Numpy

Latest version: v2.2.4

Safety actively analyzes 726274 Python packages for vulnerabilities to keep your Python projects secure.

Scan your dependencies

Page 19 of 24

1.16.0rc2

==========================

1.16.0rc1

==========================

1.15.4

Not secure
==========================

This is a bugfix release for bugs and regressions reported following the 1.15.3
release. The Python versions supported by this release are 2.7, 3.4-3.7. The
wheels are linked with OpenBLAS v0.3.0, which should fix some of the linalg
problems reported for NumPy 1.14.

Compatibility Note
==================

The NumPy 1.15.x OS X wheels released on PyPI no longer contain 32-bit
binaries. That will also be the case in future releases. See
`11625 <https://github.com/numpy/numpy/issues/11625>`__ for the related
discussion. Those needing 32-bit support should look elsewhere or build
from source.

Contributors
============

A total of 4 people contributed to this release. People with a "+" by their
names contributed a patch for the first time.

* Charles Harris
* Matti Picus
* Sebastian Berg
* bbbbbbbbba +

Pull requests merged
====================

A total of 4 pull requests were merged for this release.

* 12296: BUG: Dealloc cached buffer info
* 12297: BUG: Fix fill value in masked array '==' and '!=' ops.
* 12307: DOC: Correct the default value of `optimize` in `numpy.einsum`
* 12320: REL: Prepare for the NumPy 1.15.4 release

Checksums
=========

MD5
---

277c501cfcc67767d73d83a53ba69ecb numpy-1.15.4-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
4c687d8cd7833e0b549d4a20905f29a2 numpy-1.15.4-cp27-cp27m-manylinux1_i686.whl
988d0b321d0b7576b105528fc948ddc3 numpy-1.15.4-cp27-cp27m-manylinux1_x86_64.whl
ea6bd39d05539847a0ebb12ff955251a numpy-1.15.4-cp27-cp27mu-manylinux1_i686.whl
8ef2d1ea4571cdd0e7e8dfd5128436b4 numpy-1.15.4-cp27-cp27mu-manylinux1_x86_64.whl
b550d4cc012623a0c38f1392e08f4805 numpy-1.15.4-cp27-none-win32.whl
cb38e4778d9db33199dc7bb6a69ce089 numpy-1.15.4-cp27-none-win_amd64.whl
fa0acf5b2f852454346df5486a4ff4d9 numpy-1.15.4-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
a7614f6318899aa1bfbc337232c4647f numpy-1.15.4-cp34-cp34m-manylinux1_i686.whl
ae16e02274996ff926a30f23f6d6d7e8 numpy-1.15.4-cp34-cp34m-manylinux1_x86_64.whl
c1e1f381de7abc96509d4c5463903755 numpy-1.15.4-cp34-none-win32.whl
c269c8f2fce6cefdffe5e3821fc04fb5 numpy-1.15.4-cp34-none-win_amd64.whl
8906282c374b9b008c5c6401e5dc750b numpy-1.15.4-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
537949e404ecc5814cb0db534bdfef36 numpy-1.15.4-cp35-cp35m-manylinux1_i686.whl
3b10a2fcf8610bbbfe08161e1d9d176e numpy-1.15.4-cp35-cp35m-manylinux1_x86_64.whl
b67621a1c9b8dcac707ca22055629e9f numpy-1.15.4-cp35-none-win32.whl
25b45b69d624cb07a8c05a5f82779b0a numpy-1.15.4-cp35-none-win_amd64.whl
76ed46a4d4e9cdb7076bf1359d9df1d4 numpy-1.15.4-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
b98cbad7770856dc12c827dca7c201b4 numpy-1.15.4-cp36-cp36m-manylinux1_i686.whl
6293fa6db83849aab3a8b1a606cf3d03 numpy-1.15.4-cp36-cp36m-manylinux1_x86_64.whl
21df485f92248c13cab3838762d717f6 numpy-1.15.4-cp36-none-win32.whl
c9cf7a267f8d2f57dc6384cc8b9f5acf numpy-1.15.4-cp36-none-win_amd64.whl
1f6990e094c6b2bb47c6a528ac7b1263 numpy-1.15.4-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
e79239cd9a3ce3cbfa5e7345bfb2ca56 numpy-1.15.4-cp37-cp37m-manylinux1_i686.whl
fc046ba978ef4dd0556af09643c57d30 numpy-1.15.4-cp37-cp37m-manylinux1_x86_64.whl
6291159933eb5a7f9c0bf28ae9707739 numpy-1.15.4-cp37-none-win32.whl
6097910d675f9e81d5d131b91a6c5c61 numpy-1.15.4-cp37-none-win_amd64.whl
b3626fec2f39ab01cad8bbb63a103742 numpy-1.15.4.tar.gz
219ac537d12cf06ed14f478662096ebc numpy-1.15.4.zip

