Numpy

Latest version: v2.2.4

Safety actively analyzes 726274 Python packages for vulnerabilities to keep your Python projects secure.

Scan your dependencies

Page 2 of 24

3.0

NPY_NO_DEPRECATED_API=NPY_1_7_API_VERSION` to avoid C compiler warnings
about deprecated API usage.

Contributors
------------

A total of 8 people contributed to this release. People with a \"+\" by
their names contributed a patch for the first time.

- Charles Harris
- Matti Picus
- Pauli Virtanen
- Philippe Ombredanne +
- Sebastian Berg
- Stefan Behnel +
- Stephan Loyd +
- Zac Hatfield-Dodds

Pull requests merged
--------------------

A total of 9 pull requests were merged for this release.

- [\16959](https://github.com/numpy/numpy/pull/16959): TST: Change aarch64 to arm64 in travis.yml.
- [\16998](https://github.com/numpy/numpy/pull/16998): MAINT: Configure hypothesis in `np.test()` for determinism,\...
- [\17000](https://github.com/numpy/numpy/pull/17000): BLD: pin setuptools \< 49.2.0
- [\17015](https://github.com/numpy/numpy/pull/17015): ENH: Add NumPy declarations to be used by Cython 3.0+
- [\17125](https://github.com/numpy/numpy/pull/17125): BUG: Remove non-threadsafe sigint handling from fft calculation
- [\17243](https://github.com/numpy/numpy/pull/17243): BUG: core: fix ilp64 blas dot/vdot/\... for strides \> int32 max
- [\17244](https://github.com/numpy/numpy/pull/17244): DOC: Use SPDX license expressions with correct license
- [\17245](https://github.com/numpy/numpy/pull/17245): DOC: Fix the link to the quick-start in the old API functions
- [\17272](https://github.com/numpy/numpy/pull/17272): BUG: fix pickling of arrays larger than 2GiB

Checksums
---------

MD5

b74295cbb5b1c98f46f26e13c0fca0ea numpy-1.19.2-cp36-cp36m-macosx_10_9_x86_64.whl
3e307eca6c448bbe30e4c1dc99824642 numpy-1.19.2-cp36-cp36m-manylinux1_i686.whl
bfe6c2053a7a792097df912d1175ef7e numpy-1.19.2-cp36-cp36m-manylinux1_x86_64.whl
3b61953b421460abc7d2ecb4df4060bc numpy-1.19.2-cp36-cp36m-manylinux2010_i686.whl
7c442b7c5af62bd5be669bf6c360e114 numpy-1.19.2-cp36-cp36m-manylinux2010_x86_64.whl
f6eaf46804f0d66c123fa7ff728b178e numpy-1.19.2-cp36-cp36m-manylinux2014_aarch64.whl
30bbe0bcd774ab483c7494d1cf827199 numpy-1.19.2-cp36-cp36m-win32.whl
cf54372ccde7de333d7b69cd16abfa70 numpy-1.19.2-cp36-cp36m-win_amd64.whl
285d0fc2986bf4a050523d98f47f2175 numpy-1.19.2-cp37-cp37m-macosx_10_9_x86_64.whl
a0901b44347ba39154058a26a9fc8e77 numpy-1.19.2-cp37-cp37m-manylinux1_i686.whl
21bfe38bdb317ad4af4959279dd90fde numpy-1.19.2-cp37-cp37m-manylinux1_x86_64.whl
ec32c124ace9c08399e88b8eca6d7475 numpy-1.19.2-cp37-cp37m-manylinux2010_i686.whl
0d5cae15043a8172a1b8a478b7c98119 numpy-1.19.2-cp37-cp37m-manylinux2010_x86_64.whl
c7e9905e721dc31a666f59e30e37aa0d numpy-1.19.2-cp37-cp37m-manylinux2014_aarch64.whl
ad32d083e641f2cf1a50fe821f3673a7 numpy-1.19.2-cp37-cp37m-win32.whl
a243b3e844507e424e828430010612c1 numpy-1.19.2-cp37-cp37m-win_amd64.whl
8f4d5df29d4fbf21bf8c4c976595214f numpy-1.19.2-cp38-cp38-macosx_10_9_x86_64.whl
7b003b2fd18125f3956eb3a182ab0d7f numpy-1.19.2-cp38-cp38-manylinux1_i686.whl
e7b8242ee7a79778c6df64772fde5885 numpy-1.19.2-cp38-cp38-manylinux1_x86_64.whl
e89e05d24b6f898005e03ba3f01c0641 numpy-1.19.2-cp38-cp38-manylinux2010_i686.whl
4cffe85a99bfe08d47d7f1f655142be4 numpy-1.19.2-cp38-cp38-manylinux2010_x86_64.whl
39e363f10f0a9af0a8506699118d3aaf numpy-1.19.2-cp38-cp38-manylinux2014_aarch64.whl
13ccd230fefdd56a1679fd72fd0d8a55 numpy-1.19.2-cp38-cp38-win32.whl
a3d85f244058882b90140468b86f2e2e numpy-1.19.2-cp38-cp38-win_amd64.whl
ef4cf0675f801a4bf339348fc1843f50 numpy-1.19.2-pp36-pypy36_pp73-manylinux2010_x86_64.whl
471156268abd8686e39e811003726ab1 numpy-1.19.2.tar.gz
2d011c5422596d742784ba5c2204bc5d numpy-1.19.2.zip

SHA256

b594f76771bc7fc8a044c5ba303427ee67c17a09b36e1fa32bde82f5c419d17a numpy-1.19.2-cp36-cp36m-macosx_10_9_x86_64.whl
e6ddbdc5113628f15de7e4911c02aed74a4ccff531842c583e5032f6e5a179bd numpy-1.19.2-cp36-cp36m-manylinux1_i686.whl
3733640466733441295b0d6d3dcbf8e1ffa7e897d4d82903169529fd3386919a numpy-1.19.2-cp36-cp36m-manylinux1_x86_64.whl
4339741994c775396e1a274dba3609c69ab0f16056c1077f18979bec2a2c2e6e numpy-1.19.2-cp36-cp36m-manylinux2010_i686.whl
7c6646314291d8f5ea900a7ea9c4261f834b5b62159ba2abe3836f4fa6705526 numpy-1.19.2-cp36-cp36m-manylinux2010_x86_64.whl
7118f0a9f2f617f921ec7d278d981244ba83c85eea197be7c5a4f84af80a9c3c numpy-1.19.2-cp36-cp36m-manylinux2014_aarch64.whl
9a3001248b9231ed73894c773142658bab914645261275f675d86c290c37f66d numpy-1.19.2-cp36-cp36m-win32.whl
967c92435f0b3ba37a4257c48b8715b76741410467e2bdb1097e8391fccfae15 numpy-1.19.2-cp36-cp36m-win_amd64.whl
d526fa58ae4aead839161535d59ea9565863bb0b0bdb3cc63214613fb16aced4 numpy-1.19.2-cp37-cp37m-macosx_10_9_x86_64.whl
eb25c381d168daf351147713f49c626030dcff7a393d5caa62515d415a6071d8 numpy-1.19.2-cp37-cp37m-manylinux1_i686.whl
62139af94728d22350a571b7c82795b9d59be77fc162414ada6c8b6a10ef5d02 numpy-1.19.2-cp37-cp37m-manylinux1_x86_64.whl
0c66da1d202c52051625e55a249da35b31f65a81cb56e4c69af0dfb8fb0125bf numpy-1.19.2-cp37-cp37m-manylinux2010_i686.whl
2117536e968abb7357d34d754e3733b0d7113d4c9f1d921f21a3d96dec5ff716 numpy-1.19.2-cp37-cp37m-manylinux2010_x86_64.whl
54045b198aebf41bf6bf4088012777c1d11703bf74461d70cd350c0af2182e45 numpy-1.19.2-cp37-cp37m-manylinux2014_aarch64.whl
aba1d5daf1144b956bc87ffb87966791f5e9f3e1f6fab3d7f581db1f5b598f7a numpy-1.19.2-cp37-cp37m-win32.whl
addaa551b298052c16885fc70408d3848d4e2e7352de4e7a1e13e691abc734c1 numpy-1.19.2-cp37-cp37m-win_amd64.whl
58d66a6b3b55178a1f8a5fe98df26ace76260a70de694d99577ddeab7eaa9a9d numpy-1.19.2-cp38-cp38-macosx_10_9_x86_64.whl
59f3d687faea7a4f7f93bd9665e5b102f32f3fa28514f15b126f099b7997203d numpy-1.19.2-cp38-cp38-manylinux1_i686.whl
cebd4f4e64cfe87f2039e4725781f6326a61f095bc77b3716502bed812b385a9 numpy-1.19.2-cp38-cp38-manylinux1_x86_64.whl
c35a01777f81e7333bcf276b605f39c872e28295441c265cd0c860f4b40148c1 numpy-1.19.2-cp38-cp38-manylinux2010_i686.whl
d7ac33585e1f09e7345aa902c281bd777fdb792432d27fca857f39b70e5dd31c numpy-1.19.2-cp38-cp38-manylinux2010_x86_64.whl
04c7d4ebc5ff93d9822075ddb1751ff392a4375e5885299445fcebf877f179d5 numpy-1.19.2-cp38-cp38-manylinux2014_aarch64.whl
51ee93e1fac3fe08ef54ff1c7f329db64d8a9c5557e6c8e908be9497ac76374b numpy-1.19.2-cp38-cp38-win32.whl
1669ec8e42f169ff715a904c9b2105b6640f3f2a4c4c2cb4920ae8b2785dac65 numpy-1.19.2-cp38-cp38-win_amd64.whl
0bfd85053d1e9f60234f28f63d4a5147ada7f432943c113a11afcf3e65d9d4c8 numpy-1.19.2-pp36-pypy36_pp73-manylinux2010_x86_64.whl
74d0cf50aa28af81874aca3e67560945afd783b2a006913577d6cddc35a824a6 numpy-1.19.2.tar.gz
0d310730e1e793527065ad7dde736197b705d0e4c9999775f212b03c44a8484c numpy-1.19.2.zip

2.2.4

release. There are a large number of typing improvements, the rest of
the changes are the usual mix of bugfixes and platform maintenace.

This release supports Python versions 3.10-3.13.

Contributors

A total of 15 people contributed to this release. People with a \"+\" by
their names contributed a patch for the first time.

- Abhishek Kumar
- Andrej Zhilenkov
- Andrew Nelson
- Charles Harris
- Giovanni Del Monte
- Guan Ming(Wesley) Chiu +
- Jonathan Albrecht +
- Joren Hammudoglu
- Mark Harfouche
- Matthieu Darbois
- Nathan Goldbaum
- Pieter Eendebak
- Sebastian Berg
- Tyler Reddy
- lvllvl +

Pull requests merged

A total of 17 pull requests were merged for this release.

- [28333](https://github.com/numpy/numpy/pull/28333): MAINT: Prepare 2.2.x for further development.
- [28348](https://github.com/numpy/numpy/pull/28348): TYP: fix positional- and keyword-only params in astype, cross\...
- [28377](https://github.com/numpy/numpy/pull/28377): MAINT: Update FreeBSD version and fix test failure
- [28379](https://github.com/numpy/numpy/pull/28379): BUG: numpy.loadtxt reads only 50000 lines when skip_rows \>= max_rows
- [28385](https://github.com/numpy/numpy/pull/28385): BUG: Make np.nonzero threading safe
- [28420](https://github.com/numpy/numpy/pull/28420): BUG: safer bincount casting (backport to 2.2.x)
- [28422](https://github.com/numpy/numpy/pull/28422): BUG: Fix building on s390x with clang
- [28423](https://github.com/numpy/numpy/pull/28423): CI: use QEMU 9.2.2 for Linux Qemu tests
- [28424](https://github.com/numpy/numpy/pull/28424): BUG: skip legacy dtype multithreaded test on 32 bit runners
- [28435](https://github.com/numpy/numpy/pull/28435): BUG: Fix searchsorted and CheckFromAny byte-swapping logic
- [28449](https://github.com/numpy/numpy/pull/28449): BUG: sanity check `__array_interface__` number of dimensions
- [28510](https://github.com/numpy/numpy/pull/28510): MAINT: Hide decorator from pytest traceback
- [28512](https://github.com/numpy/numpy/pull/28512): TYP: Typing fixes backported from #28452, 28491, 28494
- [28521](https://github.com/numpy/numpy/pull/28521): TYP: Backport fixes from #28505, 28506, 28508, and 28511
- [28533](https://github.com/numpy/numpy/pull/28533): TYP: Backport typing fixes from main (2)
- [28534](https://github.com/numpy/numpy/pull/28534): TYP: Backport typing fixes from main (3)
- [28542](https://github.com/numpy/numpy/pull/28542): TYP: Backport typing fixes from main (4)

