Numpy

Latest version: v2.2.1

Safety actively analyzes 693883 Python packages for vulnerabilities to keep your Python projects secure.

Scan your dependencies

Page 2 of 23

3.0

NPY_NO_DEPRECATED_API=NPY_1_7_API_VERSION` to avoid C compiler warnings
about deprecated API usage.

Contributors
------------

A total of 8 people contributed to this release. People with a \"+\" by
their names contributed a patch for the first time.

- Charles Harris
- Matti Picus
- Pauli Virtanen
- Philippe Ombredanne +
- Sebastian Berg
- Stefan Behnel +
- Stephan Loyd +
- Zac Hatfield-Dodds

Pull requests merged
--------------------

A total of 9 pull requests were merged for this release.

- [\16959](https://github.com/numpy/numpy/pull/16959): TST: Change aarch64 to arm64 in travis.yml.
- [\16998](https://github.com/numpy/numpy/pull/16998): MAINT: Configure hypothesis in `np.test()` for determinism,\...
- [\17000](https://github.com/numpy/numpy/pull/17000): BLD: pin setuptools \< 49.2.0
- [\17015](https://github.com/numpy/numpy/pull/17015): ENH: Add NumPy declarations to be used by Cython 3.0+
- [\17125](https://github.com/numpy/numpy/pull/17125): BUG: Remove non-threadsafe sigint handling from fft calculation
- [\17243](https://github.com/numpy/numpy/pull/17243): BUG: core: fix ilp64 blas dot/vdot/\... for strides \> int32 max
- [\17244](https://github.com/numpy/numpy/pull/17244): DOC: Use SPDX license expressions with correct license
- [\17245](https://github.com/numpy/numpy/pull/17245): DOC: Fix the link to the quick-start in the old API functions
- [\17272](https://github.com/numpy/numpy/pull/17272): BUG: fix pickling of arrays larger than 2GiB

Checksums
---------

MD5

b74295cbb5b1c98f46f26e13c0fca0ea numpy-1.19.2-cp36-cp36m-macosx_10_9_x86_64.whl
3e307eca6c448bbe30e4c1dc99824642 numpy-1.19.2-cp36-cp36m-manylinux1_i686.whl
bfe6c2053a7a792097df912d1175ef7e numpy-1.19.2-cp36-cp36m-manylinux1_x86_64.whl
3b61953b421460abc7d2ecb4df4060bc numpy-1.19.2-cp36-cp36m-manylinux2010_i686.whl
7c442b7c5af62bd5be669bf6c360e114 numpy-1.19.2-cp36-cp36m-manylinux2010_x86_64.whl
f6eaf46804f0d66c123fa7ff728b178e numpy-1.19.2-cp36-cp36m-manylinux2014_aarch64.whl
30bbe0bcd774ab483c7494d1cf827199 numpy-1.19.2-cp36-cp36m-win32.whl
cf54372ccde7de333d7b69cd16abfa70 numpy-1.19.2-cp36-cp36m-win_amd64.whl
285d0fc2986bf4a050523d98f47f2175 numpy-1.19.2-cp37-cp37m-macosx_10_9_x86_64.whl
a0901b44347ba39154058a26a9fc8e77 numpy-1.19.2-cp37-cp37m-manylinux1_i686.whl
21bfe38bdb317ad4af4959279dd90fde numpy-1.19.2-cp37-cp37m-manylinux1_x86_64.whl
ec32c124ace9c08399e88b8eca6d7475 numpy-1.19.2-cp37-cp37m-manylinux2010_i686.whl
0d5cae15043a8172a1b8a478b7c98119 numpy-1.19.2-cp37-cp37m-manylinux2010_x86_64.whl
c7e9905e721dc31a666f59e30e37aa0d numpy-1.19.2-cp37-cp37m-manylinux2014_aarch64.whl
ad32d083e641f2cf1a50fe821f3673a7 numpy-1.19.2-cp37-cp37m-win32.whl
a243b3e844507e424e828430010612c1 numpy-1.19.2-cp37-cp37m-win_amd64.whl
8f4d5df29d4fbf21bf8c4c976595214f numpy-1.19.2-cp38-cp38-macosx_10_9_x86_64.whl
7b003b2fd18125f3956eb3a182ab0d7f numpy-1.19.2-cp38-cp38-manylinux1_i686.whl
e7b8242ee7a79778c6df64772fde5885 numpy-1.19.2-cp38-cp38-manylinux1_x86_64.whl
e89e05d24b6f898005e03ba3f01c0641 numpy-1.19.2-cp38-cp38-manylinux2010_i686.whl
4cffe85a99bfe08d47d7f1f655142be4 numpy-1.19.2-cp38-cp38-manylinux2010_x86_64.whl
39e363f10f0a9af0a8506699118d3aaf numpy-1.19.2-cp38-cp38-manylinux2014_aarch64.whl
13ccd230fefdd56a1679fd72fd0d8a55 numpy-1.19.2-cp38-cp38-win32.whl
a3d85f244058882b90140468b86f2e2e numpy-1.19.2-cp38-cp38-win_amd64.whl
ef4cf0675f801a4bf339348fc1843f50 numpy-1.19.2-pp36-pypy36_pp73-manylinux2010_x86_64.whl
471156268abd8686e39e811003726ab1 numpy-1.19.2.tar.gz
2d011c5422596d742784ba5c2204bc5d numpy-1.19.2.zip