SHA256
------

18e84323cdb8de3325e741a7a8dd4a82db74fde363dce32b625324c7b32aa6d7 numpy-1.15.4-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
154c35f195fd3e1fad2569930ca51907057ae35e03938f89a8aedae91dd1b7c7 numpy-1.15.4-cp27-cp27m-manylinux1_i686.whl
4d8d3e5aa6087490912c14a3c10fbdd380b40b421c13920ff468163bc50e016f numpy-1.15.4-cp27-cp27m-manylinux1_x86_64.whl
c857ae5dba375ea26a6228f98c195fec0898a0fd91bcf0e8a0cae6d9faf3eca7 numpy-1.15.4-cp27-cp27mu-manylinux1_i686.whl
0df89ca13c25eaa1621a3f09af4c8ba20da849692dcae184cb55e80952c453fb numpy-1.15.4-cp27-cp27mu-manylinux1_x86_64.whl
36e36b6868e4440760d4b9b44587ea1dc1f06532858d10abba98e851e154ca70 numpy-1.15.4-cp27-none-win32.whl
99d59e0bcadac4aa3280616591fb7bcd560e2218f5e31d5223a2e12a1425d495 numpy-1.15.4-cp27-none-win_amd64.whl
edfa6fba9157e0e3be0f40168eb142511012683ac3dc82420bee4a3f3981b30e numpy-1.15.4-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
b261e0cb0d6faa8fd6863af26d30351fd2ffdb15b82e51e81e96b9e9e2e7ba16 numpy-1.15.4-cp34-cp34m-manylinux1_i686.whl
db9814ff0457b46f2e1d494c1efa4111ca089e08c8b983635ebffb9c1573361f numpy-1.15.4-cp34-cp34m-manylinux1_x86_64.whl
df04f4bad8a359daa2ff74f8108ea051670cafbca533bb2636c58b16e962989e numpy-1.15.4-cp34-none-win32.whl
7da99445fd890206bfcc7419f79871ba8e73d9d9e6b82fe09980bc5bb4efc35f numpy-1.15.4-cp34-none-win_amd64.whl
56994e14b386b5c0a9b875a76d22d707b315fa037affc7819cda08b6d0489756 numpy-1.15.4-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
ecf81720934a0e18526177e645cbd6a8a21bb0ddc887ff9738de07a1df5c6b61 numpy-1.15.4-cp35-cp35m-manylinux1_i686.whl
cf5bb4a7d53a71bb6a0144d31df784a973b36d8687d615ef6a7e9b1809917a9b numpy-1.15.4-cp35-cp35m-manylinux1_x86_64.whl
561ef098c50f91fbac2cc9305b68c915e9eb915a74d9038ecf8af274d748f76f numpy-1.15.4-cp35-none-win32.whl
4f41fd159fba1245e1958a99d349df49c616b133636e0cf668f169bce2aeac2d numpy-1.15.4-cp35-none-win_amd64.whl
416a2070acf3a2b5d586f9a6507bb97e33574df5bd7508ea970bbf4fc563fa52 numpy-1.15.4-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
24fd645a5e5d224aa6e39d93e4a722fafa9160154f296fd5ef9580191c755053 numpy-1.15.4-cp36-cp36m-manylinux1_i686.whl
23557bdbca3ccbde3abaa12a6e82299bc92d2b9139011f8c16ca1bb8c75d1e95 numpy-1.15.4-cp36-cp36m-manylinux1_x86_64.whl
b1853df739b32fa913cc59ad9137caa9cc3d97ff871e2bbd89c2a2a1d4a69451 numpy-1.15.4-cp36-none-win32.whl
73a1f2a529604c50c262179fcca59c87a05ff4614fe8a15c186934d84d09d9a5 numpy-1.15.4-cp36-none-win_amd64.whl
1e8956c37fc138d65ded2d96ab3949bd49038cc6e8a4494b1515b0ba88c91565 numpy-1.15.4-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
a4cc09489843c70b22e8373ca3dfa52b3fab778b57cf81462f1203b0852e95e3 numpy-1.15.4-cp37-cp37m-manylinux1_i686.whl
4a22dc3f5221a644dfe4a63bf990052cc674ef12a157b1056969079985c92816 numpy-1.15.4-cp37-cp37m-manylinux1_x86_64.whl
b1f44c335532c0581b77491b7715a871d0dd72e97487ac0f57337ccf3ab3469b numpy-1.15.4-cp37-none-win32.whl
a61dc29cfca9831a03442a21d4b5fd77e3067beca4b5f81f1a89a04a71cf93fa numpy-1.15.4-cp37-none-win_amd64.whl
766e09248298e3ad4ae4a805159f358610bbe7dcc7b4a14e5df2128c05655b80 numpy-1.15.4.tar.gz
3d734559db35aa3697dadcea492a423118c5c55d176da2f3be9c98d4803fc2a7 numpy-1.15.4.zip

1.15.3

Not secure
==========================

This is a bugfix release for bugs and regressions reported following the 1.15.2
release. The Python versions supported by this release are 2.7, 3.4-3.7. The
wheels are linked with OpenBLAS v0.3.0, which should fix some of the linalg
problems reported for NumPy 1.14.

Compatibility Note
==================

The NumPy 1.15.x OS X wheels released on PyPI no longer contain 32-bit
binaries. That will also be the case in future releases. See
`11625 <https://github.com/numpy/numpy/issues/11625>`__ for the related
discussion. Those needing 32-bit support should look elsewhere or build
from source.