Checksums

MD5

935928cbd2de140da097f6d5f4a01d72 numpy-2.2.4-cp310-cp310-macosx_10_9_x86_64.whl
bf7fd01bb177885e920173b610c195d9 numpy-2.2.4-cp310-cp310-macosx_11_0_arm64.whl
826e52cd898567a0c446113ab7a7b362 numpy-2.2.4-cp310-cp310-macosx_14_0_arm64.whl
9982a91d7327aea541c24aff94d3e462 numpy-2.2.4-cp310-cp310-macosx_14_0_x86_64.whl
5bdf5b63f4ee01fa808d13043b2a2275 numpy-2.2.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
677b3031105e24eaee2e0e57d7c2a306 numpy-2.2.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
d857867787fe1eb236670e7fdb25f414 numpy-2.2.4-cp310-cp310-musllinux_1_2_aarch64.whl
a5aff3a7eb2923878e67fbe1cd04a9e9 numpy-2.2.4-cp310-cp310-musllinux_1_2_x86_64.whl
e00bd3ac85d8f34b46b7f97a8278aeb3 numpy-2.2.4-cp310-cp310-win32.whl
e5cb2a5d14bccee316bb73173be125ec numpy-2.2.4-cp310-cp310-win_amd64.whl
494f60d8e1c3500413bd093bb3f486ea numpy-2.2.4-cp311-cp311-macosx_10_9_x86_64.whl
a886a9f3e80a60ce6ba95b431578bbca numpy-2.2.4-cp311-cp311-macosx_11_0_arm64.whl
889f3b507bab9272d9b549780840a642 numpy-2.2.4-cp311-cp311-macosx_14_0_arm64.whl
059788668d2c4e9aace4858e77c099ed numpy-2.2.4-cp311-cp311-macosx_14_0_x86_64.whl
db9ae978afb76a4bf79df0657a66aaeb numpy-2.2.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
e36963a4c177157dc7b0775c309fa5a8 numpy-2.2.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
3603e683878b74f38e5617f04ff6a369 numpy-2.2.4-cp311-cp311-musllinux_1_2_aarch64.whl
afbc410fb9b42b19f4f7c81c21d6777f numpy-2.2.4-cp311-cp311-musllinux_1_2_x86_64.whl
33ff8081378188894097942f80c33e26 numpy-2.2.4-cp311-cp311-win32.whl
5b11fe8d26318d85e0bc577a654f6643 numpy-2.2.4-cp311-cp311-win_amd64.whl
91121787f396d3e98210de8b617e5d48 numpy-2.2.4-cp312-cp312-macosx_10_13_x86_64.whl
c524d1020b4652aacf4477d1628fa1ba numpy-2.2.4-cp312-cp312-macosx_11_0_arm64.whl
eb08f551bdd6772155bb39ac0da47479 numpy-2.2.4-cp312-cp312-macosx_14_0_arm64.whl
7cb37fc9145d0ebbea5666b4f9ed1027 numpy-2.2.4-cp312-cp312-macosx_14_0_x86_64.whl
c4452a5dc557c291904b5c51a4148237 numpy-2.2.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
bd23a12ead870759f264160ab38b2c9d numpy-2.2.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
07b44109381985b48d1eef80feebc5ad numpy-2.2.4-cp312-cp312-musllinux_1_2_aarch64.whl
95f1a27d33106fa9f40ee0714681c840 numpy-2.2.4-cp312-cp312-musllinux_1_2_x86_64.whl
507e550a55b19dedf267b58a487ba0bc numpy-2.2.4-cp312-cp312-win32.whl
be21ccbf8931e92ba1fdb2dc1250bf2a numpy-2.2.4-cp312-cp312-win_amd64.whl
e94003c2b65d81b00203711c5c42fb8e numpy-2.2.4-cp313-cp313-macosx_10_13_x86_64.whl
cf781fd5412ffd826e0436883452cc17 numpy-2.2.4-cp313-cp313-macosx_11_0_arm64.whl
92c9a30386a64f2deddad1db742bd296 numpy-2.2.4-cp313-cp313-macosx_14_0_arm64.whl
7fd16554fa0a15b7f99b1fabf1c4592c numpy-2.2.4-cp313-cp313-macosx_14_0_x86_64.whl
9293b0575a902b2d55c35567dee7679e numpy-2.2.4-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
9970699bd95e8a64a562b1e6328b83d0 numpy-2.2.4-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e8597c611a919a8e88229d6889c1f86e numpy-2.2.4-cp313-cp313-musllinux_1_2_aarch64.whl
329288501f012606605bdbed368e58e9 numpy-2.2.4-cp313-cp313-musllinux_1_2_x86_64.whl
04bf8d0f6a9e279ab01df4ed0b4aeee1 numpy-2.2.4-cp313-cp313-win32.whl
66801fe84a436b7ed3be6e0082b86917 numpy-2.2.4-cp313-cp313-win_amd64.whl
3e2f31e01b45cd16a87b794477de3714 numpy-2.2.4-cp313-cp313t-macosx_10_13_x86_64.whl
7504018213a3a8fea7173e2c1d0fcfd1 numpy-2.2.4-cp313-cp313t-macosx_11_0_arm64.whl
e299021397c3cdb941b7ffe77cf0fefe numpy-2.2.4-cp313-cp313t-macosx_14_0_arm64.whl
1cc2731a246079bcab361179f38e7ccb numpy-2.2.4-cp313-cp313t-macosx_14_0_x86_64.whl
e6eccf936d25c9eda9df1a4d50ae2fdc numpy-2.2.4-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
ba825efd05cca6d56c3dca9f7f1f88e7 numpy-2.2.4-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
369eebec47c9c27cb4841a13e9522167 numpy-2.2.4-cp313-cp313t-musllinux_1_2_aarch64.whl
554dbfa52988d01f715cbe8d4da4b409 numpy-2.2.4-cp313-cp313t-musllinux_1_2_x86_64.whl
811d25a008c68086c9382487e9a4127a numpy-2.2.4-cp313-cp313t-win32.whl
893fd2fdd42f386e300bee885bbb7778 numpy-2.2.4-cp313-cp313t-win_amd64.whl
65e284546c5ee575eca0a3726c0a1d98 numpy-2.2.4-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
e4e73511eac8f1a10c6abbd6fa2fa0aa numpy-2.2.4-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
a884ed5263b91fa87b5e3d14caf955a5 numpy-2.2.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
7330087a6ad1527ae20a495e2fb3b357 numpy-2.2.4-pp310-pypy310_pp73-win_amd64.whl
56232f4a69b03dd7a87a55fffc5f2ebc numpy-2.2.4.tar.gz

SHA256

8146f3550d627252269ac42ae660281d673eb6f8b32f113538e0cc2a9aed42b9 numpy-2.2.4-cp310-cp310-macosx_10_9_x86_64.whl
e642d86b8f956098b564a45e6f6ce68a22c2c97a04f5acd3f221f57b8cb850ae numpy-2.2.4-cp310-cp310-macosx_11_0_arm64.whl
a84eda42bd12edc36eb5b53bbcc9b406820d3353f1994b6cfe453a33ff101775 numpy-2.2.4-cp310-cp310-macosx_14_0_arm64.whl
4ba5054787e89c59c593a4169830ab362ac2bee8a969249dc56e5d7d20ff8df9 numpy-2.2.4-cp310-cp310-macosx_14_0_x86_64.whl
7716e4a9b7af82c06a2543c53ca476fa0b57e4d760481273e09da04b74ee6ee2 numpy-2.2.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
adf8c1d66f432ce577d0197dceaac2ac00c0759f573f28516246351c58a85020 numpy-2.2.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
218f061d2faa73621fa23d6359442b0fc658d5b9a70801373625d958259eaca3 numpy-2.2.4-cp310-cp310-musllinux_1_2_aarch64.whl
df2f57871a96bbc1b69733cd4c51dc33bea66146b8c63cacbfed73eec0883017 numpy-2.2.4-cp310-cp310-musllinux_1_2_x86_64.whl
a0258ad1f44f138b791327961caedffbf9612bfa504ab9597157806faa95194a numpy-2.2.4-cp310-cp310-win32.whl
0d54974f9cf14acf49c60f0f7f4084b6579d24d439453d5fc5805d46a165b542 numpy-2.2.4-cp310-cp310-win_amd64.whl
e9e0a277bb2eb5d8a7407e14688b85fd8ad628ee4e0c7930415687b6564207a4 numpy-2.2.4-cp311-cp311-macosx_10_9_x86_64.whl
9eeea959168ea555e556b8188da5fa7831e21d91ce031e95ce23747b7609f8a4 numpy-2.2.4-cp311-cp311-macosx_11_0_arm64.whl
bd3ad3b0a40e713fc68f99ecfd07124195333f1e689387c180813f0e94309d6f numpy-2.2.4-cp311-cp311-macosx_14_0_arm64.whl
cf28633d64294969c019c6df4ff37f5698e8326db68cc2b66576a51fad634880 numpy-2.2.4-cp311-cp311-macosx_14_0_x86_64.whl
2fa8fa7697ad1646b5c93de1719965844e004fcad23c91228aca1cf0800044a1 numpy-2.2.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
f4162988a360a29af158aeb4a2f4f09ffed6a969c9776f8f3bdee9b06a8ab7e5 numpy-2.2.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
892c10d6a73e0f14935c31229e03325a7b3093fafd6ce0af704be7f894d95687 numpy-2.2.4-cp311-cp311-musllinux_1_2_aarch64.whl
db1f1c22173ac1c58db249ae48aa7ead29f534b9a948bc56828337aa84a32ed6 numpy-2.2.4-cp311-cp311-musllinux_1_2_x86_64.whl
ea2bb7e2ae9e37d96835b3576a4fa4b3a97592fbea8ef7c3587078b0068b8f09 numpy-2.2.4-cp311-cp311-win32.whl
f7de08cbe5551911886d1ab60de58448c6df0f67d9feb7d1fb21e9875ef95e91 numpy-2.2.4-cp311-cp311-win_amd64.whl
a7b9084668aa0f64e64bd00d27ba5146ef1c3a8835f3bd912e7a9e01326804c4 numpy-2.2.4-cp312-cp312-macosx_10_13_x86_64.whl
dbe512c511956b893d2dacd007d955a3f03d555ae05cfa3ff1c1ff6df8851854 numpy-2.2.4-cp312-cp312-macosx_11_0_arm64.whl
bb649f8b207ab07caebba230d851b579a3c8711a851d29efe15008e31bb4de24 numpy-2.2.4-cp312-cp312-macosx_14_0_arm64.whl
f34dc300df798742b3d06515aa2a0aee20941c13579d7a2f2e10af01ae4901ee numpy-2.2.4-cp312-cp312-macosx_14_0_x86_64.whl
c3f7ac96b16955634e223b579a3e5798df59007ca43e8d451a0e6a50f6bfdfba numpy-2.2.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
4f92084defa704deadd4e0a5ab1dc52d8ac9e8a8ef617f3fbb853e79b0ea3592 numpy-2.2.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
7a4e84a6283b36632e2a5b56e121961f6542ab886bc9e12f8f9818b3c266bfbb numpy-2.2.4-cp312-cp312-musllinux_1_2_aarch64.whl
11c43995255eb4127115956495f43e9343736edb7fcdb0d973defd9de14cd84f numpy-2.2.4-cp312-cp312-musllinux_1_2_x86_64.whl
65ef3468b53269eb5fdb3a5c09508c032b793da03251d5f8722b1194f1790c00 numpy-2.2.4-cp312-cp312-win32.whl
2aad3c17ed2ff455b8eaafe06bcdae0062a1db77cb99f4b9cbb5f4ecb13c5146 numpy-2.2.4-cp312-cp312-win_amd64.whl
1cf4e5c6a278d620dee9ddeb487dc6a860f9b199eadeecc567f777daace1e9e7 numpy-2.2.4-cp313-cp313-macosx_10_13_x86_64.whl
1974afec0b479e50438fc3648974268f972e2d908ddb6d7fb634598cdb8260a0 numpy-2.2.4-cp313-cp313-macosx_11_0_arm64.whl
79bd5f0a02aa16808fcbc79a9a376a147cc1045f7dfe44c6e7d53fa8b8a79392 numpy-2.2.4-cp313-cp313-macosx_14_0_arm64.whl
3387dd7232804b341165cedcb90694565a6015433ee076c6754775e85d86f1fc numpy-2.2.4-cp313-cp313-macosx_14_0_x86_64.whl
6f527d8fdb0286fd2fd97a2a96c6be17ba4232da346931d967a0630050dfd298 numpy-2.2.4-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
bce43e386c16898b91e162e5baaad90c4b06f9dcbe36282490032cec98dc8ae7 numpy-2.2.4-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
31504f970f563d99f71a3512d0c01a645b692b12a63630d6aafa0939e52361e6 numpy-2.2.4-cp313-cp313-musllinux_1_2_aarch64.whl
81413336ef121a6ba746892fad881a83351ee3e1e4011f52e97fba79233611fd numpy-2.2.4-cp313-cp313-musllinux_1_2_x86_64.whl
f486038e44caa08dbd97275a9a35a283a8f1d2f0ee60ac260a1790e76660833c numpy-2.2.4-cp313-cp313-win32.whl
207a2b8441cc8b6a2a78c9ddc64d00d20c303d79fba08c577752f080c4007ee3 numpy-2.2.4-cp313-cp313-win_amd64.whl
8120575cb4882318c791f839a4fd66161a6fa46f3f0a5e613071aae35b5dd8f8 numpy-2.2.4-cp313-cp313t-macosx_10_13_x86_64.whl
a761ba0fa886a7bb33c6c8f6f20213735cb19642c580a931c625ee377ee8bd39 numpy-2.2.4-cp313-cp313t-macosx_11_0_arm64.whl
ac0280f1ba4a4bfff363a99a6aceed4f8e123f8a9b234c89140f5e894e452ecd numpy-2.2.4-cp313-cp313t-macosx_14_0_arm64.whl
879cf3a9a2b53a4672a168c21375166171bc3932b7e21f622201811c43cdd3b0 numpy-2.2.4-cp313-cp313t-macosx_14_0_x86_64.whl
f05d4198c1bacc9124018109c5fba2f3201dbe7ab6e92ff100494f236209c960 numpy-2.2.4-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
e2f085ce2e813a50dfd0e01fbfc0c12bbe5d2063d99f8b29da30e544fb6483b8 numpy-2.2.4-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
92bda934a791c01d6d9d8e038363c50918ef7c40601552a58ac84c9613a665bc numpy-2.2.4-cp313-cp313t-musllinux_1_2_aarch64.whl
ee4d528022f4c5ff67332469e10efe06a267e32f4067dc76bb7e2cddf3cd25ff numpy-2.2.4-cp313-cp313t-musllinux_1_2_x86_64.whl
05c076d531e9998e7e694c36e8b349969c56eadd2cdcd07242958489d79a7286 numpy-2.2.4-cp313-cp313t-win32.whl
188dcbca89834cc2e14eb2f106c96d6d46f200fe0200310fc29089657379c58d numpy-2.2.4-cp313-cp313t-win_amd64.whl
7051ee569db5fbac144335e0f3b9c2337e0c8d5c9fee015f259a5bd70772b7e8 numpy-2.2.4-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
ab2939cd5bec30a7430cbdb2287b63151b77cf9624de0532d629c9a1c59b1d5c numpy-2.2.4-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
d0f35b19894a9e08639fd60a1ec1978cb7f5f7f1eace62f38dd36be8aecdef4d numpy-2.2.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
b4adfbbc64014976d2f91084915ca4e626fbf2057fb81af209c1a6d776d23e3d numpy-2.2.4-pp310-pypy310_pp73-win_amd64.whl
9ba03692a45d3eef66559efe1d1096c4b9b75c0986b5dff5530c378fb8331d4f numpy-2.2.4.tar.gz

2.2.3

release. The majority of the changes are typing improvements and fixes
for free threaded Python. Both of those areas are still under
development, so if you discover new problems, please report them.