SHA256

b594f76771bc7fc8a044c5ba303427ee67c17a09b36e1fa32bde82f5c419d17a numpy-1.19.2-cp36-cp36m-macosx_10_9_x86_64.whl
e6ddbdc5113628f15de7e4911c02aed74a4ccff531842c583e5032f6e5a179bd numpy-1.19.2-cp36-cp36m-manylinux1_i686.whl
3733640466733441295b0d6d3dcbf8e1ffa7e897d4d82903169529fd3386919a numpy-1.19.2-cp36-cp36m-manylinux1_x86_64.whl
4339741994c775396e1a274dba3609c69ab0f16056c1077f18979bec2a2c2e6e numpy-1.19.2-cp36-cp36m-manylinux2010_i686.whl
7c6646314291d8f5ea900a7ea9c4261f834b5b62159ba2abe3836f4fa6705526 numpy-1.19.2-cp36-cp36m-manylinux2010_x86_64.whl
7118f0a9f2f617f921ec7d278d981244ba83c85eea197be7c5a4f84af80a9c3c numpy-1.19.2-cp36-cp36m-manylinux2014_aarch64.whl
9a3001248b9231ed73894c773142658bab914645261275f675d86c290c37f66d numpy-1.19.2-cp36-cp36m-win32.whl
967c92435f0b3ba37a4257c48b8715b76741410467e2bdb1097e8391fccfae15 numpy-1.19.2-cp36-cp36m-win_amd64.whl
d526fa58ae4aead839161535d59ea9565863bb0b0bdb3cc63214613fb16aced4 numpy-1.19.2-cp37-cp37m-macosx_10_9_x86_64.whl
eb25c381d168daf351147713f49c626030dcff7a393d5caa62515d415a6071d8 numpy-1.19.2-cp37-cp37m-manylinux1_i686.whl
62139af94728d22350a571b7c82795b9d59be77fc162414ada6c8b6a10ef5d02 numpy-1.19.2-cp37-cp37m-manylinux1_x86_64.whl
0c66da1d202c52051625e55a249da35b31f65a81cb56e4c69af0dfb8fb0125bf numpy-1.19.2-cp37-cp37m-manylinux2010_i686.whl
2117536e968abb7357d34d754e3733b0d7113d4c9f1d921f21a3d96dec5ff716 numpy-1.19.2-cp37-cp37m-manylinux2010_x86_64.whl
54045b198aebf41bf6bf4088012777c1d11703bf74461d70cd350c0af2182e45 numpy-1.19.2-cp37-cp37m-manylinux2014_aarch64.whl
aba1d5daf1144b956bc87ffb87966791f5e9f3e1f6fab3d7f581db1f5b598f7a numpy-1.19.2-cp37-cp37m-win32.whl
addaa551b298052c16885fc70408d3848d4e2e7352de4e7a1e13e691abc734c1 numpy-1.19.2-cp37-cp37m-win_amd64.whl
58d66a6b3b55178a1f8a5fe98df26ace76260a70de694d99577ddeab7eaa9a9d numpy-1.19.2-cp38-cp38-macosx_10_9_x86_64.whl
59f3d687faea7a4f7f93bd9665e5b102f32f3fa28514f15b126f099b7997203d numpy-1.19.2-cp38-cp38-manylinux1_i686.whl
cebd4f4e64cfe87f2039e4725781f6326a61f095bc77b3716502bed812b385a9 numpy-1.19.2-cp38-cp38-manylinux1_x86_64.whl
c35a01777f81e7333bcf276b605f39c872e28295441c265cd0c860f4b40148c1 numpy-1.19.2-cp38-cp38-manylinux2010_i686.whl
d7ac33585e1f09e7345aa902c281bd777fdb792432d27fca857f39b70e5dd31c numpy-1.19.2-cp38-cp38-manylinux2010_x86_64.whl
04c7d4ebc5ff93d9822075ddb1751ff392a4375e5885299445fcebf877f179d5 numpy-1.19.2-cp38-cp38-manylinux2014_aarch64.whl
51ee93e1fac3fe08ef54ff1c7f329db64d8a9c5557e6c8e908be9497ac76374b numpy-1.19.2-cp38-cp38-win32.whl
1669ec8e42f169ff715a904c9b2105b6640f3f2a4c4c2cb4920ae8b2785dac65 numpy-1.19.2-cp38-cp38-win_amd64.whl
0bfd85053d1e9f60234f28f63d4a5147ada7f432943c113a11afcf3e65d9d4c8 numpy-1.19.2-pp36-pypy36_pp73-manylinux2010_x86_64.whl
74d0cf50aa28af81874aca3e67560945afd783b2a006913577d6cddc35a824a6 numpy-1.19.2.tar.gz
0d310730e1e793527065ad7dde736197b705d0e4c9999775f212b03c44a8484c numpy-1.19.2.zip

2.2.0

The NumPy 2.2.0 release is a quick release that brings us back into sync
with the usual twice yearly release cycle. There have been an number of
small cleanups, as well as work bringing the new StringDType to
completion and improving support for free threaded Python. Highlights
are:

- New functions `matvec` and `vecmat`, see below.
- Many improved annotations.
- Improved support for the new StringDType.
- Improved support for free threaded Python
- Fixes for f2py

This release supports Python versions 3.10-3.13.

Deprecations

- `_add_newdoc_ufunc` is now deprecated. `ufunc.__doc__ = newdoc`
should be used instead.

([gh-27735](https://github.com/numpy/numpy/pull/27735))

Expired deprecations

- `bool(np.array([]))` and other empty arrays will now raise an error.
Use `arr.size > 0` instead to check whether an array has no
elements.

([gh-27160](https://github.com/numpy/numpy/pull/27160))

Compatibility notes

- `numpy.cov` now properly transposes single-row (2d array) design matrices
when `rowvar=False`. Previously, single-row design matrices would return a
scalar in this scenario, which is not correct, so this is a behavior change
and an array of the appropriate shape will now be returned.

([gh-27661](https://github.com/numpy/numpy/pull/27661))

New Features

- New functions for matrix-vector and vector-matrix products

Two new generalized ufuncs were defined:

- `numpy.matvec` - matrix-vector product, treating the
arguments as stacks of matrices and column vectors,
respectively.
- `numpy.vecmat` - vector-matrix product, treating the
arguments as stacks of column vectors and matrices,
respectively. For complex vectors, the conjugate is taken.

These add to the existing `numpy.matmul` as well as to
`numpy.vecdot`, which was added in numpy 2.0.

Note that `numpy.matmul` never takes a complex conjugate, also not when its
left input is a vector, while both `numpy.vecdot` and `numpy.vecmat` do
take the conjugate for complex vectors on the left-hand side (which are
taken to be the ones that are transposed, following the physics
convention).

([gh-25675](https://github.com/numpy/numpy/pull/25675))

- `np.complexfloating[T, T]` can now also be written as
`np.complexfloating[T]`

([gh-27420](https://github.com/numpy/numpy/pull/27420))

- UFuncs now support `__dict__` attribute and allow overriding
`__doc__` (either directly or via `ufunc.__dict__["__doc__"]`).
`__dict__` can be used to also override other properties, such as
`__module__` or `__qualname__`.

([gh-27735](https://github.com/numpy/numpy/pull/27735))

- The \"nbit\" type parameter of `np.number` and its subtypes now
defaults to `typing.Any`. This way, type-checkers will infer
annotations such as `x: np.floating` as `x: np.floating[Any]`, even
in strict mode.

([gh-27736](https://github.com/numpy/numpy/pull/27736))

Improvements

- The `datetime64` and `timedelta64` hashes now correctly match the
Pythons builtin `datetime` and `timedelta` ones. The hashes now
evaluated equal even for equal values with different time units.

([gh-14622](https://github.com/numpy/numpy/pull/14622))

- Fixed a number of issues around promotion for string ufuncs with
StringDType arguments. Mixing StringDType and the fixed-width DTypes
using the string ufuncs should now generate much more uniform
results.

([gh-27636](https://github.com/numpy/numpy/pull/27636))

- Improved support for empty `memmap`. Previously an empty `memmap` would
fail unless a non-zero `offset` was set. Now a zero-size `memmap` is
supported even if `offset=0`. To achieve this, if a `memmap` is mapped to
an empty file that file is padded with a single byte.

([gh-27723](https://github.com/numpy/numpy/pull/27723))

- `f2py` handles multiple modules and exposes variables again. A regression
has been fixed which allows F2PY users to expose variables to Python in
modules with only assignments, and also fixes situations where multiple
modules are present within a single source file.

([gh-27695](https://github.com/numpy/numpy/pull/27695))

Performance improvements and changes

- NumPy now uses fast-on-failure attribute lookups for protocols. This
can greatly reduce overheads of function calls or array creation
especially with custom Python objects. The largest improvements will
be seen on Python 3.12 or newer.

([gh-27119](https://github.com/numpy/numpy/pull/27119))

- OpenBLAS on x86_64 and i686 is built with fewer kernels. Based on
benchmarking, there are 5 clusters of performance around these
kernels: `PRESCOTT NEHALEM SANDYBRIDGE HASWELL SKYLAKEX`.

- OpenBLAS on windows is linked without quadmath, simplifying
licensing

- Due to a regression in OpenBLAS on windows, the performance
improvements when using multiple threads for OpenBLAS 0.3.26 were
reverted.

([gh-27147](https://github.com/numpy/numpy/pull/27147))

- NumPy now indicates hugepages also for large `np.zeros` allocations
on linux. Thus should generally improve performance.

([gh-27808](https://github.com/numpy/numpy/pull/27808))

Changes

- `numpy.fix` now won\'t perform casting to a floating
data-type for integer and boolean data-type input arrays.