Contributors
============

A total of 7 people contributed to this release. People with a "+" by their
names contributed a patch for the first time.

* Allan Haldane
* Charles Harris
* Jeroen Demeyer
* Kevin Sheppard
* Matthew Bowden +
* Matti Picus
* Tyler Reddy

Pull requests merged
====================

A total of 12 pull requests were merged for this release.

* 12080: MAINT: Blacklist some MSVC complex functions.
* 12083: TST: Add azure CI testing to 1.15.x branch.
* 12084: BUG: test_path() now uses Path.resolve()
* 12085: TST, MAINT: Fix some failing tests on azure-pipelines mac and...
* 12187: BUG: Fix memory leak in mapping.c
* 12188: BUG: Allow boolean subtract in histogram
* 12189: BUG: Fix in-place permutation
* 12190: BUG: limit default for get_num_build_jobs() to 8
* 12191: BUG: OBJECT_to_* should check for errors
* 12192: DOC: Prepare for NumPy 1.15.3 release.
* 12237: BUG: Fix MaskedArray fill_value type conversion.
* 12238: TST: Backport azure-pipeline testing fixes for Mac

Checksums
=========

MD5
---

fc1ae8356a65804d02e5c7d9c1c07f65 numpy-1.15.3-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
85faf750ff68d76dad812eb6410cc417 numpy-1.15.3-cp27-cp27m-manylinux1_i686.whl
6d92d50f6235501475b642fc35212ad7 numpy-1.15.3-cp27-cp27m-manylinux1_x86_64.whl
f7430f4ca8d179a9e34072c0d1c1ca9c numpy-1.15.3-cp27-cp27mu-manylinux1_i686.whl
ebd394af280ee41b55add821f84dc180 numpy-1.15.3-cp27-cp27mu-manylinux1_x86_64.whl
3bac2fd14dc19c20a0ced77bb8c395de numpy-1.15.3-cp27-none-win32.whl
da69a44d0292379a261f1bf33b2afe3e numpy-1.15.3-cp27-none-win_amd64.whl
c021f69eeed541202947d11c0ec3c2f4 numpy-1.15.3-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
4c2a4a7685c7431937aa0b5e6425b7de numpy-1.15.3-cp34-cp34m-manylinux1_i686.whl
2eb4e845844b91853743bb4d4316e237 numpy-1.15.3-cp34-cp34m-manylinux1_x86_64.whl
47b03a3e34152c7e1ae7056f672674a5 numpy-1.15.3-cp34-none-win32.whl
64ebc4e0a722e5a6f1bd697309c3f951 numpy-1.15.3-cp34-none-win_amd64.whl
f7a9b021b45372fa39e009ae396d6108 numpy-1.15.3-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
7a7578978757cb69507ab680a2f9b8f3 numpy-1.15.3-cp35-cp35m-manylinux1_i686.whl
52d5bd16e06561e735cb7f461370e697 numpy-1.15.3-cp35-cp35m-manylinux1_x86_64.whl
c1421e59a425b6cd1307a45612c4911f numpy-1.15.3-cp35-none-win32.whl
2ea2c18feb7f92ebd6b64261265d1b7f numpy-1.15.3-cp35-none-win_amd64.whl
ed7b1d79ad554f59c65b6c2d15924624 numpy-1.15.3-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
bece3ef7768bfa7b354b8d1014aa85b3 numpy-1.15.3-cp36-cp36m-manylinux1_i686.whl
4ed669d22449b6e1759b320ff9b37eb7 numpy-1.15.3-cp36-cp36m-manylinux1_x86_64.whl
a3c7ce17e1fdf009950f2f41adcde29b numpy-1.15.3-cp36-none-win32.whl
890f23c488a00a2c64578bcb3737533e numpy-1.15.3-cp36-none-win_amd64.whl
c3a332b97d53c60d8c129a1a8e062652 numpy-1.15.3-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
096f70a3a147a596a9317ce8ac9bf1bd numpy-1.15.3-cp37-cp37m-manylinux1_i686.whl
2317122b49e79ffad91250a428ca54f9 numpy-1.15.3-cp37-cp37m-manylinux1_x86_64.whl
2719106f42758fd285bce25fa3c1a78e numpy-1.15.3-cp37-none-win32.whl
9a692a2bbcbaabf98f19fbd9c0c5c163 numpy-1.15.3-cp37-none-win_amd64.whl
274dd6db3a13c6b6c47a05b5365e1749 numpy-1.15.3.tar.gz
7f1b9e521c2a662cecf3708026e8bdad numpy-1.15.3.zip

