14.6-cp27-cp27mu-manylinux1_x86_64.whl
4e2f4c7031507b23b14056a4bc2b4cbe865607f55b45bfc15cc745a268bc817e numpy-1.14.6-cp27-none-win32.whl
35be3f06ad20030bfba9ae199fa5d5474aebeabb3197d2ce9fcd8c417f7415e3 numpy-1.14.6-cp27-none-win_amd64.whl
e11e5eba43e0d8b077aafa11e43db7a77af4fa435557972dd3570898e0cbb736 numpy-1.14.6-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
1718e009ac6699868c82c4ed154e64945479f5c3d8826b2e10c470e9fad7bd18 numpy-1.14.6-cp34-cp34m-manylinux1_i686.whl
6eb031402a278a6fa5838e543cf36ed6d21a6ee90e9a2803570d47908ca5e9fd numpy-1.14.6-cp34-cp34m-manylinux1_x86_64.whl
1b07024c4d87bf7a0738c438aa7fb709f9d7c093513bb8ffb2ac849f4553658c numpy-1.14.6-cp34-none-win32.whl
e5daec856ea0e1111391179449b855aa29f1433ac507adc3d6c00a96abb438cb numpy-1.14.6-cp34-none-win_amd64.whl
0e7c5e5358be186e0d6c73a9b34e1b890602ac1db413adc61794e2e3e02ec65c numpy-1.14.6-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
6f2a52bb05c560fd6f29d7b49dfe8b4d7c5445c448e5587969446a0f10cf9164 numpy-1.14.6-cp35-cp35m-manylinux1_i686.whl
1454aca5a62fe18bb2828ea1b2f9d1534afed7216c13404a6657cda57937c54b numpy-1.14.6-cp35-cp35m-manylinux1_x86_64.whl
686869ff6adc49b3066fdb44198c0655603b33e2c4d852a04c6a84cd8b224786 numpy-1.14.6-cp35-none-win32.whl
057ca467673a4b0422a9365ea0b53572813764f60896d3d1423f5cc9d2dd0d02 numpy-1.14.6-cp35-none-win_amd64.whl
db10d3d10658a847f85fe9df0d5fe6df190a30d32423d670c3824580e373c0a8 numpy-1.14.6-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
7ce70ef6fd9bdfafd896c617761129fafaa06e4683d0bfbf3c56a87c89e02d61 numpy-1.14.6-cp36-cp36m-manylinux1_i686.whl
4ab59a69a627ee73a2723b60723abfe0404947c16acef7b0880d6bbec93ba7cd numpy-1.14.6-cp36-cp36m-manylinux1_x86_64.whl
33acfba9f453b0b6465c0aa5fe5cb0d32b8483850bc8cc776b4d3cc96595aa03 numpy-1.14.6-cp36-none-win32.whl
6d3e10394dada2cdf8ba354025ddf15a744b4e833c77347e31547c4b5c77deab numpy-1.14.6-cp36-none-win_amd64.whl
d37f058ea9a2fd2a9160b0cc65bbfb302dfcea8d5fe178299938d95d7bfa2b83 numpy-1.14.6-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
a1cafe27328c1f01127297f11e2be25d5d3821d2654a7459e017cfce98258995 numpy-1.14.6-cp37-cp37m-manylinux1_i686.whl
df2937c62d8d3059c1396c7cacfc12577c0923e2a37557592759358848b1544c numpy-1.14.6-cp37-cp37m-manylinux1_x86_64.whl
d3f22c0781ad5fe51d7210f36a91f01620355520996fc332a1d0cf24e0cab794 numpy-1.14.6-cp37-none-win32.whl
fe909f8d14b2f16ea5d9ec2234fc0ffbfccccaef1ba6bc27d9d21acfe8cc72e1 numpy-1.14.6-cp37-none-win_amd64.whl
61b01b87d1e76df9a1e43fff727c1e0289c4cd2bc7be9f806e97b45aed3682cc numpy-1.14.6.tar.gz
1250edf6f6c43e1d7823f0967416bc18258bb271dc536298eb0ea00a9e45b80a numpy-1.14.6.zip

Page 19 of 23

© 2025 Safety CLI Cybersecurity Inc. All Rights Reserved.