==========================
This is a bugfix release for bugs and regressions reported following the 1.15.0
release.
* The annoying but harmless RuntimeWarning that "numpy.dtype size changed" has
been suppressed. The long standing suppression was lost in the transition to
pytest.
* The update to Cython 0.28.3 exposed a problematic use of a gcc attribute used
to prefer code size over speed in module initialization, possibly resulting in
incorrect compiled code. This has been fixed in latest Cython but has been
disabled here for safety.
* Support for big-endian and ARMv8 architectures has been improved.
The Python versions supported by this release are 2.7, 3.4-3.7. The wheels are
linked with OpenBLAS v0.3.0, which should fix some of the linalg problems
reported for NumPy 1.14.
Compatibility Note
==================
The NumPy 1.15.x OS X wheels released on PyPI no longer contain 32-bit
binaries. That will also be the case in future releases. See
`11625 <https://github.com/numpy/numpy/issues/11625>`__ for the related
discussion. Those needing 32-bit support should look elsewhere or build
from source.
Contributors
============
A total of 7 people contributed to this release. People with a "+" by their
names contributed a patch for the first time.
* Charles Harris
* Chris Billington
* Elliott Sales de Andrade +
* Eric Wieser
* Jeremy Manning +
* Matti Picus
* Ralf Gommers
Pull requests merged
====================
A total of 24 pull requests were merged for this release.
* 11647: MAINT: Filter Cython warnings in ``__init__.py``
* 11648: BUG: Fix doc source links to unwrap decorators
* 11657: BUG: Ensure singleton dimensions are not dropped when converting...
* 11661: BUG: Warn on Nan in minimum,maximum for scalars
* 11665: BUG: cython sometimes emits invalid gcc attribute
* 11682: BUG: Fix regression in void_getitem
* 11698: BUG: Make matrix_power again work for object arrays.
* 11700: BUG: Add missing PyErr_NoMemory after failing malloc
* 11719: BUG: Fix undefined functions on big-endian systems.
* 11720: MAINT: Make einsum optimize default to False.
* 11746: BUG: Fix regression in loadtxt for bz2 text files in Python 2.
* 11757: BUG: Revert use of `console_scripts`.
* 11758: BUG: Fix Fortran kind detection for aarch64 & s390x.
* 11759: BUG: Fix printing of longdouble on ppc64le.
* 11760: BUG: Fixes for unicode field names in Python 2
* 11761: BUG: Increase required cython version on python 3.7
* 11763: BUG: check return value of _buffer_format_string
* 11775: MAINT: Make assert_array_compare more generic.
* 11776: TST: Fix urlopen stubbing.
* 11777: BUG: Fix regression in intersect1d.
* 11779: BUG: Fix test sensitive to platform byte order.
* 11781: BUG: Avoid signed overflow in histogram
* 11785: BUG: Fix pickle and memoryview for datetime64, timedelta64 scalars
* 11786: BUG: Deprecation triggers segfault
Checksums
=========
MD5
---
8e894e6873420259fa13bc685ca922a7 numpy-1.15.1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
75154de03468c18c8b8d337b75d29bad numpy-1.15.1-cp27-cp27m-manylinux1_i686.whl
50e3db64b9be2d399f7035ea71e16092 numpy-1.15.1-cp27-cp27m-manylinux1_x86_64.whl
35e15be82a5fc807572c7723171902b4 numpy-1.15.1-cp27-cp27mu-manylinux1_i686.whl
315cc1fb777c5251f27e49075b4d13fb numpy-1.15.1-cp27-cp27mu-manylinux1_x86_64.whl
7b6fbdca75eeb0a0c28c09bfaf2e17c2 numpy-1.15.1-cp27-none-win32.whl
8bc75bc94bd189a4cc3ded0f0e9b1353 numpy-1.15.1-cp27-none-win_amd64.whl
3c8950f10241185376ae6dd425209543 numpy-1.15.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
3e488ea8de86391335a56e7e2b2c47de numpy-1.15.1-cp34-cp34m-manylinux1_i686.whl
0edee0d56ea5670b93b47410e66fa337 numpy-1.15.1-cp34-cp34m-manylinux1_x86_64.whl
67670224f931699c3836a1c9e4e8230b numpy-1.15.1-cp34-none-win32.whl
5b9e984e562aac63b7549e456bd89dfe numpy-1.15.1-cp34-none-win_amd64.whl
063f6a86f0713211b69050545e7c6c2c numpy-1.15.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
4afe4fd3ea108a967bd0b9425305b979 numpy-1.15.1-cp35-cp35m-manylinux1_i686.whl
e1ebc2bc6d0947159b33f208e844251a numpy-1.15.1-cp35-cp35m-manylinux1_x86_64.whl
910aab0be682f29a182239e4bd4631cf numpy-1.15.1-cp35-none-win32.whl