This release supports Python versions 3.10-3.13.

Contributors

A total of 9 people contributed to this release. People with a \"+\" by
their names contributed a patch for the first time.

- !amotzop
- Charles Harris
- Chris Sidebottom
- Joren Hammudoglu
- Matthew Brett
- Nathan Goldbaum
- Raghuveer Devulapalli
- Sebastian Berg
- Yakov Danishevsky +

Pull requests merged

A total of 21 pull requests were merged for this release.

- [28185](https://github.com/numpy/numpy/pull/28185): MAINT: Prepare 2.2.x for further development
- [28201](https://github.com/numpy/numpy/pull/28201): BUG: fix data race in a more minimal way on stable branch
- [28208](https://github.com/numpy/numpy/pull/28208): BUG: Fix `from_float_positional` errors for huge pads
- [28209](https://github.com/numpy/numpy/pull/28209): BUG: fix data race in np.repeat
- [28212](https://github.com/numpy/numpy/pull/28212): MAINT: Use VQSORT_COMPILER_COMPATIBLE to determine if we should\...
- [28224](https://github.com/numpy/numpy/pull/28224): MAINT: update highway to latest
- [28236](https://github.com/numpy/numpy/pull/28236): BUG: Add cpp atomic support (#28234)
- [28237](https://github.com/numpy/numpy/pull/28237): BLD: Compile fix for clang-cl on WoA
- [28243](https://github.com/numpy/numpy/pull/28243): TYP: Avoid upcasting `float64` in the set-ops
- [28249](https://github.com/numpy/numpy/pull/28249): BLD: better fix for clang / ARM compiles
- [28266](https://github.com/numpy/numpy/pull/28266): TYP: Fix `timedelta64.__divmod__` and `timedelta64.__mod__`\...
- [28274](https://github.com/numpy/numpy/pull/28274): TYP: Fixed missing typing information of set_printoptions
- [28278](https://github.com/numpy/numpy/pull/28278): BUG: backport resource cleanup bugfix from gh-28273
- [28282](https://github.com/numpy/numpy/pull/28282): BUG: fix incorrect bytes to stringdtype coercion
- [28283](https://github.com/numpy/numpy/pull/28283): TYP: Fix scalar constructors
- [28284](https://github.com/numpy/numpy/pull/28284): TYP: stub `numpy.matlib`
- [28285](https://github.com/numpy/numpy/pull/28285): TYP: stub the missing `numpy.testing` modules
- [28286](https://github.com/numpy/numpy/pull/28286): CI: Fix the github label for `TYP:` PR\'s and issues
- [28305](https://github.com/numpy/numpy/pull/28305): TYP: Backport typing updates from main
- [28321](https://github.com/numpy/numpy/pull/28321): BUG: fix race initializing legacy dtype casts
- [28324](https://github.com/numpy/numpy/pull/28324): CI: update test_moderately_small_alpha

Checksums

MD5

9cd8b5e358f89016f403a6c1a27e7e87 numpy-2.2.3-cp310-cp310-macosx_10_9_x86_64.whl
2818f5a9efcfc3bb6bf657137df26046 numpy-2.2.3-cp310-cp310-macosx_11_0_arm64.whl
6d65c6a336cfb69fe4ddd756cad73d55 numpy-2.2.3-cp310-cp310-macosx_14_0_arm64.whl
7f4cf33c634b33f633d4bf47f560a86d numpy-2.2.3-cp310-cp310-macosx_14_0_x86_64.whl
3c04024badd42bfcc68c14f106efa93f numpy-2.2.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
07658df1de0e1d3721de0aacff4313cd numpy-2.2.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
3e753fc4b7c879b29442ee9bab25eddd numpy-2.2.3-cp310-cp310-musllinux_1_2_aarch64.whl
d1811f1988d88b00825bc6e943d8e22d numpy-2.2.3-cp310-cp310-musllinux_1_2_x86_64.whl
b5fe91363c16001ea30cbd5befbb0555 numpy-2.2.3-cp310-cp310-win32.whl
44dfe1df1640e4fe762bedad57cd7165 numpy-2.2.3-cp310-cp310-win_amd64.whl
6156418f596620b00a3c221baef02476 numpy-2.2.3-cp311-cp311-macosx_10_9_x86_64.whl
97b925bac245aad1297d22ad3cfaa74c numpy-2.2.3-cp311-cp311-macosx_11_0_arm64.whl
3f05819fcb71df1d3093e5d1c041a4e9 numpy-2.2.3-cp311-cp311-macosx_14_0_arm64.whl
f6763893ba9a5739fefa0929fd152db2 numpy-2.2.3-cp311-cp311-macosx_14_0_x86_64.whl
e93cf6ed4e1a3f9a8009ee7f2fcb0da8 numpy-2.2.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
851dcbcbe90212c385dcdac1614cca83 numpy-2.2.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
9b27cf1d6319f70370f4b0af10c03f5c numpy-2.2.3-cp311-cp311-musllinux_1_2_aarch64.whl
28d20c95ff23d27ae639b4960df777ec numpy-2.2.3-cp311-cp311-musllinux_1_2_x86_64.whl
559fefe30c0043a088adeca90231b382 numpy-2.2.3-cp311-cp311-win32.whl
5e32a1cc3dcfe729f675784a53e4d553 numpy-2.2.3-cp311-cp311-win_amd64.whl
12134dcf62b2bca2eeebb7bbc45c2a71 numpy-2.2.3-cp312-cp312-macosx_10_13_x86_64.whl
c72318236531d3ca61d229eaf96f7d04 numpy-2.2.3-cp312-cp312-macosx_11_0_arm64.whl
1b807acc844c2ba5be7bc7586d4a3a6b numpy-2.2.3-cp312-cp312-macosx_14_0_arm64.whl
810d4908371bb2f08b0c7b16d3f05970 numpy-2.2.3-cp312-cp312-macosx_14_0_x86_64.whl
bb918cedd0931cb68af9e77096dedf54 numpy-2.2.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
92c6c6c5b22b207425b329f061bd18fa numpy-2.2.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
10d48fb9d86280db1afe7224b15a51af numpy-2.2.3-cp312-cp312-musllinux_1_2_aarch64.whl
a73da0434a971b21d8a9c0596015d629 numpy-2.2.3-cp312-cp312-musllinux_1_2_x86_64.whl
c5f1e734c7d872e2f9af71d32e62d59c numpy-2.2.3-cp312-cp312-win32.whl
884c1a89844f539ab15b7016a43d231c numpy-2.2.3-cp312-cp312-win_amd64.whl
3a2de7f886cb756cf8d0375a36721926 numpy-2.2.3-cp313-cp313-macosx_10_13_x86_64.whl
c1fe5b6a9015c2877647419caa009be0 numpy-2.2.3-cp313-cp313-macosx_11_0_arm64.whl
bb3f3a69219bbcdb719bbe38e4e69f79 numpy-2.2.3-cp313-cp313-macosx_14_0_arm64.whl
8158c2e980a1cbfb4d98ff3a273bb2e9 numpy-2.2.3-cp313-cp313-macosx_14_0_x86_64.whl
4d3d9b0c14db955e4b1aa1a1971d2def numpy-2.2.3-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
6575308269513900c94803258b89ac83 numpy-2.2.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
945b91c2093fed2a1f34597fc66e5a35 numpy-2.2.3-cp313-cp313-musllinux_1_2_aarch64.whl
c5867508607f75ed23426315a7ad86d7 numpy-2.2.3-cp313-cp313-musllinux_1_2_x86_64.whl
5a1497c262d9aa52ce6859a12a54ebbc numpy-2.2.3-cp313-cp313-win32.whl
69c98e036d59eb74e4620c7649b5d7fc numpy-2.2.3-cp313-cp313-win_amd64.whl
2535d7c0f98ad848bcf1f48f7c358e41 numpy-2.2.3-cp313-cp313t-macosx_10_13_x86_64.whl
aea9afa69d510ce905b2b8dbf0e33a11 numpy-2.2.3-cp313-cp313t-macosx_11_0_arm64.whl
cc5aceacd0a44a67cdd2cf8d5a446ca3 numpy-2.2.3-cp313-cp313t-macosx_14_0_arm64.whl
32eb2ed1e734ea26c90f75b1f5616564 numpy-2.2.3-cp313-cp313t-macosx_14_0_x86_64.whl
f1d85f322c3e85ef748c3e5594b94226 numpy-2.2.3-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
7f24ce01ad5c352c76614a12fa5e2319 numpy-2.2.3-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
62841d4b49c5a0cef2c2ba26a16f6959 numpy-2.2.3-cp313-cp313t-musllinux_1_2_aarch64.whl
d7b512f83999d05c47e55b931f2dcdfe numpy-2.2.3-cp313-cp313t-musllinux_1_2_x86_64.whl
1dca2f20e0accc1741e5fb233ecf7dff numpy-2.2.3-cp313-cp313t-win32.whl
347b71f0db5b49a25ef1ed677e47999b numpy-2.2.3-cp313-cp313t-win_amd64.whl
3615d13c8c14c323aeda1c07d5a7fd55 numpy-2.2.3-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
f7d2ba950c5aa11c100bb6bf202d5799 numpy-2.2.3-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
b4336174c843c4943084e17945cd1165 numpy-2.2.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
0d856a89e028c393f8125739c56591e0 numpy-2.2.3-pp310-pypy310_pp73-win_amd64.whl
c6ee254bcdf1e2fdb13d87e0ee4166ba numpy-2.2.3.tar.gz