([gh-26766](https://github.com/numpy/numpy/pull/26766))

- The type annotations of `numpy.float64` and `numpy.complex128` now reflect
that they are also subtypes of the built-in `float` and `complex` types,
respectively. This update prevents static type-checkers from reporting
errors in cases such as:

python
x: float = numpy.float64(6.28) valid
z: complex = numpy.complex128(-1j) valid


([gh-27334](https://github.com/numpy/numpy/pull/27334))

- The `repr` of arrays large enough to be summarized (i.e., where
elements are replaced with `...`) now includes the `shape` of the
array, similar to what already was the case for arrays with zero
size and non-obvious shape. With this change, the shape is always
given when it cannot be inferred from the values. Note that while
written as `shape=...`, this argument cannot actually be passed in
to the `np.array` constructor. If you encounter problems, e.g., due
to failing doctests, you can use the print option `legacy=2.1` to
get the old behaviour.

([gh-27482](https://github.com/numpy/numpy/pull/27482))

- Calling `__array_wrap__` directly on NumPy arrays or scalars now
does the right thing when `return_scalar` is passed (Added in NumPy
2). It is further safe now to call the scalar `__array_wrap__` on a
non-scalar result.

([gh-27807](https://github.com/numpy/numpy/pull/27807))

- Bump the musllinux CI image and wheels to 1_2 from 1_1. This is because
1_1 is [end of life](https://github.com/pypa/manylinux/issues/1629).

([gh-27088](https://github.com/numpy/numpy/pull/27088))

- NEP 50 promotion state option removed

The NEP 50 promotion state settings are now removed. They were always meant as
temporary means for testing. A warning will be given if the environment
variable is set to anything but `NPY_PROMOTION_STATE=weak` while
`_set_promotion_state` and `_get_promotion_state` are removed. In case code
used `_no_nep50_warning`, a `contextlib.nullcontext` could be used to replace
it when not available.

([gh-27156](https://github.com/numpy/numpy/pull/27156))

Checksums

MD5

83746dfc1b7774a6677a69c705b83afe numpy-2.2.0rc1-cp310-cp310-macosx_10_9_x86_64.whl
e69c45cf5ea08fdf2a5527190a7d6549 numpy-2.2.0rc1-cp310-cp310-macosx_11_0_arm64.whl
d4f8048977139cb229875c201f605369 numpy-2.2.0rc1-cp310-cp310-macosx_14_0_arm64.whl
8710578b7f4ceef7f73b6d234ad3a82a numpy-2.2.0rc1-cp310-cp310-macosx_14_0_x86_64.whl
899d1f24d8e5570695a024908d100174 numpy-2.2.0rc1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
cb768ee568bed2e4f55d47f43c655bc2 numpy-2.2.0rc1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
5a40726db153ca1984598323cc59eb9b numpy-2.2.0rc1-cp310-cp310-musllinux_1_2_aarch64.whl
450e5e05bdc5551c0a4df2a8d7f09925 numpy-2.2.0rc1-cp310-cp310-musllinux_1_2_x86_64.whl
1c34c86b0abaa5d2a75677044a7fca07 numpy-2.2.0rc1-cp310-cp310-win32.whl
d679ad13f3892325fd4542931ee74852 numpy-2.2.0rc1-cp310-cp310-win_amd64.whl
a7a8cf5fa2e3d4bd0131ad48c0215f50 numpy-2.2.0rc1-cp311-cp311-macosx_10_9_x86_64.whl
aa6c629290d8b05b44fbbf805fb39dbe numpy-2.2.0rc1-cp311-cp311-macosx_11_0_arm64.whl
a04fe8ac96a5226686ec4190db8511d6 numpy-2.2.0rc1-cp311-cp311-macosx_14_0_arm64.whl
50aedb2a570a7867e860d98eb816bec4 numpy-2.2.0rc1-cp311-cp311-macosx_14_0_x86_64.whl
cd034c5179ee4cc5669ae36be0deb6ab numpy-2.2.0rc1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
67e3336cdcdcf72cd07978a465e61ebd numpy-2.2.0rc1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
45456522fc3996937f1b1ad8bd7f85b2 numpy-2.2.0rc1-cp311-cp311-musllinux_1_2_aarch64.whl
244dcedc05e96c843853738bc2d37bdb numpy-2.2.0rc1-cp311-cp311-musllinux_1_2_x86_64.whl
da24dd620b6509740a1d8aebe4d1306c numpy-2.2.0rc1-cp311-cp311-win32.whl
472e5f997dc437b8115ba4ef70a6a266 numpy-2.2.0rc1-cp311-cp311-win_amd64.whl
6e4ec4f92f8b0768d679419360098a89 numpy-2.2.0rc1-cp312-cp312-macosx_10_13_x86_64.whl
e15a1756fbe98aa61cb8d98de1d516fc numpy-2.2.0rc1-cp312-cp312-macosx_11_0_arm64.whl
6c58bba6f453ad22a651f6f0f6416899 numpy-2.2.0rc1-cp312-cp312-macosx_14_0_arm64.whl
1a00dd2343f8ec48350b39f72e2c4fa1 numpy-2.2.0rc1-cp312-cp312-macosx_14_0_x86_64.whl
cbe9b6d14530bdfb75ef61f4328f6b9e numpy-2.2.0rc1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
a4f14055b4cfafab7035f35e61c6cebb numpy-2.2.0rc1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
8c3c80295b92ae839fcb1fc2ab2edf0e numpy-2.2.0rc1-cp312-cp312-musllinux_1_2_aarch64.whl
1a5aac9894d1959e1cbbcf58e3aa98d1 numpy-2.2.0rc1-cp312-cp312-musllinux_1_2_x86_64.whl
03577c58315ae4b28c3111be0af0c18a numpy-2.2.0rc1-cp312-cp312-win32.whl
c8ed06acb7e1b885081e682a391524d8 numpy-2.2.0rc1-cp312-cp312-win_amd64.whl
53955ed28cb43f004ccd9f2f1e07b0d4 numpy-2.2.0rc1-cp313-cp313-macosx_10_13_x86_64.whl
dffe0e20843d5e331358206b535c47f7 numpy-2.2.0rc1-cp313-cp313-macosx_11_0_arm64.whl
1f22dc1bc3dd3bf645a35a8c58e07ac3 numpy-2.2.0rc1-cp313-cp313-macosx_14_0_arm64.whl
57bb0a9d61444162269751eb861bef75 numpy-2.2.0rc1-cp313-cp313-macosx_14_0_x86_64.whl
b38fd53f8f162a833b89e32b52d6f0b5 numpy-2.2.0rc1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
f8975385402dfa988efe0121adcb3b83 numpy-2.2.0rc1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
8b739c89e3c67210467ac0855623da47 numpy-2.2.0rc1-cp313-cp313-musllinux_1_2_aarch64.whl
902e1f704a187a85f02f71877ed69baf numpy-2.2.0rc1-cp313-cp313-musllinux_1_2_x86_64.whl
fc33a9a4c895b2463672d01e75431a8f numpy-2.2.0rc1-cp313-cp313-win32.whl
f57eb3377cf0acf5ce165034e5d3d061 numpy-2.2.0rc1-cp313-cp313-win_amd64.whl
4dff6567391c376daf27f2a144a4142d numpy-2.2.0rc1-cp313-cp313t-macosx_10_13_x86_64.whl
5195eeac3d355592ec97db04cea7fb43 numpy-2.2.0rc1-cp313-cp313t-macosx_11_0_arm64.whl
9a5e6fb707b1bc448d6f5eb226757581 numpy-2.2.0rc1-cp313-cp313t-macosx_14_0_arm64.whl
455ef245987926bb966565de0f68d00f numpy-2.2.0rc1-cp313-cp313t-macosx_14_0_x86_64.whl
f10882cf7238a03896903b337bce2b05 numpy-2.2.0rc1-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
8889da4b211ca3edba34518306115a81 numpy-2.2.0rc1-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
1d29f0a150c39b500b4f0b1e4c625e9b numpy-2.2.0rc1-cp313-cp313t-musllinux_1_2_aarch64.whl
dcf499ab9d350e3414368a106c714256 numpy-2.2.0rc1-cp313-cp313t-musllinux_1_2_x86_64.whl
af48c02a9130ad93e93a55ebf87b5c78 numpy-2.2.0rc1-cp313-cp313t-win32.whl
290c12deaff6df2e54569563a8f1316a numpy-2.2.0rc1-cp313-cp313t-win_amd64.whl
fce62da0e31ae09237cf241c77e54498 numpy-2.2.0rc1-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
85acaaaa495d92bc52631a6a0654fd8e numpy-2.2.0rc1-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
cb0482e5c60d706b9b0e9ce8dac9d8a6 numpy-2.2.0rc1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
67390891e461b1983aadab51bc96a78b numpy-2.2.0rc1-pp310-pypy310_pp73-win_amd64.whl
4836fdb3009f043287f011b5f6d18208 numpy-2.2.0rc1.tar.gz