bfaac6c5f4e8ab65cd76b010ea5c5dfe numpy-1.15.1-cp35-none-win_amd64.whl
ce48f8b807c9ac8b7d00301584ab7976 numpy-1.15.1-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
d7d0c86acb89a86894811b8a792fba89 numpy-1.15.1-cp36-cp36m-manylinux1_i686.whl
3cd21facc099e72ab56a957978207c8c numpy-1.15.1-cp36-cp36m-manylinux1_x86_64.whl
04471e530164dd25c7a9c1309712cc64 numpy-1.15.1-cp36-none-win32.whl
013ea5fbb8a953c2112acaa591c675a8 numpy-1.15.1-cp36-none-win_amd64.whl
3fdd39812b8fe172824d2cc52cb807c4 numpy-1.15.1-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
381bd5ea598b17333264b1cbc9f62fac numpy-1.15.1-cp37-cp37m-manylinux1_i686.whl
e600bd09303c622ff4d16ed63fefb205 numpy-1.15.1-cp37-cp37m-manylinux1_x86_64.whl
c05625370ff437b3e1a4f08cf194e3e4 numpy-1.15.1-cp37-none-win32.whl
f476babe66c6104c00accbf0bcfafce5 numpy-1.15.1-cp37-none-win_amd64.whl
e369ffae42ab89c7d1be5fe786e27702 numpy-1.15.1.tar.gz
898004d5be091fde59ae353e3008fe9b numpy-1.15.1.zip
SHA256
------
5e359e9c531075220785603e5966eef20ccae9b3b6b8a06fdfb66c084361ce92 numpy-1.15.1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
419e6faee16097124ee627ed31572c7e80a1070efa25260b78097cca240e219a numpy-1.15.1-cp27-cp27m-manylinux1_i686.whl
719b6789acb2bc86ea9b33a701d7c43dc2fc56d95107fd3c5b0a8230164d4dfb numpy-1.15.1-cp27-cp27m-manylinux1_x86_64.whl
62d55e96ec7b117d3d5e618c15efcf769e70a6effaee5842857b64fb4883887a numpy-1.15.1-cp27-cp27mu-manylinux1_i686.whl
df0b02c6705c5d1c25cc35c7b5d6b6f9b3b30833f9d178843397ae55ecc2eebb numpy-1.15.1-cp27-cp27mu-manylinux1_x86_64.whl
dae8618c0bcbfcf6cf91350f8abcdd84158323711566a8c5892b5c7f832af76f numpy-1.15.1-cp27-none-win32.whl
a3bd01d6d3ed3d7c06d7f9979ba5d68281f15383fafd53b81aa44b9191047cf8 numpy-1.15.1-cp27-none-win_amd64.whl
1c362ad12dd09a43b348bb28dd2295dd9cdf77f41f0f45965e04ba97f525b864 numpy-1.15.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
83b8fc18261b70f45bece2d392537c93dc81eb6c539a16c9ac994c47fc79f09a numpy-1.15.1-cp34-cp34m-manylinux1_i686.whl
ce75ed495a746e3e78cfa22a77096b3bff2eda995616cb7a542047f233091268 numpy-1.15.1-cp34-cp34m-manylinux1_x86_64.whl
340ec1697d9bb3a9c464028af7a54245298502e91178bddb4c37626d36e197b7 numpy-1.15.1-cp34-none-win32.whl
2156a06bd407918df4ac0122df6497a9c137432118f585e5b17d543e593d1587 numpy-1.15.1-cp34-none-win_amd64.whl
549f3e9778b148a47f4fb4682955ed88057eb627c9fe5467f33507c536deda9d numpy-1.15.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
378378973546ecc1dfaf9e24c160d683dd04df871ecd2dcc86ce658ca20f92c0 numpy-1.15.1-cp35-cp35m-manylinux1_i686.whl
35db8d419345caa4eeaa65cd63f34a15208acd87530a30f0bc25fc84f55c8c80 numpy-1.15.1-cp35-cp35m-manylinux1_x86_64.whl
4287104c24e6a09b9b418761a1e7b1bbde65105f110690ca46a23600a3c606b8 numpy-1.15.1-cp35-none-win32.whl
7a70f2b60d48828cba94a54a8776b61a9c2657a803d47f5785f8062e3a9c7c55 numpy-1.15.1-cp35-none-win_amd64.whl
e3660744cda0d94b90141cdd0db9308b958a372cfeee8d7188fdf5ad9108ea82 numpy-1.15.1-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
5ee7f3dbbdba0da75dec7e94bd7a2b10fe57a83e1b38e678200a6ad8e7b14fdc numpy-1.15.1-cp36-cp36m-manylinux1_i686.whl
36e8dcd1813ca92ce7e4299120cee6c03adad33d89b54862c1b1a100443ac399 numpy-1.15.1-cp36-cp36m-manylinux1_x86_64.whl
9473ad28375710ab18378e72b59422399b27e957e9339c413bf00793b4b12df0 numpy-1.15.1-cp36-none-win32.whl
c81a6afc1d2531a9ada50b58f8c36197f8418ef3d0611d4c1d7af93fdcda764f numpy-1.15.1-cp36-none-win_amd64.whl
98b86c62c08c2e5dc98a9c856d4a95329d11b1c6058cb9b5191d5ea6891acd09 numpy-1.15.1-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
24e4149c38489b51fc774b1e1faa9103e82f73344d7a00ba66f6845ab4769f3f numpy-1.15.1-cp37-cp37m-manylinux1_i686.whl
95b085b253080e5d09f7826f5e27dce067bae813a132023a77b739614a29de6e numpy-1.15.1-cp37-cp37m-manylinux1_x86_64.whl
361370e9b7f5e44c41eee29f2bb5cb3b755abb4b038bce6d6cbe08db7ff9cb74 numpy-1.15.1-cp37-none-win32.whl
f2362d0ca3e16c37782c1054d7972b8ad2729169567e3f0f4e5dd3cdf85f188e numpy-1.15.1-cp37-none-win_amd64.whl
3c1ccce5d935ef8df16ae0595b459ef08a5cdb05aee195ebc04b9d89a72be7fa numpy-1.15.1.tar.gz
7b9e37f194f8bcdca8e9e6af92e2cbad79e360542effc2dd6b98d63955d8d8a3 numpy-1.15.1.zip