SHA256
------

3c7959f750b54b445f14962a3ddc41b9eadbab00b86da55fbb1967b2b79aad10 numpy-1.15.3-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
9d1598573d310104acb90377f0a8c2319f737084689f5eb18012becaf345cda5 numpy-1.15.3-cp27-cp27m-manylinux1_i686.whl
a988db28f54e104a01e8573ceb6f28202b4c15635b1450b2e3b2b822c6564f9b numpy-1.15.3-cp27-cp27m-manylinux1_x86_64.whl
3d8f9273c763a139a99e65c2a3c10f1109df30bedae7f011b10d95c538364704 numpy-1.15.3-cp27-cp27mu-manylinux1_i686.whl
919f65e0732195474897b1cafefb4d4e7c2bb8174a725e506b62e9096e4df28d numpy-1.15.3-cp27-cp27mu-manylinux1_x86_64.whl
d263f8f14f2da0c079c0297e829e550d8f2c4e0ffef215506bd1d0ddd2bff3de numpy-1.15.3-cp27-none-win32.whl
b12fe6f31babb9477aa0f9692730654b3ee0e71f33b4568170dfafd439caf0a2 numpy-1.15.3-cp27-none-win_amd64.whl
febd31cd0d2fd2509ca2ec53cb339f8bf593c1bd245b9fc55c1917a68532a0af numpy-1.15.3-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
d0f36a24cf8061a2c03e151be3418146717505b9b4ec17502fa3bbdb04ec1431 numpy-1.15.3-cp34-cp34m-manylinux1_i686.whl
63bca71691339d2d6f8a7c970821f2b12098a53afccc0190d4e1555e75e5223a numpy-1.15.3-cp34-cp34m-manylinux1_x86_64.whl
b7599ff4acd23f5de983e3aec772153b1043e131487a5c6ad0f94b41a828877a numpy-1.15.3-cp34-none-win32.whl
c9f4dafd6065c4c782be84cd67ceeb9b1d4380af60a7af32be10ebecd723385e numpy-1.15.3-cp34-none-win_amd64.whl
32a07241cb624e104b88b08dea2851bf4ec5d65a1f599d7735041ced7171fd7a numpy-1.15.3-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
8bc4b92a273659e44ca3f3a2f8786cfa39d8302223bcfe7df794429c63d5f5a1 numpy-1.15.3-cp35-cp35m-manylinux1_i686.whl
2f5ebc7a04885c7d69e5daa05208faef4db7f1ae6a99f4d36962df8cd54cdc76 numpy-1.15.3-cp35-cp35m-manylinux1_x86_64.whl
ce3622b73ccd844ba301c1aea65d36cf9d8331e7c25c16b1725d0f14db99aaf4 numpy-1.15.3-cp35-none-win32.whl
9fff90c88bfaad2901be50453d5cd7897a826c1d901f0654ee1d73ab3a48cd18 numpy-1.15.3-cp35-none-win_amd64.whl
032df9b6571c5f1d41ea6f6a189223208cb488990373aa686aca55570fcccb42 numpy-1.15.3-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
866a7c8774ccc7d603667fad95456b4cf56d79a2bb5a7648ac9f0082e0b9416e numpy-1.15.3-cp36-cp36m-manylinux1_i686.whl
7ae9c3baff3b989859c88e0168ad10902118595b996bf781eaf011bb72428798 numpy-1.15.3-cp36-cp36m-manylinux1_x86_64.whl
d8837ff272800668aabdfe70b966631914b0d6513aed4fc1b1428446f771834d numpy-1.15.3-cp36-none-win32.whl
fa337b6bd5fe2b8c4e705f4102186feb9985de9bb8536d32d5129a658f1789e0 numpy-1.15.3-cp36-none-win_amd64.whl
2aa0910eaeb603b1a5598193cc3bc8eacf1baf6c95cbc3955eb8e15fa380c133 numpy-1.15.3-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
ef694fe72a3995aa778a5095bda946e0d31f7efabd5e8063ad8c6238ab7d3f78 numpy-1.15.3-cp37-cp37m-manylinux1_i686.whl
f1fd1a6f40a501ba4035f5ed2c1f4faa68245d1407bf97d2ee401e4f23d1720b numpy-1.15.3-cp37-cp37m-manylinux1_x86_64.whl
094f8a83e5bd0a44a7557fa24a46db6ba7d5299c389ddbc9e0e18722f567fb63 numpy-1.15.3-cp37-none-win32.whl
a245464ddf6d90e2d6287e9cef6bcfda2a99467fdcf1b677b99cd0b6c7b43de2 numpy-1.15.3-cp37-none-win_amd64.whl
4656ea0d66a3724fd88aafa39a0c5cef216d1257a71b40534fe589abd46ba77b numpy-1.15.3.tar.gz
1c0c80e74759fa4942298044274f2c11b08c86230b25b8b819e55e644f5ff2b6 numpy-1.15.3.zip

1.15.2

Not secure
==========================

This is a bugfix release for bugs and regressions reported following the 1.15.1
release.

* The matrix PendingDeprecationWarning is now suppressed in pytest 3.8.
* The new cached allocations machinery has been fixed to be thread safe.
* The boolean indexing of subclasses now works correctly.
* A small memory leak in PyArray_AdaptFlexibleDType has been fixed.

The Python versions supported by this release are 2.7, 3.4-3.7. The wheels are
linked with OpenBLAS v0.3.0, which should fix some of the linalg problems
reported for NumPy 1.14.