SHA256

acd4f4e9f8c3c04c9a695333d4f475ec2f7a577342b469b411f7ffb2a2888fdc numpy-2.2.0rc1-cp310-cp310-macosx_10_9_x86_64.whl
8c3cd769a38a363fe21077ad137ee43be639464e5f257821a4cc4d4e2016deea numpy-2.2.0rc1-cp310-cp310-macosx_11_0_arm64.whl
72fa15a5f801faf598e6633a6efcb5661085f509f8f6631a0c2c86be06631b78 numpy-2.2.0rc1-cp310-cp310-macosx_14_0_arm64.whl
44d55304a7397d6e89707af99ea8e980a101a7ff01dd768aaaca16b2312c799b numpy-2.2.0rc1-cp310-cp310-macosx_14_0_x86_64.whl
8a25595d5951ad46bec827dfee09328b8da041fc3f7f13f63880274ed4ec215e numpy-2.2.0rc1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
c335bd4e3395b8209a011b97e5f9876092fb2dc283933d39620a30c1fa82dfab numpy-2.2.0rc1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
5ac124ab756ad56a14cdfcdc69cc220befbfb1162fdf3ca4f6eb1a0ace634c56 numpy-2.2.0rc1-cp310-cp310-musllinux_1_2_aarch64.whl
2f7861ff2b862e2536f2256acf5dcf1909e927a5f5e940dfd488eecd178a96b6 numpy-2.2.0rc1-cp310-cp310-musllinux_1_2_x86_64.whl
e2d4b5a37cf5df43ffdabe0ebea150d5ec0a1796ad7122b3a780f1ab646708c8 numpy-2.2.0rc1-cp310-cp310-win32.whl
7a3261b3b7d1403a65112dbad568eee7de596cebd0267e27e7daaa9e08dd396a numpy-2.2.0rc1-cp310-cp310-win_amd64.whl
61915861927b8e20223b7ccbe40ebf3f52220c0fca43be8423087348c7c00418 numpy-2.2.0rc1-cp311-cp311-macosx_10_9_x86_64.whl
8815f7e6d48dbcf4f14704d79b90c8fee1a68a42886d42e9c8209092e684bd99 numpy-2.2.0rc1-cp311-cp311-macosx_11_0_arm64.whl
3e80348e6d187573dc2bb6b1d862fc32353db371ae063d25b2199f65adc96ff1 numpy-2.2.0rc1-cp311-cp311-macosx_14_0_arm64.whl
8fb79fe9bfefb2b43f701090f70413fb535f10bfdfab1981b7c02bd406cc39dd numpy-2.2.0rc1-cp311-cp311-macosx_14_0_x86_64.whl
042b6a87c48307955049b338981ff9278fa5e7ff3166bbd0d3294f40726d22d5 numpy-2.2.0rc1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
94251286fd3cec5552f217030af4cae68f7a1db4f1791765e597b6d9c0a7647a numpy-2.2.0rc1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
ffaa01305af250d733d9940c694d206a0c7d1ea2bd5a01bcb5ff7e48c3e6adac numpy-2.2.0rc1-cp311-cp311-musllinux_1_2_aarch64.whl
37e6413ed8f66df534631058771ca362939e243da725b5e8537d8c64b664e9b2 numpy-2.2.0rc1-cp311-cp311-musllinux_1_2_x86_64.whl
7bd86cdae85da5fa8763fbe9acfdb4748e1f10bef5e6524bffdfdd2b21bfd56f numpy-2.2.0rc1-cp311-cp311-win32.whl
27f2593fe479dff6f4398563ca2fbf7a416fd8d3a8ad7a35fecbc8ba959000ab numpy-2.2.0rc1-cp311-cp311-win_amd64.whl
f721298f4c39b4619b16ba0d341ff5e043d4123dfb796bd84835538bf8abad2b numpy-2.2.0rc1-cp312-cp312-macosx_10_13_x86_64.whl
aed72fe759ada921342b4a8ae0893cc7778b07d2f36a78445c70d5ea633c3b25 numpy-2.2.0rc1-cp312-cp312-macosx_11_0_arm64.whl
c940b9623e29db06b7d0d3c93c560d42bbd73a76f6d27c41d3fd09c0a15f7773 numpy-2.2.0rc1-cp312-cp312-macosx_14_0_arm64.whl
a783f561c34be98eb25f8cce029b63434d2dfe79702a1d53e9a0fd63c0391dc8 numpy-2.2.0rc1-cp312-cp312-macosx_14_0_x86_64.whl
d0db426baa0d9547d9ac3ea08110e9bba400fab7a036235d9baddf61fd931af8 numpy-2.2.0rc1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
7925618745531971be54a87e0b85dfe83c69dac9dfd8e46c8aaae520af05792b numpy-2.2.0rc1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
5d7a819d4d31bf9998c907105d97a082919b659ff8d44cef2c4f78d0ac16af47 numpy-2.2.0rc1-cp312-cp312-musllinux_1_2_aarch64.whl
0b6cb83ab76b101b87211ab6227e010789adf4a98ee4af07a2480d1d2f61d195 numpy-2.2.0rc1-cp312-cp312-musllinux_1_2_x86_64.whl
dc86f8502db8dfbe3474a34395e453849d03f0717227f7bda57a235cbbee3575 numpy-2.2.0rc1-cp312-cp312-win32.whl
a87c1a4d808de26157440153bb9c51d7dc4778c6cd730026406298b75fa5c2df numpy-2.2.0rc1-cp312-cp312-win_amd64.whl
c2ef440fc343cc11e8e1591bf77b0f4f21b0684feabdf7b3ec3d768b8cce7a05 numpy-2.2.0rc1-cp313-cp313-macosx_10_13_x86_64.whl
4332ddb4f40e85f6cdf1594279b35e847a20054c3269f7f2e848b6075cb8f4b3 numpy-2.2.0rc1-cp313-cp313-macosx_11_0_arm64.whl
dc532dd1c767864614f383cad63edf864f78df3533b6444d94af099583c8fb39 numpy-2.2.0rc1-cp313-cp313-macosx_14_0_arm64.whl
ecc601c633667ea5eed0c16f987e4c715ee951d0bfa3658f76b690e8dceaddfd numpy-2.2.0rc1-cp313-cp313-macosx_14_0_x86_64.whl
38405f26748e7ed4c7b31e5f8c24f385e1daf4954628f6143f5a09047e220ca9 numpy-2.2.0rc1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
e515a7d5f5e1b32eb9e761de4f0327aceee27ec07cc655d26424a5e86d3c8d0d numpy-2.2.0rc1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
fd3981aa01428eef69fe5ff2e97e3ca8e65e677ffacc7c447e164ae2aaf521fb numpy-2.2.0rc1-cp313-cp313-musllinux_1_2_aarch64.whl
61a04f035bd4f87d6c0592eaa06061f9f16bf0e11d546e3b9252ccf83f0917a6 numpy-2.2.0rc1-cp313-cp313-musllinux_1_2_x86_64.whl
1b18bf71975be1728042ba232d7406ae2f6fed8431684851fda4b909ab6e20ce numpy-2.2.0rc1-cp313-cp313-win32.whl
5776d7b395dcf180bc807a9374aca05b6569e5e5e4bdcbf112aa452a471405e0 numpy-2.2.0rc1-cp313-cp313-win_amd64.whl
3f0d900e60e783fa9965729fa2a17021add82d769bf298cdb407abcbbf316e28 numpy-2.2.0rc1-cp313-cp313t-macosx_10_13_x86_64.whl
def9537da892cd995f81646df94021fbf0dce690d518daaabc0902bc8ce42cd9 numpy-2.2.0rc1-cp313-cp313t-macosx_11_0_arm64.whl
f2b59a4e85367107dced5b3c7374a5e828ddb7c5c4e1d98176d09b177e23edd0 numpy-2.2.0rc1-cp313-cp313t-macosx_14_0_arm64.whl
9c3bdfe13209bf4f81aea5f8dd2843ab17c9a9273133d491c220636bfd51432d numpy-2.2.0rc1-cp313-cp313t-macosx_14_0_x86_64.whl
b0b742731c2721445a03e469f286c9ddf15dd80e52622ea4487ddc10a7869fe9 numpy-2.2.0rc1-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
8c43d7beaab6509f1467175cc7cfdcc048581b91ba55e149cc39af758209b166 numpy-2.2.0rc1-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
598b88170e0f361d2f6d8cc9ec18d798af07a2e9b30b95ba2d76415b7c3cc433 numpy-2.2.0rc1-cp313-cp313t-musllinux_1_2_aarch64.whl
ddb4720b057048d7ac3ce973256e89e1e7481f71b5a214a0a3be936aeda014e7 numpy-2.2.0rc1-cp313-cp313t-musllinux_1_2_x86_64.whl
64b994b9054ab051d137fff61bb6244aa1e7a80defa42c507355b562cc44a561 numpy-2.2.0rc1-cp313-cp313t-win32.whl
67d2f5c34f231e7ed59189c20f8b7472b77cff85277bcd80537417eee61977db numpy-2.2.0rc1-cp313-cp313t-win_amd64.whl
d4bbc95647ce01252827d4c6ea5de42460ea66d75831333f2b92f088b60e1b43 numpy-2.2.0rc1-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
d8d13dd7b6f1f14c43ff68e81c8edcb035f572d87507b5f629e78a7d8c61e9f4 numpy-2.2.0rc1-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
d12bf735dc4e7dfa8c66b2fd47547bcf91c9996585324959e2c5a2f5360e1c8f numpy-2.2.0rc1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
8d7de626a5e554b074890258e63d0b06eff2af48da034fe5ffef8743578b1e0b numpy-2.2.0rc1-pp310-pypy310_pp73-win_amd64.whl
d3c343e027351fbb3f7ddb0024857cd10837d6a77b40b33e39ff6706ed7ceec1 numpy-2.2.0rc1.tar.gz