SHA256

cbc6472e01952d3d1b2772b720428f8b90e2deea8344e854df22b0618e9cce71 numpy-2.2.3-cp310-cp310-macosx_10_9_x86_64.whl
cdfe0c22692a30cd830c0755746473ae66c4a8f2e7bd508b35fb3b6a0813d787 numpy-2.2.3-cp310-cp310-macosx_11_0_arm64.whl
e37242f5324ffd9f7ba5acf96d774f9276aa62a966c0bad8dae692deebec7716 numpy-2.2.3-cp310-cp310-macosx_14_0_arm64.whl
95172a21038c9b423e68be78fd0be6e1b97674cde269b76fe269a5dfa6fadf0b numpy-2.2.3-cp310-cp310-macosx_14_0_x86_64.whl
d5b47c440210c5d1d67e1cf434124e0b5c395eee1f5806fdd89b553ed1acd0a3 numpy-2.2.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
0391ea3622f5c51a2e29708877d56e3d276827ac5447d7f45e9bc4ade8923c52 numpy-2.2.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
f6b3dfc7661f8842babd8ea07e9897fe3d9b69a1d7e5fbb743e4160f9387833b numpy-2.2.3-cp310-cp310-musllinux_1_2_aarch64.whl
1ad78ce7f18ce4e7df1b2ea4019b5817a2f6a8a16e34ff2775f646adce0a5027 numpy-2.2.3-cp310-cp310-musllinux_1_2_x86_64.whl
5ebeb7ef54a7be11044c33a17b2624abe4307a75893c001a4800857956b41094 numpy-2.2.3-cp310-cp310-win32.whl
596140185c7fa113563c67c2e894eabe0daea18cf8e33851738c19f70ce86aeb numpy-2.2.3-cp310-cp310-win_amd64.whl
16372619ee728ed67a2a606a614f56d3eabc5b86f8b615c79d01957062826ca8 numpy-2.2.3-cp311-cp311-macosx_10_9_x86_64.whl
5521a06a3148686d9269c53b09f7d399a5725c47bbb5b35747e1cb76326b714b numpy-2.2.3-cp311-cp311-macosx_11_0_arm64.whl
7c8dde0ca2f77828815fd1aedfdf52e59071a5bae30dac3b4da2a335c672149a numpy-2.2.3-cp311-cp311-macosx_14_0_arm64.whl
77974aba6c1bc26e3c205c2214f0d5b4305bdc719268b93e768ddb17e3fdd636 numpy-2.2.3-cp311-cp311-macosx_14_0_x86_64.whl
d42f9c36d06440e34226e8bd65ff065ca0963aeecada587b937011efa02cdc9d numpy-2.2.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
f2712c5179f40af9ddc8f6727f2bd910ea0eb50206daea75f58ddd9fa3f715bb numpy-2.2.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
c8b0451d2ec95010d1db8ca733afc41f659f425b7f608af569711097fd6014e2 numpy-2.2.3-cp311-cp311-musllinux_1_2_aarch64.whl
d9b4a8148c57ecac25a16b0e11798cbe88edf5237b0df99973687dd866f05e1b numpy-2.2.3-cp311-cp311-musllinux_1_2_x86_64.whl
1f45315b2dc58d8a3e7754fe4e38b6fce132dab284a92851e41b2b344f6441c5 numpy-2.2.3-cp311-cp311-win32.whl
9f48ba6f6c13e5e49f3d3efb1b51c8193215c42ac82610a04624906a9270be6f numpy-2.2.3-cp311-cp311-win_amd64.whl
12c045f43b1d2915eca6b880a7f4a256f59d62df4f044788c8ba67709412128d numpy-2.2.3-cp312-cp312-macosx_10_13_x86_64.whl
87eed225fd415bbae787f93a457af7f5990b92a334e346f72070bf569b9c9c95 numpy-2.2.3-cp312-cp312-macosx_11_0_arm64.whl
712a64103d97c404e87d4d7c47fb0c7ff9acccc625ca2002848e0d53288b90ea numpy-2.2.3-cp312-cp312-macosx_14_0_arm64.whl
a5ae282abe60a2db0fd407072aff4599c279bcd6e9a2475500fc35b00a57c532 numpy-2.2.3-cp312-cp312-macosx_14_0_x86_64.whl
5266de33d4c3420973cf9ae3b98b54a2a6d53a559310e3236c4b2b06b9c07d4e numpy-2.2.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
3b787adbf04b0db1967798dba8da1af07e387908ed1553a0d6e74c084d1ceafe numpy-2.2.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
34c1b7e83f94f3b564b35f480f5652a47007dd91f7c839f404d03279cc8dd021 numpy-2.2.3-cp312-cp312-musllinux_1_2_aarch64.whl
4d8335b5f1b6e2bce120d55fb17064b0262ff29b459e8493d1785c18ae2553b8 numpy-2.2.3-cp312-cp312-musllinux_1_2_x86_64.whl
4d9828d25fb246bedd31e04c9e75714a4087211ac348cb39c8c5f99dbb6683fe numpy-2.2.3-cp312-cp312-win32.whl
83807d445817326b4bcdaaaf8e8e9f1753da04341eceec705c001ff342002e5d numpy-2.2.3-cp312-cp312-win_amd64.whl
7bfdb06b395385ea9b91bf55c1adf1b297c9fdb531552845ff1d3ea6e40d5aba numpy-2.2.3-cp313-cp313-macosx_10_13_x86_64.whl
23c9f4edbf4c065fddb10a4f6e8b6a244342d95966a48820c614891e5059bb50 numpy-2.2.3-cp313-cp313-macosx_11_0_arm64.whl
a0c03b6be48aaf92525cccf393265e02773be8fd9551a2f9adbe7db1fa2b60f1 numpy-2.2.3-cp313-cp313-macosx_14_0_arm64.whl
2376e317111daa0a6739e50f7ee2a6353f768489102308b0d98fcf4a04f7f3b5 numpy-2.2.3-cp313-cp313-macosx_14_0_x86_64.whl
8fb62fe3d206d72fe1cfe31c4a1106ad2b136fcc1606093aeab314f02930fdf2 numpy-2.2.3-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
52659ad2534427dffcc36aac76bebdd02b67e3b7a619ac67543bc9bfe6b7cdb1 numpy-2.2.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
1b416af7d0ed3271cad0f0a0d0bee0911ed7eba23e66f8424d9f3dfcdcae1304 numpy-2.2.3-cp313-cp313-musllinux_1_2_aarch64.whl
1402da8e0f435991983d0a9708b779f95a8c98c6b18a171b9f1be09005e64d9d numpy-2.2.3-cp313-cp313-musllinux_1_2_x86_64.whl
136553f123ee2951bfcfbc264acd34a2fc2f29d7cdf610ce7daf672b6fbaa693 numpy-2.2.3-cp313-cp313-win32.whl
5b732c8beef1d7bc2d9e476dbba20aaff6167bf205ad9aa8d30913859e82884b numpy-2.2.3-cp313-cp313-win_amd64.whl
435e7a933b9fda8126130b046975a968cc2d833b505475e588339e09f7672890 numpy-2.2.3-cp313-cp313t-macosx_10_13_x86_64.whl
7678556eeb0152cbd1522b684dcd215250885993dd00adb93679ec3c0e6e091c numpy-2.2.3-cp313-cp313t-macosx_11_0_arm64.whl
2e8da03bd561504d9b20e7a12340870dfc206c64ea59b4cfee9fceb95070ee94 numpy-2.2.3-cp313-cp313t-macosx_14_0_arm64.whl
c9aa4496fd0e17e3843399f533d62857cef5900facf93e735ef65aa4bbc90ef0 numpy-2.2.3-cp313-cp313t-macosx_14_0_x86_64.whl
f4ca91d61a4bf61b0f2228f24bbfa6a9facd5f8af03759fe2a655c50ae2c6610 numpy-2.2.3-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
deaa09cd492e24fd9b15296844c0ad1b3c976da7907e1c1ed3a0ad21dded6f76 numpy-2.2.3-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
246535e2f7496b7ac85deffe932896a3577be7af8fb7eebe7146444680297e9a numpy-2.2.3-cp313-cp313t-musllinux_1_2_aarch64.whl
daf43a3d1ea699402c5a850e5313680ac355b4adc9770cd5cfc2940e7861f1bf numpy-2.2.3-cp313-cp313t-musllinux_1_2_x86_64.whl
cf802eef1f0134afb81fef94020351be4fe1d6681aadf9c5e862af6602af64ef numpy-2.2.3-cp313-cp313t-win32.whl
aee2512827ceb6d7f517c8b85aa5d3923afe8fc7a57d028cffcd522f1c6fd082 numpy-2.2.3-cp313-cp313t-win_amd64.whl
3c2ec8a0f51d60f1e9c0c5ab116b7fc104b165ada3f6c58abf881cb2eb16044d numpy-2.2.3-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
ed2cf9ed4e8ebc3b754d398cba12f24359f018b416c380f577bbae112ca52fc9 numpy-2.2.3-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
39261798d208c3095ae4f7bc8eaeb3481ea8c6e03dc48028057d3cbdbdb8937e numpy-2.2.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
783145835458e60fa97afac25d511d00a1eca94d4a8f3ace9fe2043003c678e4 numpy-2.2.3-pp310-pypy310_pp73-win_amd64.whl
dbdc15f0c81611925f382dfa97b3bd0bc2c1ce19d4fe50482cb0ddc12ba30020 numpy-2.2.3.tar.gz

2.2.2

release. The number of typing fixes/updates is notable. This release
supports Python versions 3.10-3.13.

Contributors

A total of 8 people contributed to this release. People with a \"+\" by
their names contributed a patch for the first time.

- Alicia Boya García +
- Charles Harris
- Joren Hammudoglu
- Kai Germaschewski +
- Nathan Goldbaum
- PTUsumit +
- Rohit Goswami
- Sebastian Berg

Pull requests merged

A total of 16 pull requests were merged for this release.

- [28050](https://github.com/numpy/numpy/pull/28050): MAINT: Prepare 2.2.x for further development
- [28055](https://github.com/numpy/numpy/pull/28055): TYP: fix `void` arrays not accepting `str` keys in `__setitem__`
- [28066](https://github.com/numpy/numpy/pull/28066): TYP: fix unnecessarily broad `integer` binop return types (#28065)
- [28112](https://github.com/numpy/numpy/pull/28112): TYP: Better `ndarray` binop return types for `float64` &\...
- [28113](https://github.com/numpy/numpy/pull/28113): TYP: Return the correct `bool` from `issubdtype`
- [28114](https://github.com/numpy/numpy/pull/28114): TYP: Always accept `date[time]` in the `datetime64` constructor
- [28120](https://github.com/numpy/numpy/pull/28120): BUG: Fix auxdata initialization in ufunc slow path
- [28131](https://github.com/numpy/numpy/pull/28131): BUG: move reduction initialization to ufunc initialization
- [28132](https://github.com/numpy/numpy/pull/28132): TYP: Fix `interp` to accept and return scalars
- [28137](https://github.com/numpy/numpy/pull/28137): BUG: call PyType_Ready in f2py to avoid data races
- [28145](https://github.com/numpy/numpy/pull/28145): BUG: remove unnecessary call to PyArray_UpdateFlags
- [28160](https://github.com/numpy/numpy/pull/28160): BUG: Avoid data race in PyArray_CheckFromAny_int
- [28175](https://github.com/numpy/numpy/pull/28175): BUG: Fix f2py directives and \--lower casing
- [28176](https://github.com/numpy/numpy/pull/28176): TYP: Fix overlapping overloads issue in 2-\>1 ufuncs
- [28177](https://github.com/numpy/numpy/pull/28177): TYP: preserve shape-type in ndarray.astype()
- [28178](https://github.com/numpy/numpy/pull/28178): TYP: Fix missing and spurious top-level exports

Checksums

MD5

749cb2adf8043551aae22bbf0ed3130a numpy-2.2.2-cp310-cp310-macosx_10_9_x86_64.whl
bc79fa2e44316b7ce9bacb48a993ed91 numpy-2.2.2-cp310-cp310-macosx_11_0_arm64.whl
c6b2caa2bbb645b5950dccb77efb1dbb numpy-2.2.2-cp310-cp310-macosx_14_0_arm64.whl
8c410efac169af880cacbbac8a731658 numpy-2.2.2-cp310-cp310-macosx_14_0_x86_64.whl
21d165669635a9b680d03b0b4e7f5b98 numpy-2.2.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
a34ef5e7c967136fdc59c822e99f87d6 numpy-2.2.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
a81749effc5160ff8dde7eb2ebe868c4 numpy-2.2.2-cp310-cp310-musllinux_1_2_aarch64.whl
546612d82fae082697879aaf2b985b1b numpy-2.2.2-cp310-cp310-musllinux_1_2_x86_64.whl
d874e626f58175ad603cb68fda2a4e28 numpy-2.2.2-cp310-cp310-win32.whl
20564a5caeb621061267f9d80c1e7ed0 numpy-2.2.2-cp310-cp310-win_amd64.whl
ef5336ddae73feef891844a205f89b15 numpy-2.2.2-cp311-cp311-macosx_10_9_x86_64.whl
7a0c8804cb6ebca82b1cf3063b410687 numpy-2.2.2-cp311-cp311-macosx_11_0_arm64.whl
1682639d0420a532f8894c4a8685b23d numpy-2.2.2-cp311-cp311-macosx_14_0_arm64.whl
d33d53efc5744b577cb8a6ac9971cfdb numpy-2.2.2-cp311-cp311-macosx_14_0_x86_64.whl
c85b92e2ed7ef0eaeb15909ad73aea22 numpy-2.2.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
efa1a587f607a37336c477bed977ea64 numpy-2.2.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e0effe9902e262704a115c6f7095daf7 numpy-2.2.2-cp311-cp311-musllinux_1_2_aarch64.whl
425e0cebeb1c2c91bba42ae195836268 numpy-2.2.2-cp311-cp311-musllinux_1_2_x86_64.whl
57121319a2fbb76eed4b268282ed668e numpy-2.2.2-cp311-cp311-win32.whl
fdb54e7345ff657d208fbb52469a5861 numpy-2.2.2-cp311-cp311-win_amd64.whl
bdf299e0abc45b5c5113a1cc5505636a numpy-2.2.2-cp312-cp312-macosx_10_13_x86_64.whl
30c25784c07965592cf88104b6c02508 numpy-2.2.2-cp312-cp312-macosx_11_0_arm64.whl
65e630a0de5403c41a0083198bc14442 numpy-2.2.2-cp312-cp312-macosx_14_0_arm64.whl
6d9f50717e7b40f1ebdf139f83cc7504 numpy-2.2.2-cp312-cp312-macosx_14_0_x86_64.whl
6b092a9280ada70482d44f538752fc0b numpy-2.2.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
9c273da8438391eab30f6c1c4898be5d numpy-2.2.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
d619047dcaf041b806a7b59ff0a798d5 numpy-2.2.2-cp312-cp312-musllinux_1_2_aarch64.whl
fa5d0d979104456d7c43a183223c8587 numpy-2.2.2-cp312-cp312-musllinux_1_2_x86_64.whl
3b8689aedff5037cad85b018e2d5e43a numpy-2.2.2-cp312-cp312-win32.whl
a2340ff05cae7e09f63bfcfd4e75ea87 numpy-2.2.2-cp312-cp312-win_amd64.whl
044e86bd65492af34a59e4109fbeed16 numpy-2.2.2-cp313-cp313-macosx_10_13_x86_64.whl
7ca0f0e8c8d3d80ec473ec33929c2ae3 numpy-2.2.2-cp313-cp313-macosx_11_0_arm64.whl
4b866ad895e007005afe8a29837cf7d6 numpy-2.2.2-cp313-cp313-macosx_14_0_arm64.whl
2e6247faabf6d0ac0fafaca0bb405ff8 numpy-2.2.2-cp313-cp313-macosx_14_0_x86_64.whl
773982551185ae327cdefe416e73acfc numpy-2.2.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
1c0ecc958a555a8a95c92c1dd7dc2358 numpy-2.2.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
9f662eb58b8f711585550d6fdf8afa4f numpy-2.2.2-cp313-cp313-musllinux_1_2_aarch64.whl
53471186fc990eb22e82a0512b310438 numpy-2.2.2-cp313-cp313-musllinux_1_2_x86_64.whl
6b4d65349c74dd91853a7cc6b5c5786e numpy-2.2.2-cp313-cp313-win32.whl
33dc5bab2d3f752ef00f81021d68cb5a numpy-2.2.2-cp313-cp313-win_amd64.whl
0acc5069c5ab4fe3ea7c35956636c462 numpy-2.2.2-cp313-cp313t-macosx_10_13_x86_64.whl
01e3f727594a12eee6d0677113525b96 numpy-2.2.2-cp313-cp313t-macosx_11_0_arm64.whl
7b1ddabcb187b18caa52055bb2b2dc67 numpy-2.2.2-cp313-cp313t-macosx_14_0_arm64.whl
a09f5c138ad8c87b9692eea99f344a98 numpy-2.2.2-cp313-cp313t-macosx_14_0_x86_64.whl
289ec3155aa21c5a161b2d61d2cf3c2d numpy-2.2.2-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
6bb3eb03d400ad708942afbfebd07abc numpy-2.2.2-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
62f8ef2a5c9e76b0e43851a7bb9c0379 numpy-2.2.2-cp313-cp313t-musllinux_1_2_aarch64.whl
59b4b77118f958dd07484686e82b1e7a numpy-2.2.2-cp313-cp313t-musllinux_1_2_x86_64.whl
726b58ec542581c5e46adfd4c5c0fed0 numpy-2.2.2-cp313-cp313t-win32.whl
f2b4eab55a963e8cd4c6c1e573c9a59f numpy-2.2.2-cp313-cp313t-win_amd64.whl
f6a93eaebee6f9890a4922571141ecb5 numpy-2.2.2-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
fb457bbe2d231e836d2230b06d4706ca numpy-2.2.2-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
df4c07a48a24621167c12704ba5ac0de numpy-2.2.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
0d1108b9060469eb28bb4a4cffa7b98f numpy-2.2.2-pp310-pypy310_pp73-win_amd64.whl
ac108586d3aeab9e2d0134b744763eb9 numpy-2.2.2.tar.gz