Compatibility Note
==================

The NumPy 1.15.x OS X wheels released on PyPI no longer contain 32-bit
binaries. That will also be the case in future releases. See
`11625 <https://github.com/numpy/numpy/issues/11625>`__ for the related
discussion. Those needing 32-bit support should look elsewhere or build
from source.

Contributors
============

A total of 4 people contributed to this release. People with a "+" by their
names contributed a patch for the first time.

* Charles Harris
* Julian Taylor
* Marten van Kerkwijk
* Matti Picus

Pull requests merged
====================

A total of 4 pull requests were merged for this release.

* 11902: BUG: Fix matrix PendingDeprecationWarning suppression for pytest...
* 11981: BUG: fix cached allocations without the GIL for 1.15.x
* 11982: BUG: fix refcount leak in PyArray_AdaptFlexibleDType
* 11992: BUG: Ensure boolean indexing of subclasses sets base correctly.

Checksums
=========

MD5
---

6935d733421b32533eebc7d9a5b1bde9 numpy-1.15.2-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
d80b588176313013d50a513d1b3d8cb8 numpy-1.15.2-cp27-cp27m-manylinux1_i686.whl
34b93ec0335f8dd028137bd3c1434800 numpy-1.15.2-cp27-cp27m-manylinux1_x86_64.whl
008df3819bf77abdb0546d96f660bec0 numpy-1.15.2-cp27-cp27mu-manylinux1_i686.whl
48530fca78a9abdfa34c2b19c2d45600 numpy-1.15.2-cp27-cp27mu-manylinux1_x86_64.whl
3b6032a8100df348ab0c17545dd7b72d numpy-1.15.2-cp27-none-win32.whl
2e1c8985c10e813a7b8de54f18f99921 numpy-1.15.2-cp27-none-win_amd64.whl
2e9bab1f2bb399945cd660062c1d63ac numpy-1.15.2-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
d774936507ac59e0ed8cd6b9592449fe numpy-1.15.2-cp34-cp34m-manylinux1_i686.whl
5f0b7cb501e3e459f043725330dd19f8 numpy-1.15.2-cp34-cp34m-manylinux1_x86_64.whl
5c54aa9f3825af973ed7c4c38bf499bc numpy-1.15.2-cp34-none-win32.whl
1f479fa8f54da6726aa9729d296d31e7 numpy-1.15.2-cp34-none-win_amd64.whl
e7100118df61980e784ac71a9eafe410 numpy-1.15.2-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
f55e7f845d9f18a6c3cf8a0dc4515226 numpy-1.15.2-cp35-cp35m-manylinux1_i686.whl
de9a79dd7abcaa099b34234d7ee43903 numpy-1.15.2-cp35-cp35m-manylinux1_x86_64.whl
48e7213f7029a38e6a63e1e92c50c15d numpy-1.15.2-cp35-none-win32.whl
3086e690e4eef8b10523349e93c34dcb numpy-1.15.2-cp35-none-win_amd64.whl
9e56f996c325345a5a3076a9f5d0abfe numpy-1.15.2-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
e7835fb3d56d4bbcd8d47120df709cbf numpy-1.15.2-cp36-cp36m-manylinux1_i686.whl
5151de4cfdec3623d4061d0e7a8677bb numpy-1.15.2-cp36-cp36m-manylinux1_x86_64.whl
7f911b24989f8d6aa0e6617fea6e8c10 numpy-1.15.2-cp36-none-win32.whl
948dbd9c23ac7948485d5a07a48a27eb numpy-1.15.2-cp36-none-win_amd64.whl
921214854ed05d5e0c294b2fcc345d37 numpy-1.15.2-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
38a69cfe0d954d05054a73e5f56b1533 numpy-1.15.2-cp37-cp37m-manylinux1_i686.whl
4ce844e4452baf8c25025e53e59d91ff numpy-1.15.2-cp37-cp37m-manylinux1_x86_64.whl
2de0167b4297d1732e25c9288bbe3add numpy-1.15.2-cp37-none-win32.whl
de26b3d5573b0c9a6cd38eeb4e8d865e numpy-1.15.2-cp37-none-win_amd64.whl
d40b15478148a48ec324327578de4583 numpy-1.15.2.tar.gz
5a55a994eca6095b1e82d44600217ece numpy-1.15.2.zip