2.2.0rc1

2.1.3

discovered after the 2.1.2 release. This release also adds support
for free threaded Python 3.13 on Windows.

The Python versions supported by this release are 3.10-3.13.

Improvements

- Fixed a number of issues around promotion for string ufuncs with
StringDType arguments. Mixing StringDType and the fixed-width DTypes
using the string ufuncs should now generate much more uniform
results.

([gh-27636](https://github.com/numpy/numpy/pull/27636))

Changes

- `numpy.fix` now won\'t perform casting to a floating
data-type for integer and boolean data-type input arrays.

([gh-26766](https://github.com/numpy/numpy/pull/26766))

Contributors

A total of 15 people contributed to this release. People with a \"+\" by
their names contributed a patch for the first time.

- Abhishek Kumar +
- Austin +
- Benjamin A. Beasley +
- Charles Harris
- Christian Lorentzen
- Marcel Telka +
- Matti Picus
- Michael Davidsaver +
- Nathan Goldbaum
- Peter Hawkins
- Raghuveer Devulapalli
- Ralf Gommers
- Sebastian Berg
- dependabot\[bot\]
- kp2pml30 +

Pull requests merged

A total of 21 pull requests were merged for this release.

- [27512](https://github.com/numpy/numpy/pull/27512): MAINT: prepare 2.1.x for further development
- [27537](https://github.com/numpy/numpy/pull/27537): MAINT: Bump actions/cache from 4.0.2 to 4.1.1
- [27538](https://github.com/numpy/numpy/pull/27538): MAINT: Bump pypa/cibuildwheel from 2.21.2 to 2.21.3
- [27539](https://github.com/numpy/numpy/pull/27539): MAINT: MSVC does not support #warning directive
- [27543](https://github.com/numpy/numpy/pull/27543): BUG: Fix user dtype can-cast with python scalar during promotion
- [27561](https://github.com/numpy/numpy/pull/27561): DEV: bump `python` to 3.12 in environment.yml
- [27562](https://github.com/numpy/numpy/pull/27562): BLD: update vendored Meson to 1.5.2
- [27563](https://github.com/numpy/numpy/pull/27563): BUG: weighted quantile for some zero weights (#27549)
- [27565](https://github.com/numpy/numpy/pull/27565): MAINT: Use miniforge for macos conda test.
- [27566](https://github.com/numpy/numpy/pull/27566): BUILD: satisfy gcc-13 pendantic errors
- [27569](https://github.com/numpy/numpy/pull/27569): BUG: handle possible error for PyTraceMallocTrack
- [27570](https://github.com/numpy/numpy/pull/27570): BLD: start building Windows free-threaded wheels \[wheel build\]
- [27571](https://github.com/numpy/numpy/pull/27571): BUILD: vendor tempita from Cython
- [27574](https://github.com/numpy/numpy/pull/27574): BUG: Fix warning \"differs in levels of indirection\" in npy_atomic.h\...
- [27592](https://github.com/numpy/numpy/pull/27592): MAINT: Update Highway to latest
- [27593](https://github.com/numpy/numpy/pull/27593): BUG: Adjust numpy.i for SWIG 4.3 compatibility
- [27616](https://github.com/numpy/numpy/pull/27616): BUG: Fix Linux QEMU CI workflow
- [27668](https://github.com/numpy/numpy/pull/27668): BLD: Do not set \_\_STDC_VERSION\_\_ to zero during build
- [27669](https://github.com/numpy/numpy/pull/27669): ENH: fix wasm32 runtime type error in numpy.\_core
- [27672](https://github.com/numpy/numpy/pull/27672): BUG: Fix a reference count leak in npy_find_descr_for_scalar.
- [27673](https://github.com/numpy/numpy/pull/27673): BUG: fixes for StringDType/unicode promoters