SHA256

7079129b64cb78bdc8d611d1fd7e8002c0a2565da6a47c4df8062349fee90e3e numpy-2.2.2-cp310-cp310-macosx_10_9_x86_64.whl
2ec6c689c61df613b783aeb21f945c4cbe6c51c28cb70aae8430577ab39f163e numpy-2.2.2-cp310-cp310-macosx_11_0_arm64.whl
40c7ff5da22cd391944a28c6a9c638a5eef77fcf71d6e3a79e1d9d9e82752715 numpy-2.2.2-cp310-cp310-macosx_14_0_arm64.whl
995f9e8181723852ca458e22de5d9b7d3ba4da3f11cc1cb113f093b271d7965a numpy-2.2.2-cp310-cp310-macosx_14_0_x86_64.whl
b78ea78450fd96a498f50ee096f69c75379af5138f7881a51355ab0e11286c97 numpy-2.2.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
3fbe72d347fbc59f94124125e73fc4976a06927ebc503ec5afbfb35f193cd957 numpy-2.2.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
8e6da5cffbbe571f93588f562ed130ea63ee206d12851b60819512dd3e1ba50d numpy-2.2.2-cp310-cp310-musllinux_1_2_aarch64.whl
09d6a2032faf25e8d0cadde7fd6145118ac55d2740132c1d845f98721b5ebcfd numpy-2.2.2-cp310-cp310-musllinux_1_2_x86_64.whl
159ff6ee4c4a36a23fe01b7c3d07bd8c14cc433d9720f977fcd52c13c0098160 numpy-2.2.2-cp310-cp310-win32.whl
64bd6e1762cd7f0986a740fee4dff927b9ec2c5e4d9a28d056eb17d332158014 numpy-2.2.2-cp310-cp310-win_amd64.whl
642199e98af1bd2b6aeb8ecf726972d238c9877b0f6e8221ee5ab945ec8a2189 numpy-2.2.2-cp311-cp311-macosx_10_9_x86_64.whl
6d9fc9d812c81e6168b6d405bf00b8d6739a7f72ef22a9214c4241e0dc70b323 numpy-2.2.2-cp311-cp311-macosx_11_0_arm64.whl
c7d1fd447e33ee20c1f33f2c8e6634211124a9aabde3c617687d8b739aa69eac numpy-2.2.2-cp311-cp311-macosx_14_0_arm64.whl
451e854cfae0febe723077bd0cf0a4302a5d84ff25f0bfece8f29206c7bed02e numpy-2.2.2-cp311-cp311-macosx_14_0_x86_64.whl
bd249bc894af67cbd8bad2c22e7cbcd46cf87ddfca1f1289d1e7e54868cc785c numpy-2.2.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
02935e2c3c0c6cbe9c7955a8efa8908dd4221d7755644c59d1bba28b94fd334f numpy-2.2.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
a972cec723e0563aa0823ee2ab1df0cb196ed0778f173b381c871a03719d4826 numpy-2.2.2-cp311-cp311-musllinux_1_2_aarch64.whl
d6d6a0910c3b4368d89dde073e630882cdb266755565155bc33520283b2d9df8 numpy-2.2.2-cp311-cp311-musllinux_1_2_x86_64.whl
860fd59990c37c3ef913c3ae390b3929d005243acca1a86facb0773e2d8d9e50 numpy-2.2.2-cp311-cp311-win32.whl
da1eeb460ecce8d5b8608826595c777728cdf28ce7b5a5a8c8ac8d949beadcf2 numpy-2.2.2-cp311-cp311-win_amd64.whl
ac9bea18d6d58a995fac1b2cb4488e17eceeac413af014b1dd26170b766d8467 numpy-2.2.2-cp312-cp312-macosx_10_13_x86_64.whl
23ae9f0c2d889b7b2d88a3791f6c09e2ef827c2446f1c4a3e3e76328ee4afd9a numpy-2.2.2-cp312-cp312-macosx_11_0_arm64.whl
3074634ea4d6df66be04f6728ee1d173cfded75d002c75fac79503a880bf3825 numpy-2.2.2-cp312-cp312-macosx_14_0_arm64.whl
8ec0636d3f7d68520afc6ac2dc4b8341ddb725039de042faf0e311599f54eb37 numpy-2.2.2-cp312-cp312-macosx_14_0_x86_64.whl
2ffbb1acd69fdf8e89dd60ef6182ca90a743620957afb7066385a7bbe88dc748 numpy-2.2.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
0349b025e15ea9d05c3d63f9657707a4e1d471128a3b1d876c095f328f8ff7f0 numpy-2.2.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
463247edcee4a5537841d5350bc87fe8e92d7dd0e8c71c995d2c6eecb8208278 numpy-2.2.2-cp312-cp312-musllinux_1_2_aarch64.whl
9dd47ff0cb2a656ad69c38da850df3454da88ee9a6fde0ba79acceee0e79daba numpy-2.2.2-cp312-cp312-musllinux_1_2_x86_64.whl
4525b88c11906d5ab1b0ec1f290996c0020dd318af8b49acaa46f198b1ffc283 numpy-2.2.2-cp312-cp312-win32.whl
5acea83b801e98541619af398cc0109ff48016955cc0818f478ee9ef1c5c3dcb numpy-2.2.2-cp312-cp312-win_amd64.whl
b208cfd4f5fe34e1535c08983a1a6803fdbc7a1e86cf13dd0c61de0b51a0aadc numpy-2.2.2-cp313-cp313-macosx_10_13_x86_64.whl
d0bbe7dd86dca64854f4b6ce2ea5c60b51e36dfd597300057cf473d3615f2369 numpy-2.2.2-cp313-cp313-macosx_11_0_arm64.whl
22ea3bb552ade325530e72a0c557cdf2dea8914d3a5e1fecf58fa5dbcc6f43cd numpy-2.2.2-cp313-cp313-macosx_14_0_arm64.whl
128c41c085cab8a85dc29e66ed88c05613dccf6bc28b3866cd16050a2f5448be numpy-2.2.2-cp313-cp313-macosx_14_0_x86_64.whl
250c16b277e3b809ac20d1f590716597481061b514223c7badb7a0f9993c7f84 numpy-2.2.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
e0c8854b09bc4de7b041148d8550d3bd712b5c21ff6a8ed308085f190235d7ff numpy-2.2.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
b6fb9c32a91ec32a689ec6410def76443e3c750e7cfc3fb2206b985ffb2b85f0 numpy-2.2.2-cp313-cp313-musllinux_1_2_aarch64.whl
57b4012e04cc12b78590a334907e01b3a85efb2107df2b8733ff1ed05fce71de numpy-2.2.2-cp313-cp313-musllinux_1_2_x86_64.whl
4dbd80e453bd34bd003b16bd802fac70ad76bd463f81f0c518d1245b1c55e3d9 numpy-2.2.2-cp313-cp313-win32.whl
5a8c863ceacae696aff37d1fd636121f1a512117652e5dfb86031c8d84836369 numpy-2.2.2-cp313-cp313-win_amd64.whl
b3482cb7b3325faa5f6bc179649406058253d91ceda359c104dac0ad320e1391 numpy-2.2.2-cp313-cp313t-macosx_10_13_x86_64.whl
9491100aba630910489c1d0158034e1c9a6546f0b1340f716d522dc103788e39 numpy-2.2.2-cp313-cp313t-macosx_11_0_arm64.whl
41184c416143defa34cc8eb9d070b0a5ba4f13a0fa96a709e20584638254b317 numpy-2.2.2-cp313-cp313t-macosx_14_0_arm64.whl
7dca87ca328f5ea7dafc907c5ec100d187911f94825f8700caac0b3f4c384b49 numpy-2.2.2-cp313-cp313t-macosx_14_0_x86_64.whl
0bc61b307655d1a7f9f4b043628b9f2b721e80839914ede634e3d485913e1fb2 numpy-2.2.2-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
9fad446ad0bc886855ddf5909cbf8cb5d0faa637aaa6277fb4b19ade134ab3c7 numpy-2.2.2-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
149d1113ac15005652e8d0d3f6fd599360e1a708a4f98e43c9c77834a28238cb numpy-2.2.2-cp313-cp313t-musllinux_1_2_aarch64.whl
106397dbbb1896f99e044efc90360d098b3335060375c26aa89c0d8a97c5f648 numpy-2.2.2-cp313-cp313t-musllinux_1_2_x86_64.whl
0eec19f8af947a61e968d5429f0bd92fec46d92b0008d0a6685b40d6adf8a4f4 numpy-2.2.2-cp313-cp313t-win32.whl
97b974d3ba0fb4612b77ed35d7627490e8e3dff56ab41454d9e8b23448940576 numpy-2.2.2-cp313-cp313t-win_amd64.whl
b0531f0b0e07643eb089df4c509d30d72c9ef40defa53e41363eca8a8cc61495 numpy-2.2.2-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
e9e82dcb3f2ebbc8cb5ce1102d5f1c5ed236bf8a11730fb45ba82e2841ec21df numpy-2.2.2-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
e0d4142eb40ca6f94539e4db929410f2a46052a0fe7a2c1c59f6179c39938d2a numpy-2.2.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
356ca982c188acbfa6af0d694284d8cf20e95b1c3d0aefa8929376fea9146f60 numpy-2.2.2-pp310-pypy310_pp73-win_amd64.whl
ed6906f61834d687738d25988ae117683705636936cc605be0bb208b23df4d8f numpy-2.2.2.tar.gz

2.2.1

after the 2.2.0 release and has several maintenance pins to work around
upstream changes.

There was some breakage in downstream projects following the 2.2.0
release due to updates to NumPy typing. Because of problems due to MyPy
defects, we recommend using basedpyright for type checking, it can be
installed from PyPI. The Pylance extension for Visual Studio Code is
also based on Pyright. Problems that persist when using basedpyright
should be reported as issues on the NumPy github site.

This release supports Python 3.10-3.13.

Contributors

A total of 9 people contributed to this release. People with a \"+\" by
their names contributed a patch for the first time.

- Charles Harris
- Joren Hammudoglu
- Matti Picus
- Nathan Goldbaum
- Peter Hawkins
- Simon Altrogge
- Thomas A Caswell
- Warren Weckesser
- Yang Wang +

Pull requests merged

A total of 12 pull requests were merged for this release.