SHA256
------

b5ff7dae352fd9e1edddad1348698e9fea14064460a7e39121ef9526745802e6 numpy-1.15.2-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
1b1cf8f7300cf7b11ddb4250b3898c711a6187df05341b5b7153db23ffe5d498 numpy-1.15.2-cp27-cp27m-manylinux1_i686.whl
ec8bf53ef7c92c99340972519adbe122e82c81d5b87cbd955c74ba8a8cd2a4ad numpy-1.15.2-cp27-cp27m-manylinux1_x86_64.whl
733dc5d47e71236263837825b69c975bc08728ae638452b34aeb1d6fa347b780 numpy-1.15.2-cp27-cp27mu-manylinux1_i686.whl
82f00a1e2695a0e5b89879aa25ea614530b8ebdca6d49d4834843d498e8a5e92 numpy-1.15.2-cp27-cp27mu-manylinux1_x86_64.whl
63f833a7c622e9082df3cbaf03b4fd92d7e0c11e2f9d87cb57dbf0e84441964b numpy-1.15.2-cp27-none-win32.whl
c898f9cca806102fcacb6309899743aa39efb2ad2a302f4c319f54db9f05cd84 numpy-1.15.2-cp27-none-win_amd64.whl
f2e55726a9ee2e8129d6ce6abb466304868051bcc7a09d652b3b07cd86e801a2 numpy-1.15.2-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
981224224bbf44d95278eb37996162e8beb6f144d2719b144e86dfe2fce6c510 numpy-1.15.2-cp34-cp34m-manylinux1_i686.whl
f592fd7fe1f20b5041928cce1330937eca62f9058cb41e69c2c2d83cffc0d1e3 numpy-1.15.2-cp34-cp34m-manylinux1_x86_64.whl
9ad36dbfdbb0cba90a08e7343fadf86f43cf6d87450e8d2b5d71d7c7202907e4 numpy-1.15.2-cp34-none-win32.whl
d1569013e8cc8f37e9769d19effdd85e404c976cd0ca28a94e3ddc026c216ae8 numpy-1.15.2-cp34-none-win_amd64.whl
8d2cfb0aef7ec8759736cce26946efa084cdf49797712333539ef7d135e0295e numpy-1.15.2-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
f4dee74f2626c783a3804df9191e9008946a104d5a284e52427a53ff576423cb numpy-1.15.2-cp35-cp35m-manylinux1_i686.whl
497d7c86df4f85eb03b7f58a7dd0f8b948b1f582e77629341f624ba301b4d204 numpy-1.15.2-cp35-cp35m-manylinux1_x86_64.whl
866bf72b9c3bfabe4476d866c70ee1714ad3e2f7b7048bb934892335e7b6b1f7 numpy-1.15.2-cp35-none-win32.whl
71bf3b7ca15b1967bba3a1ef6a8e87286382a8b5e46ac76b42a02fe787c5237d numpy-1.15.2-cp35-none-win_amd64.whl
4e28e66cf80c09a628ae680efeb0aa9a066eb4bb7db2a5669024c5b034891576 numpy-1.15.2-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
8aeac8b08f4b8c52129518efcd93706bb6d506ccd17830b67d18d0227cf32d9e numpy-1.15.2-cp36-cp36m-manylinux1_i686.whl
a251570bb3cb04f1627f23c234ad09af0e54fc8194e026cf46178f2e5748d647 numpy-1.15.2-cp36-cp36m-manylinux1_x86_64.whl
5b4dfb6551eaeaf532054e2c6ef4b19c449c2e3a709ebdde6392acb1372ecabc numpy-1.15.2-cp36-none-win32.whl
981daff58fa3985a26daa4faa2b726c4e7a1d45178100125c0e1fdaf2ac64978 numpy-1.15.2-cp36-none-win_amd64.whl
dca261e85fe0d34b2c242ecb31c9ab693509af2cf955d9caf01ee3ef3669abd0 numpy-1.15.2-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
ffab5b80bba8c86251291b8ce2e6c99a61446459d4c6637f5d5cc8c9ce37c972 numpy-1.15.2-cp37-cp37m-manylinux1_i686.whl
58be95faf0ca2d886b5b337e7cba2923e3ad1224b806a91223ea39f1e0c77d03 numpy-1.15.2-cp37-cp37m-manylinux1_x86_64.whl
3fde172e28c899580d32dc21cb6d4a1225d62362f61050b654545c662eac215a numpy-1.15.2-cp37-none-win32.whl
cf4b970042ce148ad8dce4369c02a4078b382dadf20067ce2629c239d76460d1 numpy-1.15.2-cp37-none-win_amd64.whl
6a1e96568332fd8974b355a422b397288e214746715a7fa6abc10b34d06bad76 numpy-1.15.2.tar.gz
27a0d018f608a3fe34ac5e2b876f4c23c47e38295c47dd0775cc294cd2614bc1 numpy-1.15.2.zip

1.15.1

Not secure
==========================

This is a bugfix release for bugs and regressions reported following the 1.15.0
release.

* The annoying but harmless RuntimeWarning that "numpy.dtype size changed" has
been suppressed. The long standing suppression was lost in the transition to
pytest.
* The update to Cython 0.28.3 exposed a problematic use of a gcc attribute used
to prefer code size over speed in module initialization, possibly resulting in
incorrect compiled code. This has been fixed in latest Cython but has been
disabled here for safety.
* Support for big-endian and ARMv8 architectures has been improved.

The Python versions supported by this release are 2.7, 3.4-3.7. The wheels are
linked with OpenBLAS v0.3.0, which should fix some of the linalg problems
reported for NumPy 1.14.


Compatibility Note
==================

The NumPy 1.15.x OS X wheels released on PyPI no longer contain 32-bit
binaries. That will also be the case in future releases. See
`11625 <https://github.com/numpy/numpy/issues/11625>`__ for the related
discussion. Those needing 32-bit support should look elsewhere or build
from source.