Checksums

MD5

3f2f22827dd321ae86b5ab4fa888d0db numpy-2.1.3-cp310-cp310-macosx_10_9_x86_64.whl
13da2761d1abe71731a2806537369115 numpy-2.1.3-cp310-cp310-macosx_11_0_arm64.whl
5aef4a78b69cd90d0f6fff8f88817991 numpy-2.1.3-cp310-cp310-macosx_14_0_arm64.whl
12da7f09cd5707634878f85845c9de10 numpy-2.1.3-cp310-cp310-macosx_14_0_x86_64.whl
5b999693362815b56855533469aea0ca numpy-2.1.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
8c49f457127bfb4f167c91583e5167af numpy-2.1.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
f31c0e80b18afc0c04cada401cbe0358 numpy-2.1.3-cp310-cp310-musllinux_1_1_x86_64.whl
2c0709812e27bcaf74d75ac8ed45614b numpy-2.1.3-cp310-cp310-musllinux_1_2_aarch64.whl
a65b28800e78942b9e60e03e96cfd0c0 numpy-2.1.3-cp310-cp310-win32.whl
d8358545732fe4ee1ecf407b06567d81 numpy-2.1.3-cp310-cp310-win_amd64.whl
34942f9a1391532e2c3168043c0021d5 numpy-2.1.3-cp311-cp311-macosx_10_9_x86_64.whl
0d69ec06e303b5112788db68a8fdde1b numpy-2.1.3-cp311-cp311-macosx_11_0_arm64.whl
da1988c8d3a9db5947a2bd51290b8b95 numpy-2.1.3-cp311-cp311-macosx_14_0_arm64.whl
b5eba73c2abaf5a81535f4b1034fe8d2 numpy-2.1.3-cp311-cp311-macosx_14_0_x86_64.whl
63cc090209718aa1d0f0fbd3fd03bc0b numpy-2.1.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
55f14ca7b55554d4a043369ae5f1837f numpy-2.1.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
4e58e0645d81ff84c0fb75311d2a97d6 numpy-2.1.3-cp311-cp311-musllinux_1_1_x86_64.whl
30235088a5f86d1f343bfec458f6292d numpy-2.1.3-cp311-cp311-musllinux_1_2_aarch64.whl
c80a03952b2f4950f1eb9d1656413fec numpy-2.1.3-cp311-cp311-win32.whl
d8c1a5a441b89591af8f09dfa0b2d4d5 numpy-2.1.3-cp311-cp311-win_amd64.whl
2cebcea71e71e8b09a25179b240ee240 numpy-2.1.3-cp312-cp312-macosx_10_13_x86_64.whl
faf5df4bd35ca362795cda193da49591 numpy-2.1.3-cp312-cp312-macosx_11_0_arm64.whl
573f195910fc3b3e9ac5379816280f89 numpy-2.1.3-cp312-cp312-macosx_14_0_arm64.whl
900548b2acb82ed0e306943fb68de802 numpy-2.1.3-cp312-cp312-macosx_14_0_x86_64.whl
81cded28bb87c4987b1d975fe768c3a1 numpy-2.1.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
2b83cb346bca97475fa5e39e704c45f1 numpy-2.1.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
06d8593cb7a2aae157e028c3d4cb3c96 numpy-2.1.3-cp312-cp312-musllinux_1_1_x86_64.whl
eea8b148a6a2fee37b87291043e00bda numpy-2.1.3-cp312-cp312-musllinux_1_2_aarch64.whl
d407b7c48457789914f28004f41d6ea2 numpy-2.1.3-cp312-cp312-win32.whl
117574ee1a645e63a6d69e20c8673665 numpy-2.1.3-cp312-cp312-win_amd64.whl
0c9ffd1f1f1e96186f30a578b85da653 numpy-2.1.3-cp313-cp313-macosx_10_13_x86_64.whl
cd430b2caf09d21680616aef5d4a439d numpy-2.1.3-cp313-cp313-macosx_11_0_arm64.whl
b431935148221b79bda9490b1d069e3c numpy-2.1.3-cp313-cp313-macosx_14_0_arm64.whl
b3ff577c78097b187bd58f20b6e88642 numpy-2.1.3-cp313-cp313-macosx_14_0_x86_64.whl
8186f86f8d94a5505e6dcebe6c056ab7 numpy-2.1.3-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
2c5b2381a4a4e3d9865ccb346d44a7ed numpy-2.1.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
85786d12388d60b904c02eb12df55b37 numpy-2.1.3-cp313-cp313-musllinux_1_1_x86_64.whl
da68282c0418a22730643906e5dd58a1 numpy-2.1.3-cp313-cp313-musllinux_1_2_aarch64.whl
fe47e181a70d3e865e5d6a27e5fa71cd numpy-2.1.3-cp313-cp313-win32.whl
8b7f290784c95cf620e0ac1af5470f1d numpy-2.1.3-cp313-cp313-win_amd64.whl
4f0c3f8c81cb6bd43a9f1f7bef7db82d numpy-2.1.3-cp313-cp313t-macosx_10_13_x86_64.whl
133905fd003c9504fc5bb9ce71e4103b numpy-2.1.3-cp313-cp313t-macosx_11_0_arm64.whl
12fe4f265dbda251309f109cbcd46f07 numpy-2.1.3-cp313-cp313t-macosx_14_0_arm64.whl
b60e418506b969e6df2c0d600bf3c6d4 numpy-2.1.3-cp313-cp313t-macosx_14_0_x86_64.whl
c2b7160b748f4c1c483a7954e5024250 numpy-2.1.3-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
8097ddb45c8c821085c19d940bcbe6de numpy-2.1.3-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
209f55dc1ed6da23a5ea3e11ca962308 numpy-2.1.3-cp313-cp313t-musllinux_1_1_x86_64.whl
06a1792849b601c7bdd38e39bc5cb5f1 numpy-2.1.3-cp313-cp313t-musllinux_1_2_aarch64.whl
86630bf207e8cbe6933232cb2a47a6c0 numpy-2.1.3-cp313-cp313t-win32.whl
6af9109b82c0acdcf8b0e81dc0e4c517 numpy-2.1.3-cp313-cp313t-win_amd64.whl
c7e821e086346afc0078acb237f30431 numpy-2.1.3-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
5b938b2da78b1c84044df8cdb2e8e63a numpy-2.1.3-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
ef251f3b6aa022b1c2fac14889d6d9d3 numpy-2.1.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
356c7bb6067ae0dccc4a54efc1879e74 numpy-2.1.3-pp310-pypy310_pp73-win_amd64.whl
11096358375945114577a0c82b2c6038 numpy-2.1.3.tar.gz