- [27935](https://github.com/numpy/numpy/pull/27935): MAINT: Prepare 2.2.x for further development
- [27950](https://github.com/numpy/numpy/pull/27950): TEST: cleanups
- [27958](https://github.com/numpy/numpy/pull/27958): BUG: fix use-after-free error in npy_hashtable.cpp (#27955)
- [27959](https://github.com/numpy/numpy/pull/27959): BLD: add missing include
- [27982](https://github.com/numpy/numpy/pull/27982): BUG:fix compile error libatomic link test to meson.build
- [27990](https://github.com/numpy/numpy/pull/27990): TYP: Fix falsely rejected value types in `ndarray.__setitem__`
- [27991](https://github.com/numpy/numpy/pull/27991): MAINT: Don\'t wrap `#include <Python.h>` with `extern "C"`
- [27993](https://github.com/numpy/numpy/pull/27993): BUG: Fix segfault in stringdtype lexsort
- [28006](https://github.com/numpy/numpy/pull/28006): MAINT: random: Tweak module code in mtrand.pyx to fix a Cython\...
- [28007](https://github.com/numpy/numpy/pull/28007): BUG: Cython API was missing NPY_UINTP.
- [28021](https://github.com/numpy/numpy/pull/28021): CI: pin scipy-doctest to 1.5.1
- [28044](https://github.com/numpy/numpy/pull/28044): TYP: allow `None` in operand sequence of nditer

Checksums

MD5

d3032be00b974d44aae687fd78a897b4 numpy-2.2.1-cp310-cp310-macosx_10_9_x86_64.whl
49863a39471cf191402da96512e52cb6 numpy-2.2.1-cp310-cp310-macosx_11_0_arm64.whl
31c912e2fa723b877f2d710c26332927 numpy-2.2.1-cp310-cp310-macosx_14_0_arm64.whl
95af4f6b620c76f9ccb8c5693c99737d numpy-2.2.1-cp310-cp310-macosx_14_0_x86_64.whl
c1b113ad487a3bece6d7a70e0cf70f17 numpy-2.2.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
e93369ddbb637d9d5a820b2bb79588c4 numpy-2.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
b3de0a2c345541d2c9a322df360ca497 numpy-2.2.1-cp310-cp310-musllinux_1_2_aarch64.whl
e3e62b93245d9e37cc03ec3cfaf68118 numpy-2.2.1-cp310-cp310-musllinux_1_2_x86_64.whl
004063642d3c3792a3f5ff0241a3fa0f numpy-2.2.1-cp310-cp310-win32.whl
462b0704ebfd79120edfe6431adc57f4 numpy-2.2.1-cp310-cp310-win_amd64.whl
a739a2dfbceaa1140e564424b2a57540 numpy-2.2.1-cp311-cp311-macosx_10_9_x86_64.whl
91731d46f4ce4b04db512400f4e76ccb numpy-2.2.1-cp311-cp311-macosx_11_0_arm64.whl
93f50db664a6986c2ebed3ceb588f7cc numpy-2.2.1-cp311-cp311-macosx_14_0_arm64.whl
8cc0d82b938d71f45a67c74e07ddc7fd numpy-2.2.1-cp311-cp311-macosx_14_0_x86_64.whl
fc7b253096fc566bbcbadfdf6b034f1b numpy-2.2.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
b88238965c708578f2c198d1c6e2cf70 numpy-2.2.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
df20d649bb023f98e487b229f01e9708 numpy-2.2.1-cp311-cp311-musllinux_1_2_aarch64.whl
e23d2bfbdb1bd1b2872c9e6e15f64dca numpy-2.2.1-cp311-cp311-musllinux_1_2_x86_64.whl
cce4ebb9afc1470db243c2ab4cc6639b numpy-2.2.1-cp311-cp311-win32.whl
c96783ee8ad6ce1efee94821929a12f5 numpy-2.2.1-cp311-cp311-win_amd64.whl
0b2024655573f96a595c7f5072205e84 numpy-2.2.1-cp312-cp312-macosx_10_13_x86_64.whl
22483d8935f5dc128393ad671fde7d8e numpy-2.2.1-cp312-cp312-macosx_11_0_arm64.whl
61d38533acaa90fb24657f089d177a6c numpy-2.2.1-cp312-cp312-macosx_14_0_arm64.whl
ecd4289c703356f5b4fd7e440bf94ce8 numpy-2.2.1-cp312-cp312-macosx_14_0_x86_64.whl
a05208461ea09079ae569414d82a606c numpy-2.2.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
4c66f10580fa26d1d17b2bdda96a5fc5 numpy-2.2.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
60a01c86b1fc55e4ba8f2b41f690703b numpy-2.2.1-cp312-cp312-musllinux_1_2_aarch64.whl
4bcac2b7f8510b0a6582b7d8661257be numpy-2.2.1-cp312-cp312-musllinux_1_2_x86_64.whl
7c24a6a3b5c5b2c53c6807bf06c595c5 numpy-2.2.1-cp312-cp312-win32.whl
dc9f3c1eaade4da63e5f87e878e5805e numpy-2.2.1-cp312-cp312-win_amd64.whl
9aacdedcb2cb3d6a45dfb823148e01cf numpy-2.2.1-cp313-cp313-macosx_10_13_x86_64.whl
8a2598b081c8af4ea6f6bbccc8965882 numpy-2.2.1-cp313-cp313-macosx_11_0_arm64.whl
e58b8db1a97599ed02a630eb86616bb9 numpy-2.2.1-cp313-cp313-macosx_14_0_arm64.whl
be6871a4edd2cd92b147421b9290e047 numpy-2.2.1-cp313-cp313-macosx_14_0_x86_64.whl
6d3f141f3a8ecd04e1a1f7c1f89a8ca2 numpy-2.2.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
eba9d71e631521bd1d9882f8bfbc01d2 numpy-2.2.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
07f7ea0a7f9f6ce0ba5e016dff2a91e8 numpy-2.2.1-cp313-cp313-musllinux_1_2_aarch64.whl
a015f42afa15be8b87fc64120c245f18 numpy-2.2.1-cp313-cp313-musllinux_1_2_x86_64.whl
881b9b20e68b317850ad7b6306ac1c51 numpy-2.2.1-cp313-cp313-win32.whl
35bd751636dcea0ca0534ad9dee8057a numpy-2.2.1-cp313-cp313-win_amd64.whl
7057313b668a4a26b5386203ebc040d9 numpy-2.2.1-cp313-cp313t-macosx_10_13_x86_64.whl
02031b405d028714126c26ffc5772f0e numpy-2.2.1-cp313-cp313t-macosx_11_0_arm64.whl
73eb35111b027d6771d9a91eb21ad7ef numpy-2.2.1-cp313-cp313t-macosx_14_0_arm64.whl
01f9a5eb7ec872d9682bb6a174897b35 numpy-2.2.1-cp313-cp313t-macosx_14_0_x86_64.whl
9bc363d2782931efa2648b42ce358a4c numpy-2.2.1-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
b6492f49b50e892a7134baf2dba9f88d numpy-2.2.1-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
a1c458a98cd9c7ad63f9c301398f4d63 numpy-2.2.1-cp313-cp313t-musllinux_1_2_aarch64.whl
38d2bf31247d9005c7a0197aa992cf1d numpy-2.2.1-cp313-cp313t-musllinux_1_2_x86_64.whl
30e6acf4391728d0a3a5e3494bd4a2c8 numpy-2.2.1-cp313-cp313t-win32.whl
2100b60306e75288799fca60bd00b84f numpy-2.2.1-cp313-cp313t-win_amd64.whl
f975551321147c307bbdff4889061b47 numpy-2.2.1-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
cefbc2de3aa5ef518ce652fdaab00c96 numpy-2.2.1-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
7e379c1d0a5be8e548e35fa7abe1d2c0 numpy-2.2.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
3cba151351656a83e4c84c942cf490e7 numpy-2.2.1-pp310-pypy310_pp73-win_amd64.whl
57c5757508a50d1daefa4b689e9701cb numpy-2.2.1.tar.gz

SHA256

5edb4e4caf751c1518e6a26a83501fda79bff41cc59dac48d70e6d65d4ec4440 numpy-2.2.1-cp310-cp310-macosx_10_9_x86_64.whl
aa3017c40d513ccac9621a2364f939d39e550c542eb2a894b4c8da92b38896ab numpy-2.2.1-cp310-cp310-macosx_11_0_arm64.whl
61048b4a49b1c93fe13426e04e04fdf5a03f456616f6e98c7576144677598675 numpy-2.2.1-cp310-cp310-macosx_14_0_arm64.whl
7671dc19c7019103ca44e8d94917eba8534c76133523ca8406822efdd19c9308 numpy-2.2.1-cp310-cp310-macosx_14_0_x86_64.whl
4250888bcb96617e00bfa28ac24850a83c9f3a16db471eca2ee1f1714df0f957 numpy-2.2.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
a7746f235c47abc72b102d3bce9977714c2444bdfaea7888d241b4c4bb6a78bf numpy-2.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
059e6a747ae84fce488c3ee397cee7e5f905fd1bda5fb18c66bc41807ff119b2 numpy-2.2.1-cp310-cp310-musllinux_1_2_aarch64.whl
f62aa6ee4eb43b024b0e5a01cf65a0bb078ef8c395e8713c6e8a12a697144528 numpy-2.2.1-cp310-cp310-musllinux_1_2_x86_64.whl
48fd472630715e1c1c89bf1feab55c29098cb403cc184b4859f9c86d4fcb6a95 numpy-2.2.1-cp310-cp310-win32.whl
b541032178a718c165a49638d28272b771053f628382d5e9d1c93df23ff58dbf numpy-2.2.1-cp310-cp310-win_amd64.whl
40f9e544c1c56ba8f1cf7686a8c9b5bb249e665d40d626a23899ba6d5d9e1484 numpy-2.2.1-cp311-cp311-macosx_10_9_x86_64.whl
f9b57eaa3b0cd8db52049ed0330747b0364e899e8a606a624813452b8203d5f7 numpy-2.2.1-cp311-cp311-macosx_11_0_arm64.whl
bc8a37ad5b22c08e2dbd27df2b3ef7e5c0864235805b1e718a235bcb200cf1cb numpy-2.2.1-cp311-cp311-macosx_14_0_arm64.whl
9036d6365d13b6cbe8f27a0eaf73ddcc070cae584e5ff94bb45e3e9d729feab5 numpy-2.2.1-cp311-cp311-macosx_14_0_x86_64.whl
51faf345324db860b515d3f364eaa93d0e0551a88d6218a7d61286554d190d73 numpy-2.2.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
38efc1e56b73cc9b182fe55e56e63b044dd26a72128fd2fbd502f75555d92591 numpy-2.2.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
31b89fa67a8042e96715c68e071a1200c4e172f93b0fbe01a14c0ff3ff820fc8 numpy-2.2.1-cp311-cp311-musllinux_1_2_aarch64.whl
4c86e2a209199ead7ee0af65e1d9992d1dce7e1f63c4b9a616500f93820658d0 numpy-2.2.1-cp311-cp311-musllinux_1_2_x86_64.whl
b34d87e8a3090ea626003f87f9392b3929a7bbf4104a05b6667348b6bd4bf1cd numpy-2.2.1-cp311-cp311-win32.whl
360137f8fb1b753c5cde3ac388597ad680eccbbbb3865ab65efea062c4a1fd16 numpy-2.2.1-cp311-cp311-win_amd64.whl
694f9e921a0c8f252980e85bce61ebbd07ed2b7d4fa72d0e4246f2f8aa6642ab numpy-2.2.1-cp312-cp312-macosx_10_13_x86_64.whl
3683a8d166f2692664262fd4900f207791d005fb088d7fdb973cc8d663626faa numpy-2.2.1-cp312-cp312-macosx_11_0_arm64.whl
780077d95eafc2ccc3ced969db22377b3864e5b9a0ea5eb347cc93b3ea900315 numpy-2.2.1-cp312-cp312-macosx_14_0_arm64.whl
55ba24ebe208344aa7a00e4482f65742969a039c2acfcb910bc6fcd776eb4355 numpy-2.2.1-cp312-cp312-macosx_14_0_x86_64.whl
9b1d07b53b78bf84a96898c1bc139ad7f10fda7423f5fd158fd0f47ec5e01ac7 numpy-2.2.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
5062dc1a4e32a10dc2b8b13cedd58988261416e811c1dc4dbdea4f57eea61b0d numpy-2.2.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
fce4f615f8ca31b2e61aa0eb5865a21e14f5629515c9151850aa936c02a1ee51 numpy-2.2.1-cp312-cp312-musllinux_1_2_aarch64.whl
67d4cda6fa6ffa073b08c8372aa5fa767ceb10c9a0587c707505a6d426f4e046 numpy-2.2.1-cp312-cp312-musllinux_1_2_x86_64.whl
32cb94448be47c500d2c7a95f93e2f21a01f1fd05dd2beea1ccd049bb6001cd2 numpy-2.2.1-cp312-cp312-win32.whl
ba5511d8f31c033a5fcbda22dd5c813630af98c70b2661f2d2c654ae3cdfcfc8 numpy-2.2.1-cp312-cp312-win_amd64.whl
f1d09e520217618e76396377c81fba6f290d5f926f50c35f3a5f72b01a0da780 numpy-2.2.1-cp313-cp313-macosx_10_13_x86_64.whl
3ecc47cd7f6ea0336042be87d9e7da378e5c7e9b3c8ad0f7c966f714fc10d821 numpy-2.2.1-cp313-cp313-macosx_11_0_arm64.whl
f419290bc8968a46c4933158c91a0012b7a99bb2e465d5ef5293879742f8797e numpy-2.2.1-cp313-cp313-macosx_14_0_arm64.whl
5b6c390bfaef8c45a260554888966618328d30e72173697e5cabe6b285fb2348 numpy-2.2.1-cp313-cp313-macosx_14_0_x86_64.whl
526fc406ab991a340744aad7e25251dd47a6720a685fa3331e5c59fef5282a59 numpy-2.2.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
f74e6fdeb9a265624ec3a3918430205dff1df7e95a230779746a6af78bc615af numpy-2.2.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
53c09385ff0b72ba79d8715683c1168c12e0b6e84fb0372e97553d1ea91efe51 numpy-2.2.1-cp313-cp313-musllinux_1_2_aarch64.whl
f3eac17d9ec51be534685ba877b6ab5edc3ab7ec95c8f163e5d7b39859524716 numpy-2.2.1-cp313-cp313-musllinux_1_2_x86_64.whl
9ad014faa93dbb52c80d8f4d3dcf855865c876c9660cb9bd7553843dd03a4b1e numpy-2.2.1-cp313-cp313-win32.whl
164a829b6aacf79ca47ba4814b130c4020b202522a93d7bff2202bfb33b61c60 numpy-2.2.1-cp313-cp313-win_amd64.whl
4dfda918a13cc4f81e9118dea249e192ab167a0bb1966272d5503e39234d694e numpy-2.2.1-cp313-cp313t-macosx_10_13_x86_64.whl
733585f9f4b62e9b3528dd1070ec4f52b8acf64215b60a845fa13ebd73cd0712 numpy-2.2.1-cp313-cp313t-macosx_11_0_arm64.whl
89b16a18e7bba224ce5114db863e7029803c179979e1af6ad6a6b11f70545008 numpy-2.2.1-cp313-cp313t-macosx_14_0_arm64.whl
676f4eebf6b2d430300f1f4f4c2461685f8269f94c89698d832cdf9277f30b84 numpy-2.2.1-cp313-cp313t-macosx_14_0_x86_64.whl
27f5cdf9f493b35f7e41e8368e7d7b4bbafaf9660cba53fb21d2cd174ec09631 numpy-2.2.1-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
c1ad395cf254c4fbb5b2132fee391f361a6e8c1adbd28f2cd8e79308a615fe9d numpy-2.2.1-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
08ef779aed40dbc52729d6ffe7dd51df85796a702afbf68a4f4e41fafdc8bda5 numpy-2.2.1-cp313-cp313t-musllinux_1_2_aarch64.whl
26c9c4382b19fcfbbed3238a14abf7ff223890ea1936b8890f058e7ba35e8d71 numpy-2.2.1-cp313-cp313t-musllinux_1_2_x86_64.whl
93cf4e045bae74c90ca833cba583c14b62cb4ba2cba0abd2b141ab52548247e2 numpy-2.2.1-cp313-cp313t-win32.whl
bff7d8ec20f5f42607599f9994770fa65d76edca264a87b5e4ea5629bce12268 numpy-2.2.1-cp313-cp313t-win_amd64.whl
7ba9cc93a91d86365a5d270dee221fdc04fb68d7478e6bf6af650de78a8339e3 numpy-2.2.1-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
3d03883435a19794e41f147612a77a8f56d4e52822337844fff3d4040a142964 numpy-2.2.1-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
4511d9e6071452b944207c8ce46ad2f897307910b402ea5fa975da32e0102800 numpy-2.2.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
5c5cc0cbabe9452038ed984d05ac87910f89370b9242371bd9079cb4af61811e numpy-2.2.1-pp310-pypy310_pp73-win_amd64.whl
45681fd7128c8ad1c379f0ca0776a8b0c6583d2f69889ddac01559dfe4390918 numpy-2.2.1.tar.gz