Contributors
============

A total of 7 people contributed to this release. People with a "+" by their
names contributed a patch for the first time.

* Charles Harris
* Chris Billington
* Elliott Sales de Andrade +
* Eric Wieser
* Jeremy Manning +
* Matti Picus
* Ralf Gommers

Pull requests merged
====================

A total of 24 pull requests were merged for this release.

* 11647: MAINT: Filter Cython warnings in ``__init__.py``
* 11648: BUG: Fix doc source links to unwrap decorators
* 11657: BUG: Ensure singleton dimensions are not dropped when converting...
* 11661: BUG: Warn on Nan in minimum,maximum for scalars
* 11665: BUG: cython sometimes emits invalid gcc attribute
* 11682: BUG: Fix regression in void_getitem
* 11698: BUG: Make matrix_power again work for object arrays.
* 11700: BUG: Add missing PyErr_NoMemory after failing malloc
* 11719: BUG: Fix undefined functions on big-endian systems.
* 11720: MAINT: Make einsum optimize default to False.
* 11746: BUG: Fix regression in loadtxt for bz2 text files in Python 2.
* 11757: BUG: Revert use of `console_scripts`.
* 11758: BUG: Fix Fortran kind detection for aarch64 & s390x.
* 11759: BUG: Fix printing of longdouble on ppc64le.
* 11760: BUG: Fixes for unicode field names in Python 2
* 11761: BUG: Increase required cython version on python 3.7
* 11763: BUG: check return value of _buffer_format_string
* 11775: MAINT: Make assert_array_compare more generic.
* 11776: TST: Fix urlopen stubbing.
* 11777: BUG: Fix regression in intersect1d.
* 11779: BUG: Fix test sensitive to platform byte order.
* 11781: BUG: Avoid signed overflow in histogram
* 11785: BUG: Fix pickle and memoryview for datetime64, timedelta64 scalars
* 11786: BUG: Deprecation triggers segfault

Checksums
=========

MD5
---

8e894e6873420259fa13bc685ca922a7 numpy-1.15.1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
75154de03468c18c8b8d337b75d29bad numpy-1.15.1-cp27-cp27m-manylinux1_i686.whl
50e3db64b9be2d399f7035ea71e16092 numpy-1.15.1-cp27-cp27m-manylinux1_x86_64.whl
35e15be82a5fc807572c7723171902b4 numpy-1.15.1-cp27-cp27mu-manylinux1_i686.whl
315cc1fb777c5251f27e49075b4d13fb numpy-1.15.1-cp27-cp27mu-manylinux1_x86_64.whl
7b6fbdca75eeb0a0c28c09bfaf2e17c2 numpy-1.15.1-cp27-none-win32.whl
8bc75bc94bd189a4cc3ded0f0e9b1353 numpy-1.15.1-cp27-none-win_amd64.whl
3c8950f10241185376ae6dd425209543 numpy-1.15.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
3e488ea8de86391335a56e7e2b2c47de numpy-1.15.1-cp34-cp34m-manylinux1_i686.whl
0edee0d56ea5670b93b47410e66fa337 numpy-1.15.1-cp34-cp34m-manylinux1_x86_64.whl
67670224f931699c3836a1c9e4e8230b numpy-1.15.1-cp34-none-win32.whl
5b9e984e562aac63b7549e456bd89dfe numpy-1.15.1-cp34-none-win_amd64.whl
063f6a86f0713211b69050545e7c6c2c numpy-1.15.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
4afe4fd3ea108a967bd0b9425305b979 numpy-1.15.1-cp35-cp35m-manylinux1_i686.whl
e1ebc2bc6d0947159b33f208e844251a numpy-1.15.1-cp35-cp35m-manylinux1_x86_64.whl
910aab0be682f29a182239e4bd4631cf numpy-1.15.1-cp35-none-win32.whl
bfaac6c5f4e8ab65cd76b010ea5c5dfe numpy-1.15.1-cp35-none-win_amd64.whl
ce48f8b807c9ac8b7d00301584ab7976 numpy-1.15.1-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
d7d0c86acb89a86894811b8a792fba89 numpy-1.15.1-cp36-cp36m-manylinux1_i686.whl
3cd21facc099e72ab56a957978207c8c numpy-1.15.1-cp36-cp36m-manylinux1_x86_64.whl
04471e530164dd25c7a9c1309712cc64 numpy-1.15.1-cp36-none-win32.whl
013ea5fbb8a953c2112acaa591c675a8 numpy-1.15.1-cp36-none-win_amd64.whl
3fdd39812b8fe172824d2cc52cb807c4 numpy-1.15.1-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
381bd5ea598b17333264b1cbc9f62fac numpy-1.15.1-cp37-cp37m-manylinux1_i686.whl
e600bd09303c622ff4d16ed63fefb205 numpy-1.15.1-cp37-cp37m-manylinux1_x86_64.whl
c05625370ff437b3e1a4f08cf194e3e4 numpy-1.15.1-cp37-none-win32.whl
f476babe66c6104c00accbf0bcfafce5 numpy-1.15.1-cp37-none-win_amd64.whl
e369ffae42ab89c7d1be5fe786e27702 numpy-1.15.1.tar.gz
898004d5be091fde59ae353e3008fe9b numpy-1.15.1.zip