SHA256

c894b4305373b9c5576d7a12b473702afdf48ce5369c074ba304cc5ad8730dff numpy-2.1.3-cp310-cp310-macosx_10_9_x86_64.whl
b47fbb433d3260adcd51eb54f92a2ffbc90a4595f8970ee00e064c644ac788f5 numpy-2.1.3-cp310-cp310-macosx_11_0_arm64.whl
825656d0743699c529c5943554d223c021ff0494ff1442152ce887ef4f7561a1 numpy-2.1.3-cp310-cp310-macosx_14_0_arm64.whl
6a4825252fcc430a182ac4dee5a505053d262c807f8a924603d411f6718b88fd numpy-2.1.3-cp310-cp310-macosx_14_0_x86_64.whl
e711e02f49e176a01d0349d82cb5f05ba4db7d5e7e0defd026328e5cfb3226d3 numpy-2.1.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
78574ac2d1a4a02421f25da9559850d59457bac82f2b8d7a44fe83a64f770098 numpy-2.1.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
c7662f0e3673fe4e832fe07b65c50342ea27d989f92c80355658c7f888fcc83c numpy-2.1.3-cp310-cp310-musllinux_1_1_x86_64.whl
fa2d1337dc61c8dc417fbccf20f6d1e139896a30721b7f1e832b2bb6ef4eb6c4 numpy-2.1.3-cp310-cp310-musllinux_1_2_aarch64.whl
72dcc4a35a8515d83e76b58fdf8113a5c969ccd505c8a946759b24e3182d1f23 numpy-2.1.3-cp310-cp310-win32.whl
ecc76a9ba2911d8d37ac01de72834d8849e55473457558e12995f4cd53e778e0 numpy-2.1.3-cp310-cp310-win_amd64.whl
4d1167c53b93f1f5d8a139a742b3c6f4d429b54e74e6b57d0eff40045187b15d numpy-2.1.3-cp311-cp311-macosx_10_9_x86_64.whl
c80e4a09b3d95b4e1cac08643f1152fa71a0a821a2d4277334c88d54b2219a41 numpy-2.1.3-cp311-cp311-macosx_11_0_arm64.whl
576a1c1d25e9e02ed7fa5477f30a127fe56debd53b8d2c89d5578f9857d03ca9 numpy-2.1.3-cp311-cp311-macosx_14_0_arm64.whl
973faafebaae4c0aaa1a1ca1ce02434554d67e628b8d805e61f874b84e136b09 numpy-2.1.3-cp311-cp311-macosx_14_0_x86_64.whl
762479be47a4863e261a840e8e01608d124ee1361e48b96916f38b119cfda04a numpy-2.1.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
bc6f24b3d1ecc1eebfbf5d6051faa49af40b03be1aaa781ebdadcbc090b4539b numpy-2.1.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
17ee83a1f4fef3c94d16dc1802b998668b5419362c8a4f4e8a491de1b41cc3ee numpy-2.1.3-cp311-cp311-musllinux_1_1_x86_64.whl
15cb89f39fa6d0bdfb600ea24b250e5f1a3df23f901f51c8debaa6a5d122b2f0 numpy-2.1.3-cp311-cp311-musllinux_1_2_aarch64.whl
d9beb777a78c331580705326d2367488d5bc473b49a9bc3036c154832520aca9 numpy-2.1.3-cp311-cp311-win32.whl
d89dd2b6da69c4fff5e39c28a382199ddedc3a5be5390115608345dec660b9e2 numpy-2.1.3-cp311-cp311-win_amd64.whl
f55ba01150f52b1027829b50d70ef1dafd9821ea82905b63936668403c3b471e numpy-2.1.3-cp312-cp312-macosx_10_13_x86_64.whl
13138eadd4f4da03074851a698ffa7e405f41a0845a6b1ad135b81596e4e9958 numpy-2.1.3-cp312-cp312-macosx_11_0_arm64.whl
a6b46587b14b888e95e4a24d7b13ae91fa22386c199ee7b418f449032b2fa3b8 numpy-2.1.3-cp312-cp312-macosx_14_0_arm64.whl
0fa14563cc46422e99daef53d725d0c326e99e468a9320a240affffe87852564 numpy-2.1.3-cp312-cp312-macosx_14_0_x86_64.whl
8637dcd2caa676e475503d1f8fdb327bc495554e10838019651b76d17b98e512 numpy-2.1.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
2312b2aa89e1f43ecea6da6ea9a810d06aae08321609d8dc0d0eda6d946a541b numpy-2.1.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
a38c19106902bb19351b83802531fea19dee18e5b37b36454f27f11ff956f7fc numpy-2.1.3-cp312-cp312-musllinux_1_1_x86_64.whl
02135ade8b8a84011cbb67dc44e07c58f28575cf9ecf8ab304e51c05528c19f0 numpy-2.1.3-cp312-cp312-musllinux_1_2_aarch64.whl
e6988e90fcf617da2b5c78902fe8e668361b43b4fe26dbf2d7b0f8034d4cafb9 numpy-2.1.3-cp312-cp312-win32.whl
0d30c543f02e84e92c4b1f415b7c6b5326cbe45ee7882b6b77db7195fb971e3a numpy-2.1.3-cp312-cp312-win_amd64.whl
96fe52fcdb9345b7cd82ecd34547fca4321f7656d500eca497eb7ea5a926692f numpy-2.1.3-cp313-cp313-macosx_10_13_x86_64.whl
f653490b33e9c3a4c1c01d41bc2aef08f9475af51146e4a7710c450cf9761598 numpy-2.1.3-cp313-cp313-macosx_11_0_arm64.whl
dc258a761a16daa791081d026f0ed4399b582712e6fc887a95af09df10c5ca57 numpy-2.1.3-cp313-cp313-macosx_14_0_arm64.whl
016d0f6f5e77b0f0d45d77387ffa4bb89816b57c835580c3ce8e099ef830befe numpy-2.1.3-cp313-cp313-macosx_14_0_x86_64.whl
c181ba05ce8299c7aa3125c27b9c2167bca4a4445b7ce73d5febc411ca692e43 numpy-2.1.3-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
5641516794ca9e5f8a4d17bb45446998c6554704d888f86df9b200e66bdcce56 numpy-2.1.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
ea4dedd6e394a9c180b33c2c872b92f7ce0f8e7ad93e9585312b0c5a04777a4a numpy-2.1.3-cp313-cp313-musllinux_1_1_x86_64.whl
b0df3635b9c8ef48bd3be5f862cf71b0a4716fa0e702155c45067c6b711ddcef numpy-2.1.3-cp313-cp313-musllinux_1_2_aarch64.whl
50ca6aba6e163363f132b5c101ba078b8cbd3fa92c7865fd7d4d62d9779ac29f numpy-2.1.3-cp313-cp313-win32.whl
747641635d3d44bcb380d950679462fae44f54b131be347d5ec2bce47d3df9ed numpy-2.1.3-cp313-cp313-win_amd64.whl
996bb9399059c5b82f76b53ff8bb686069c05acc94656bb259b1d63d04a9506f numpy-2.1.3-cp313-cp313t-macosx_10_13_x86_64.whl
45966d859916ad02b779706bb43b954281db43e185015df6eb3323120188f9e4 numpy-2.1.3-cp313-cp313t-macosx_11_0_arm64.whl
baed7e8d7481bfe0874b566850cb0b85243e982388b7b23348c6db2ee2b2ae8e numpy-2.1.3-cp313-cp313t-macosx_14_0_arm64.whl
a9f7f672a3388133335589cfca93ed468509cb7b93ba3105fce780d04a6576a0 numpy-2.1.3-cp313-cp313t-macosx_14_0_x86_64.whl
d7aac50327da5d208db2eec22eb11e491e3fe13d22653dce51b0f4109101b408 numpy-2.1.3-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
4394bc0dbd074b7f9b52024832d16e019decebf86caf909d94f6b3f77a8ee3b6 numpy-2.1.3-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
50d18c4358a0a8a53f12a8ba9d772ab2d460321e6a93d6064fc22443d189853f numpy-2.1.3-cp313-cp313t-musllinux_1_1_x86_64.whl
14e253bd43fc6b37af4921b10f6add6925878a42a0c5fe83daee390bca80bc17 numpy-2.1.3-cp313-cp313t-musllinux_1_2_aarch64.whl
08788d27a5fd867a663f6fc753fd7c3ad7e92747efc73c53bca2f19f8bc06f48 numpy-2.1.3-cp313-cp313t-win32.whl
2564fbdf2b99b3f815f2107c1bbc93e2de8ee655a69c261363a1172a79a257d4 numpy-2.1.3-cp313-cp313t-win_amd64.whl
4f2015dfe437dfebbfce7c85c7b53d81ba49e71ba7eadbf1df40c915af75979f numpy-2.1.3-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
3522b0dfe983a575e6a9ab3a4a4dfe156c3e428468ff08ce582b9bb6bd1d71d4 numpy-2.1.3-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
c006b607a865b07cd981ccb218a04fc86b600411d83d6fc261357f1c0966755d numpy-2.1.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e14e26956e6f1696070788252dcdff11b4aca4c3e8bd166e0df1bb8f315a67cb numpy-2.1.3-pp310-pypy310_pp73-win_amd64.whl
aa08e04e08aaf974d4458def539dece0d28146d866a39da5639596f4921fd761 numpy-2.1.3.tar.gz

2.1.2

discovered after the 2.1.1 release.