2.2.0

The NumPy 2.2.0 release is a quick release that brings us back into sync
with the usual twice yearly release cycle. There have been an number of
small cleanups, as well as work bringing the new StringDType to
completion and improving support for free threaded Python. Highlights
are:

- New functions `matvec` and `vecmat`, see below.
- Many improved annotations.
- Improved support for the new StringDType.
- Improved support for free threaded Python
- Fixes for f2py

This release supports Python versions 3.10-3.13.

Deprecations

- `_add_newdoc_ufunc` is now deprecated. `ufunc.__doc__ = newdoc`
should be used instead.

([gh-27735](https://github.com/numpy/numpy/pull/27735))

Expired deprecations

- `bool(np.array([]))` and other empty arrays will now raise an error.
Use `arr.size > 0` instead to check whether an array has no
elements.

([gh-27160](https://github.com/numpy/numpy/pull/27160))

Compatibility notes

- `numpy.cov` now properly transposes single-row (2d array) design matrices
when `rowvar=False`. Previously, single-row design matrices would return a
scalar in this scenario, which is not correct, so this is a behavior change
and an array of the appropriate shape will now be returned.

([gh-27661](https://github.com/numpy/numpy/pull/27661))

New Features

- New functions for matrix-vector and vector-matrix products

Two new generalized ufuncs were defined:

- `numpy.matvec` - matrix-vector product, treating the
arguments as stacks of matrices and column vectors,
respectively.
- `numpy.vecmat` - vector-matrix product, treating the
arguments as stacks of column vectors and matrices,
respectively. For complex vectors, the conjugate is taken.

These add to the existing `numpy.matmul` as well as to
`numpy.vecdot`, which was added in numpy 2.0.

Note that `numpy.matmul` never takes a complex conjugate, also not when its
left input is a vector, while both `numpy.vecdot` and `numpy.vecmat` do
take the conjugate for complex vectors on the left-hand side (which are
taken to be the ones that are transposed, following the physics
convention).

([gh-25675](https://github.com/numpy/numpy/pull/25675))

- `np.complexfloating[T, T]` can now also be written as
`np.complexfloating[T]`

([gh-27420](https://github.com/numpy/numpy/pull/27420))

- UFuncs now support `__dict__` attribute and allow overriding
`__doc__` (either directly or via `ufunc.__dict__["__doc__"]`).
`__dict__` can be used to also override other properties, such as
`__module__` or `__qualname__`.

([gh-27735](https://github.com/numpy/numpy/pull/27735))

- The \"nbit\" type parameter of `np.number` and its subtypes now
defaults to `typing.Any`. This way, type-checkers will infer
annotations such as `x: np.floating` as `x: np.floating[Any]`, even
in strict mode.

([gh-27736](https://github.com/numpy/numpy/pull/27736))

Improvements

- The `datetime64` and `timedelta64` hashes now correctly match the
Pythons builtin `datetime` and `timedelta` ones. The hashes now
evaluated equal even for equal values with different time units.

([gh-14622](https://github.com/numpy/numpy/pull/14622))

- Fixed a number of issues around promotion for string ufuncs with
StringDType arguments. Mixing StringDType and the fixed-width DTypes
using the string ufuncs should now generate much more uniform
results.

([gh-27636](https://github.com/numpy/numpy/pull/27636))

- Improved support for empty `memmap`. Previously an empty `memmap` would
fail unless a non-zero `offset` was set. Now a zero-size `memmap` is
supported even if `offset=0`. To achieve this, if a `memmap` is mapped to
an empty file that file is padded with a single byte.

([gh-27723](https://github.com/numpy/numpy/pull/27723))

- `f2py` handles multiple modules and exposes variables again. A regression
has been fixed which allows F2PY users to expose variables to Python in
modules with only assignments, and also fixes situations where multiple
modules are present within a single source file.

([gh-27695](https://github.com/numpy/numpy/pull/27695))

Performance improvements and changes

- NumPy now uses fast-on-failure attribute lookups for protocols. This
can greatly reduce overheads of function calls or array creation
especially with custom Python objects. The largest improvements will
be seen on Python 3.12 or newer.

([gh-27119](https://github.com/numpy/numpy/pull/27119))

- OpenBLAS on x86_64 and i686 is built with fewer kernels. Based on
benchmarking, there are 5 clusters of performance around these
kernels: `PRESCOTT NEHALEM SANDYBRIDGE HASWELL SKYLAKEX`.

- OpenBLAS on windows is linked without quadmath, simplifying
licensing

- Due to a regression in OpenBLAS on windows, the performance
improvements when using multiple threads for OpenBLAS 0.3.26 were
reverted.

([gh-27147](https://github.com/numpy/numpy/pull/27147))

- NumPy now indicates hugepages also for large `np.zeros` allocations
on linux. Thus should generally improve performance.

([gh-27808](https://github.com/numpy/numpy/pull/27808))

Changes

- `numpy.fix` now won\'t perform casting to a floating
data-type for integer and boolean data-type input arrays.

([gh-26766](https://github.com/numpy/numpy/pull/26766))

- The type annotations of `numpy.float64` and `numpy.complex128` now reflect
that they are also subtypes of the built-in `float` and `complex` types,
respectively. This update prevents static type-checkers from reporting
errors in cases such as:

python
x: float = numpy.float64(6.28) valid
z: complex = numpy.complex128(-1j) valid


([gh-27334](https://github.com/numpy/numpy/pull/27334))

- The `repr` of arrays large enough to be summarized (i.e., where
elements are replaced with `...`) now includes the `shape` of the
array, similar to what already was the case for arrays with zero
size and non-obvious shape. With this change, the shape is always
given when it cannot be inferred from the values. Note that while
written as `shape=...`, this argument cannot actually be passed in
to the `np.array` constructor. If you encounter problems, e.g., due
to failing doctests, you can use the print option `legacy=2.1` to
get the old behaviour.

([gh-27482](https://github.com/numpy/numpy/pull/27482))

- Calling `__array_wrap__` directly on NumPy arrays or scalars now
does the right thing when `return_scalar` is passed (Added in NumPy
2). It is further safe now to call the scalar `__array_wrap__` on a
non-scalar result.

([gh-27807](https://github.com/numpy/numpy/pull/27807))

- Bump the musllinux CI image and wheels to 1_2 from 1_1. This is because
1_1 is [end of life](https://github.com/pypa/manylinux/issues/1629).

([gh-27088](https://github.com/numpy/numpy/pull/27088))

- NEP 50 promotion state option removed

The NEP 50 promotion state settings are now removed. They were always meant as
temporary means for testing. A warning will be given if the environment
variable is set to anything but `NPY_PROMOTION_STATE=weak` while
`_set_promotion_state` and `_get_promotion_state` are removed. In case code
used `_no_nep50_warning`, a `contextlib.nullcontext` could be used to replace
it when not available.

([gh-27156](https://github.com/numpy/numpy/pull/27156))