SHA256
------

5e359e9c531075220785603e5966eef20ccae9b3b6b8a06fdfb66c084361ce92 numpy-1.15.1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
419e6faee16097124ee627ed31572c7e80a1070efa25260b78097cca240e219a numpy-1.15.1-cp27-cp27m-manylinux1_i686.whl
719b6789acb2bc86ea9b33a701d7c43dc2fc56d95107fd3c5b0a8230164d4dfb numpy-1.15.1-cp27-cp27m-manylinux1_x86_64.whl
62d55e96ec7b117d3d5e618c15efcf769e70a6effaee5842857b64fb4883887a numpy-1.15.1-cp27-cp27mu-manylinux1_i686.whl
df0b02c6705c5d1c25cc35c7b5d6b6f9b3b30833f9d178843397ae55ecc2eebb numpy-1.15.1-cp27-cp27mu-manylinux1_x86_64.whl
dae8618c0bcbfcf6cf91350f8abcdd84158323711566a8c5892b5c7f832af76f numpy-1.15.1-cp27-none-win32.whl
a3bd01d6d3ed3d7c06d7f9979ba5d68281f15383fafd53b81aa44b9191047cf8 numpy-1.15.1-cp27-none-win_amd64.whl
1c362ad12dd09a43b348bb28dd2295dd9cdf77f41f0f45965e04ba97f525b864 numpy-1.15.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
83b8fc18261b70f45bece2d392537c93dc81eb6c539a16c9ac994c47fc79f09a numpy-1.15.1-cp34-cp34m-manylinux1_i686.whl
ce75ed495a746e3e78cfa22a77096b3bff2eda995616cb7a542047f233091268 numpy-1.15.1-cp34-cp34m-manylinux1_x86_64.whl
340ec1697d9bb3a9c464028af7a54245298502e91178bddb4c37626d36e197b7 numpy-1.15.1-cp34-none-win32.whl
2156a06bd407918df4ac0122df6497a9c137432118f585e5b17d543e593d1587 numpy-1.15.1-cp34-none-win_amd64.whl
549f3e9778b148a47f4fb4682955ed88057eb627c9fe5467f33507c536deda9d numpy-1.15.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
378378973546ecc1dfaf9e24c160d683dd04df871ecd2dcc86ce658ca20f92c0 numpy-1.15.1-cp35-cp35m-manylinux1_i686.whl
35db8d419345caa4eeaa65cd63f34a15208acd87530a30f0bc25fc84f55c8c80 numpy-1.15.1-cp35-cp35m-manylinux1_x86_64.whl
4287104c24e6a09b9b418761a1e7b1bbde65105f110690ca46a23600a3c606b8 numpy-1.15.1-cp35-none-win32.whl
7a70f2b60d48828cba94a54a8776b61a9c2657a803d47f5785f8062e3a9c7c55 numpy-1.15.1-cp35-none-win_amd64.whl
e3660744cda0d94b90141cdd0db9308b958a372cfeee8d7188fdf5ad9108ea82 numpy-1.15.1-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
5ee7f3dbbdba0da75dec7e94bd7a2b10fe57a83e1b38e678200a6ad8e7b14fdc numpy-1.15.1-cp36-cp36m-manylinux1_i686.whl
36e8dcd1813ca92ce7e4299120cee6c03adad33d89b54862c1b1a100443ac399 numpy-1.15.1-cp36-cp36m-manylinux1_x86_64.whl
9473ad28375710ab18378e72b59422399b27e957e9339c413bf00793b4b12df0 numpy-1.15.1-cp36-none-win32.whl
c81a6afc1d2531a9ada50b58f8c36197f8418ef3d0611d4c1d7af93fdcda764f numpy-1.15.1-cp36-none-win_amd64.whl
98b86c62c08c2e5dc98a9c856d4a95329d11b1c6058cb9b5191d5ea6891acd09 numpy-1.15.1-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
24e4149c38489b51fc774b1e1faa9103e82f73344d7a00ba66f6845ab4769f3f numpy-1.15.1-cp37-cp37m-manylinux1_i686.whl
95b085b253080e5d09f7826f5e27dce067bae813a132023a77b739614a29de6e numpy-1.15.1-cp37-cp37m-manylinux1_x86_64.whl
361370e9b7f5e44c41eee29f2bb5cb3b755abb4b038bce6d6cbe08db7ff9cb74 numpy-1.15.1-cp37-none-win32.whl
f2362d0ca3e16c37782c1054d7972b8ad2729169567e3f0f4e5dd3cdf85f188e numpy-1.15.1-cp37-none-win_amd64.whl
3c1ccce5d935ef8df16ae0595b459ef08a5cdb05aee195ebc04b9d89a72be7fa numpy-1.15.1.tar.gz
7b9e37f194f8bcdca8e9e6af92e2cbad79e360542effc2dd6b98d63955d8d8a3 numpy-1.15.1.zip

Page 19 of 24

© 2025 Safety CLI Cybersecurity Inc. All Rights Reserved.