Checksums

MD5

83746dfc1b7774a6677a69c705b83afe numpy-2.2.0rc1-cp310-cp310-macosx_10_9_x86_64.whl
e69c45cf5ea08fdf2a5527190a7d6549 numpy-2.2.0rc1-cp310-cp310-macosx_11_0_arm64.whl
d4f8048977139cb229875c201f605369 numpy-2.2.0rc1-cp310-cp310-macosx_14_0_arm64.whl
8710578b7f4ceef7f73b6d234ad3a82a numpy-2.2.0rc1-cp310-cp310-macosx_14_0_x86_64.whl
899d1f24d8e5570695a024908d100174 numpy-2.2.0rc1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
cb768ee568bed2e4f55d47f43c655bc2 numpy-2.2.0rc1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
5a40726db153ca1984598323cc59eb9b numpy-2.2.0rc1-cp310-cp310-musllinux_1_2_aarch64.whl
450e5e05bdc5551c0a4df2a8d7f09925 numpy-2.2.0rc1-cp310-cp310-musllinux_1_2_x86_64.whl
1c34c86b0abaa5d2a75677044a7fca07 numpy-2.2.0rc1-cp310-cp310-win32.whl
d679ad13f3892325fd4542931ee74852 numpy-2.2.0rc1-cp310-cp310-win_amd64.whl
a7a8cf5fa2e3d4bd0131ad48c0215f50 numpy-2.2.0rc1-cp311-cp311-macosx_10_9_x86_64.whl
aa6c629290d8b05b44fbbf805fb39dbe numpy-2.2.0rc1-cp311-cp311-macosx_11_0_arm64.whl
a04fe8ac96a5226686ec4190db8511d6 numpy-2.2.0rc1-cp311-cp311-macosx_14_0_arm64.whl
50aedb2a570a7867e860d98eb816bec4 numpy-2.2.0rc1-cp311-cp311-macosx_14_0_x86_64.whl
cd034c5179ee4cc5669ae36be0deb6ab numpy-2.2.0rc1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
67e3336cdcdcf72cd07978a465e61ebd numpy-2.2.0rc1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
45456522fc3996937f1b1ad8bd7f85b2 numpy-2.2.0rc1-cp311-cp311-musllinux_1_2_aarch64.whl
244dcedc05e96c843853738bc2d37bdb numpy-2.2.0rc1-cp311-cp311-musllinux_1_2_x86_64.whl
da24dd620b6509740a1d8aebe4d1306c numpy-2.2.0rc1-cp311-cp311-win32.whl
472e5f997dc437b8115ba4ef70a6a266 numpy-2.2.0rc1-cp311-cp311-win_amd64.whl
6e4ec4f92f8b0768d679419360098a89 numpy-2.2.0rc1-cp312-cp312-macosx_10_13_x86_64.whl
e15a1756fbe98aa61cb8d98de1d516fc numpy-2.2.0rc1-cp312-cp312-macosx_11_0_arm64.whl
6c58bba6f453ad22a651f6f0f6416899 numpy-2.2.0rc1-cp312-cp312-macosx_14_0_arm64.whl
1a00dd2343f8ec48350b39f72e2c4fa1 numpy-2.2.0rc1-cp312-cp312-macosx_14_0_x86_64.whl
cbe9b6d14530bdfb75ef61f4328f6b9e numpy-2.2.0rc1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
a4f14055b4cfafab7035f35e61c6cebb numpy-2.2.0rc1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
8c3c80295b92ae839fcb1fc2ab2edf0e numpy-2.2.0rc1-cp312-cp312-musllinux_1_2_aarch64.whl
1a5aac9894d1959e1cbbcf58e3aa98d1 numpy-2.2.0rc1-cp312-cp312-musllinux_1_2_x86_64.whl
03577c58315ae4b28c3111be0af0c18a numpy-2.2.0rc1-cp312-cp312-win32.whl
c8ed06acb7e1b885081e682a391524d8 numpy-2.2.0rc1-cp312-cp312-win_amd64.whl
53955ed28cb43f004ccd9f2f1e07b0d4 numpy-2.2.0rc1-cp313-cp313-macosx_10_13_x86_64.whl
dffe0e20843d5e331358206b535c47f7 numpy-2.2.0rc1-cp313-cp313-macosx_11_0_arm64.whl
1f22dc1bc3dd3bf645a35a8c58e07ac3 numpy-2.2.0rc1-cp313-cp313-macosx_14_0_arm64.whl
57bb0a9d61444162269751eb861bef75 numpy-2.2.0rc1-cp313-cp313-macosx_14_0_x86_64.whl
b38fd53f8f162a833b89e32b52d6f0b5 numpy-2.2.0rc1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
f8975385402dfa988efe0121adcb3b83 numpy-2.2.0rc1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
8b739c89e3c67210467ac0855623da47 numpy-2.2.0rc1-cp313-cp313-musllinux_1_2_aarch64.whl
902e1f704a187a85f02f71877ed69baf numpy-2.2.0rc1-cp313-cp313-musllinux_1_2_x86_64.whl
fc33a9a4c895b2463672d01e75431a8f numpy-2.2.0rc1-cp313-cp313-win32.whl
f57eb3377cf0acf5ce165034e5d3d061 numpy-2.2.0rc1-cp313-cp313-win_amd64.whl
4dff6567391c376daf27f2a144a4142d numpy-2.2.0rc1-cp313-cp313t-macosx_10_13_x86_64.whl
5195eeac3d355592ec97db04cea7fb43 numpy-2.2.0rc1-cp313-cp313t-macosx_11_0_arm64.whl
9a5e6fb707b1bc448d6f5eb226757581 numpy-2.2.0rc1-cp313-cp313t-macosx_14_0_arm64.whl
455ef245987926bb966565de0f68d00f numpy-2.2.0rc1-cp313-cp313t-macosx_14_0_x86_64.whl
f10882cf7238a03896903b337bce2b05 numpy-2.2.0rc1-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
8889da4b211ca3edba34518306115a81 numpy-2.2.0rc1-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
1d29f0a150c39b500b4f0b1e4c625e9b numpy-2.2.0rc1-cp313-cp313t-musllinux_1_2_aarch64.whl
dcf499ab9d350e3414368a106c714256 numpy-2.2.0rc1-cp313-cp313t-musllinux_1_2_x86_64.whl
af48c02a9130ad93e93a55ebf87b5c78 numpy-2.2.0rc1-cp313-cp313t-win32.whl
290c12deaff6df2e54569563a8f1316a numpy-2.2.0rc1-cp313-cp313t-win_amd64.whl
fce62da0e31ae09237cf241c77e54498 numpy-2.2.0rc1-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
85acaaaa495d92bc52631a6a0654fd8e numpy-2.2.0rc1-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
cb0482e5c60d706b9b0e9ce8dac9d8a6 numpy-2.2.0rc1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
67390891e461b1983aadab51bc96a78b numpy-2.2.0rc1-pp310-pypy310_pp73-win_amd64.whl
4836fdb3009f043287f011b5f6d18208 numpy-2.2.0rc1.tar.gz

SHA256

acd4f4e9f8c3c04c9a695333d4f475ec2f7a577342b469b411f7ffb2a2888fdc numpy-2.2.0rc1-cp310-cp310-macosx_10_9_x86_64.whl
8c3cd769a38a363fe21077ad137ee43be639464e5f257821a4cc4d4e2016deea numpy-2.2.0rc1-cp310-cp310-macosx_11_0_arm64.whl
72fa15a5f801faf598e6633a6efcb5661085f509f8f6631a0c2c86be06631b78 numpy-2.2.0rc1-cp310-cp310-macosx_14_0_arm64.whl
44d55304a7397d6e89707af99ea8e980a101a7ff01dd768aaaca16b2312c799b numpy-2.2.0rc1-cp310-cp310-macosx_14_0_x86_64.whl
8a25595d5951ad46bec827dfee09328b8da041fc3f7f13f63880274ed4ec215e numpy-2.2.0rc1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
c335bd4e3395b8209a011b97e5f9876092fb2dc283933d39620a30c1fa82dfab numpy-2.2.0rc1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
5ac124ab756ad56a14cdfcdc69cc220befbfb1162fdf3ca4f6eb1a0ace634c56 numpy-2.2.0rc1-cp310-cp310-musllinux_1_2_aarch64.whl
2f7861ff2b862e2536f2256acf5dcf1909e927a5f5e940dfd488eecd178a96b6 numpy-2.2.0rc1-cp310-cp310-musllinux_1_2_x86_64.whl
e2d4b5a37cf5df43ffdabe0ebea150d5ec0a1796ad7122b3a780f1ab646708c8 numpy-2.2.0rc1-cp310-cp310-win32.whl
7a3261b3b7d1403a65112dbad568eee7de596cebd0267e27e7daaa9e08dd396a numpy-2.2.0rc1-cp310-cp310-win_amd64.whl
61915861927b8e20223b7ccbe40ebf3f52220c0fca43be8423087348c7c00418 numpy-2.2.0rc1-cp311-cp311-macosx_10_9_x86_64.whl
8815f7e6d48dbcf4f14704d79b90c8fee1a68a42886d42e9c8209092e684bd99 numpy-2.2.0rc1-cp311-cp311-macosx_11_0_arm64.whl
3e80348e6d187573dc2bb6b1d862fc32353db371ae063d25b2199f65adc96ff1 numpy-2.2.0rc1-cp311-cp311-macosx_14_0_arm64.whl
8fb79fe9bfefb2b43f701090f70413fb535f10bfdfab1981b7c02bd406cc39dd numpy-2.2.0rc1-cp311-cp311-macosx_14_0_x86_64.whl
042b6a87c48307955049b338981ff9278fa5e7ff3166bbd0d3294f40726d22d5 numpy-2.2.0rc1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
94251286fd3cec5552f217030af4cae68f7a1db4f1791765e597b6d9c0a7647a numpy-2.2.0rc1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
ffaa01305af250d733d9940c694d206a0c7d1ea2bd5a01bcb5ff7e48c3e6adac numpy-2.2.0rc1-cp311-cp311-musllinux_1_2_aarch64.whl
37e6413ed8f66df534631058771ca362939e243da725b5e8537d8c64b664e9b2 numpy-2.2.0rc1-cp311-cp311-musllinux_1_2_x86_64.whl
7bd86cdae85da5fa8763fbe9acfdb4748e1f10bef5e6524bffdfdd2b21bfd56f numpy-2.2.0rc1-cp311-cp311-win32.whl
27f2593fe479dff6f4398563ca2fbf7a416fd8d3a8ad7a35fecbc8ba959000ab numpy-2.2.0rc1-cp311-cp311-win_amd64.whl
f721298f4c39b4619b16ba0d341ff5e043d4123dfb796bd84835538bf8abad2b numpy-2.2.0rc1-cp312-cp312-macosx_10_13_x86_64.whl
aed72fe759ada921342b4a8ae0893cc7778b07d2f36a78445c70d5ea633c3b25 numpy-2.2.0rc1-cp312-cp312-macosx_11_0_arm64.whl
c940b9623e29db06b7d0d3c93c560d42bbd73a76f6d27c41d3fd09c0a15f7773 numpy-2.2.0rc1-cp312-cp312-macosx_14_0_arm64.whl
a783f561c34be98eb25f8cce029b63434d2dfe79702a1d53e9a0fd63c0391dc8 numpy-2.2.0rc1-cp312-cp312-macosx_14_0_x86_64.whl
d0db426baa0d9547d9ac3ea08110e9bba400fab7a036235d9baddf61fd931af8 numpy-2.2.0rc1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
7925618745531971be54a87e0b85dfe83c69dac9dfd8e46c8aaae520af05792b numpy-2.2.0rc1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
5d7a819d4d31bf9998c907105d97a082919b659ff8d44cef2c4f78d0ac16af47 numpy-2.2.0rc1-cp312-cp312-musllinux_1_2_aarch64.whl
0b6cb83ab76b101b87211ab6227e010789adf4a98ee4af07a2480d1d2f61d195 numpy-2.2.0rc1-cp312-cp312-musllinux_1_2_x86_64.whl
dc86f8502db8dfbe3474a34395e453849d03f0717227f7bda57a235cbbee3575 numpy-2.2.0rc1-cp312-cp312-win32.whl
a87c1a4d808de26157440153bb9c51d7dc4778c6cd730026406298b75fa5c2df numpy-2.2.0rc1-cp312-cp312-win_amd64.whl
c2ef440fc343cc11e8e1591bf77b0f4f21b0684feabdf7b3ec3d768b8cce7a05 numpy-2.2.0rc1-cp313-cp313-macosx_10_13_x86_64.whl
4332ddb4f40e85f6cdf1594279b35e847a20054c3269f7f2e848b6075cb8f4b3 numpy-2.2.0rc1-cp313-cp313-macosx_11_0_arm64.whl
dc532dd1c767864614f383cad63edf864f78df3533b6444d94af099583c8fb39 numpy-2.2.0rc1-cp313-cp313-macosx_14_0_arm64.whl
ecc601c633667ea5eed0c16f987e4c715ee951d0bfa3658f76b690e8dceaddfd numpy-2.2.0rc1-cp313-cp313-macosx_14_0_x86_64.whl
38405f26748e7ed4c7b31e5f8c24f385e1daf4954628f6143f5a09047e220ca9 numpy-2.2.0rc1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
e515a7d5f5e1b32eb9e761de4f0327aceee27ec07cc655d26424a5e86d3c8d0d numpy-2.2.0rc1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
fd3981aa01428eef69fe5ff2e97e3ca8e65e677ffacc7c447e164ae2aaf521fb numpy-2.2.0rc1-cp313-cp313-musllinux_1_2_aarch64.whl
61a04f035bd4f87d6c0592eaa06061f9f16bf0e11d546e3b9252ccf83f0917a6 numpy-2.2.0rc1-cp313-cp313-musllinux_1_2_x86_64.whl
1b18bf71975be1728042ba232d7406ae2f6fed8431684851fda4b909ab6e20ce numpy-2.2.0rc1-cp313-cp313-win32.whl
5776d7b395dcf180bc807a9374aca05b6569e5e5e4bdcbf112aa452a471405e0 numpy-2.2.0rc1-cp313-cp313-win_amd64.whl
3f0d900e60e783fa9965729fa2a17021add82d769bf298cdb407abcbbf316e28 numpy-2.2.0rc1-cp313-cp313t-macosx_10_13_x86_64.whl
def9537da892cd995f81646df94021fbf0dce690d518daaabc0902bc8ce42cd9 numpy-2.2.0rc1-cp313-cp313t-macosx_11_0_arm64.whl
f2b59a4e85367107dced5b3c7374a5e828ddb7c5c4e1d98176d09b177e23edd0 numpy-2.2.0rc1-cp313-cp313t-macosx_14_0_arm64.whl
9c3bdfe13209bf4f81aea5f8dd2843ab17c9a9273133d491c220636bfd51432d numpy-2.2.0rc1-cp313-cp313t-macosx_14_0_x86_64.whl
b0b742731c2721445a03e469f286c9ddf15dd80e52622ea4487ddc10a7869fe9 numpy-2.2.0rc1-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
8c43d7beaab6509f1467175cc7cfdcc048581b91ba55e149cc39af758209b166 numpy-2.2.0rc1-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
598b88170e0f361d2f6d8cc9ec18d798af07a2e9b30b95ba2d76415b7c3cc433 numpy-2.2.0rc1-cp313-cp313t-musllinux_1_2_aarch64.whl
ddb4720b057048d7ac3ce973256e89e1e7481f71b5a214a0a3be936aeda014e7 numpy-2.2.0rc1-cp313-cp313t-musllinux_1_2_x86_64.whl
64b994b9054ab051d137fff61bb6244aa1e7a80defa42c507355b562cc44a561 numpy-2.2.0rc1-cp313-cp313t-win32.whl
67d2f5c34f231e7ed59189c20f8b7472b77cff85277bcd80537417eee61977db numpy-2.2.0rc1-cp313-cp313t-win_amd64.whl
d4bbc95647ce01252827d4c6ea5de42460ea66d75831333f2b92f088b60e1b43 numpy-2.2.0rc1-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
d8d13dd7b6f1f14c43ff68e81c8edcb035f572d87507b5f629e78a7d8c61e9f4 numpy-2.2.0rc1-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
d12bf735dc4e7dfa8c66b2fd47547bcf91c9996585324959e2c5a2f5360e1c8f numpy-2.2.0rc1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
8d7de626a5e554b074890258e63d0b06eff2af48da034fe5ffef8743578b1e0b numpy-2.2.0rc1-pp310-pypy310_pp73-win_amd64.whl
d3c343e027351fbb3f7ddb0024857cd10837d6a77b40b33e39ff6706ed7ceec1 numpy-2.2.0rc1.tar.gz

Page 2 of 24

© 2025 Safety CLI Cybersecurity Inc. All Rights Reserved.