The Python versions supported by this release are 3.10-3.13.

Contributors

A total of 11 people contributed to this release. People with a \"+\" by
their names contributed a patch for the first time.

- Charles Harris
- Chris Sidebottom
- Ishan Koradia +
- João Eiras +
- Katie Rust +
- Marten van Kerkwijk
- Matti Picus
- Nathan Goldbaum
- Peter Hawkins
- Pieter Eendebak
- Slava Gorloff +

Pull requests merged

A total of 14 pull requests were merged for this release.

- [27333](https://github.com/numpy/numpy/pull/27333): MAINT: prepare 2.1.x for further development
- [27400](https://github.com/numpy/numpy/pull/27400): BUG: apply critical sections around populating the dispatch cache
- [27406](https://github.com/numpy/numpy/pull/27406): BUG: Stub out get_build_msvc_version if distutils.msvccompiler\...
- [27416](https://github.com/numpy/numpy/pull/27416): BUILD: fix missing include for std::ptrdiff_t for C++23 language\...
- [27433](https://github.com/numpy/numpy/pull/27433): BLD: pin setuptools to avoid breaking numpy.distutils
- [27437](https://github.com/numpy/numpy/pull/27437): BUG: Allow unsigned shift argument for np.roll
- [27439](https://github.com/numpy/numpy/pull/27439): BUG: Disable SVE VQSort
- [27471](https://github.com/numpy/numpy/pull/27471): BUG: rfftn axis bug
- [27479](https://github.com/numpy/numpy/pull/27479): BUG: Fix extra decref of PyArray_UInt8DType.
- [27480](https://github.com/numpy/numpy/pull/27480): CI: use PyPI not scientific-python-nightly-wheels for CI doc\...
- [27481](https://github.com/numpy/numpy/pull/27481): MAINT: Check for SVE support on demand
- [27484](https://github.com/numpy/numpy/pull/27484): BUG: initialize the promotion state to be weak
- [27501](https://github.com/numpy/numpy/pull/27501): MAINT: Bump pypa/cibuildwheel from 2.20.0 to 2.21.2
- [27506](https://github.com/numpy/numpy/pull/27506): BUG: avoid segfault on bad arguments in ndarray.\_\_array_function\_\_

Checksums

MD5

4aae28b7919b126485c1aaccee37a6ba numpy-2.1.2-cp310-cp310-macosx_10_9_x86_64.whl
172614423a82ef73d8752ad8a59cbafc numpy-2.1.2-cp310-cp310-macosx_11_0_arm64.whl
5ee5e7a8a892cbe96ee228ca5fe7546b numpy-2.1.2-cp310-cp310-macosx_14_0_arm64.whl
9ce6f9222dfabd32e66b883f1fe015aa numpy-2.1.2-cp310-cp310-macosx_14_0_x86_64.whl
291da8bfeb7c9a3491ec35ecb2596335 numpy-2.1.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
9317d9b049f09c0193f074a6458cf79b numpy-2.1.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
1f2c121533715d8b099d6498e4498f81 numpy-2.1.2-cp310-cp310-musllinux_1_1_x86_64.whl
2834df46e2cb2e81cbe4fd1ce9b96b4b numpy-2.1.2-cp310-cp310-musllinux_1_2_aarch64.whl
cbc3ae2c176324fe2a9c04ec0aff181f numpy-2.1.2-cp310-cp310-win32.whl
e4d74f9d188dc3fe7a65adf8c01e98cc numpy-2.1.2-cp310-cp310-win_amd64.whl
cbcece9c21ed1daf60f3729a37b32266 numpy-2.1.2-cp311-cp311-macosx_10_9_x86_64.whl
0e62474993ff6faca9c467f68cc16ceb numpy-2.1.2-cp311-cp311-macosx_11_0_arm64.whl
8747e85e09b2000a0af5a8226740dc92 numpy-2.1.2-cp311-cp311-macosx_14_0_arm64.whl
34e7f3591ce81926518a36c92038a056 numpy-2.1.2-cp311-cp311-macosx_14_0_x86_64.whl
0ec3e617161b42d643aaa4b8d3e477f5 numpy-2.1.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
e2a6a419b4672bfb4f3f6a98c0e575bb numpy-2.1.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
8c14b4d03fc8672e43eddd3ede89be09 numpy-2.1.2-cp311-cp311-musllinux_1_1_x86_64.whl
dc183e12b24317bf210fb093da598d29 numpy-2.1.2-cp311-cp311-musllinux_1_2_aarch64.whl
4918f2c32ca3be20c7c5d8551e649757 numpy-2.1.2-cp311-cp311-win32.whl
a8991919b6fae3c7a77c260f60a5e2e2 numpy-2.1.2-cp311-cp311-win_amd64.whl
879f307d16f9222c49508be5ea6491fc numpy-2.1.2-cp312-cp312-macosx_10_13_x86_64.whl
fe9dfac7bee0cff178737e1706aee61a numpy-2.1.2-cp312-cp312-macosx_11_0_arm64.whl
1f0c671db3294f4df8bffedc41a2e37f numpy-2.1.2-cp312-cp312-macosx_14_0_arm64.whl
d131c4bd6ba29b05a5b7fa74e87a0506 numpy-2.1.2-cp312-cp312-macosx_14_0_x86_64.whl
8f9cca33590be334d44cc026a3716966 numpy-2.1.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
3692a9290dd430e56e1b15387c25b7af numpy-2.1.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
3549439284dbb1a05785b535c3de60d9 numpy-2.1.2-cp312-cp312-musllinux_1_1_x86_64.whl
b9934410f20505e5c4b70974cd8fdc26 numpy-2.1.2-cp312-cp312-musllinux_1_2_aarch64.whl
96759e3380e4893b9b88d5d498d856b2 numpy-2.1.2-cp312-cp312-win32.whl
f94c7405ed72a136e374ab82400fefdc numpy-2.1.2-cp312-cp312-win_amd64.whl
2ea775cb4da02f39edf3089af60bddd5 numpy-2.1.2-cp313-cp313-macosx_10_13_x86_64.whl
354d0970154dd002573f4291e0e9de76 numpy-2.1.2-cp313-cp313-macosx_11_0_arm64.whl
bbfee75640b337e12f894d0b54727d66 numpy-2.1.2-cp313-cp313-macosx_14_0_arm64.whl
a443fff50571df87f687ad55c9060d25 numpy-2.1.2-cp313-cp313-macosx_14_0_x86_64.whl
9f8cd7de5b5aa5ad8ba52608a4b0a3b8 numpy-2.1.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
c198fe3deaa77fb94d15284b4e26b875 numpy-2.1.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
0a59171c983fc2d8ea599bdf382c3d6a numpy-2.1.2-cp313-cp313-musllinux_1_1_x86_64.whl
5ba974cd59fb8c9fc94787c754a5f636 numpy-2.1.2-cp313-cp313-musllinux_1_2_aarch64.whl
93d5c642606fe8abeff0e6db31ebe88f numpy-2.1.2-cp313-cp313-win32.whl
f6455bb4311ddde071a5ea2e14016003 numpy-2.1.2-cp313-cp313-win_amd64.whl
d2a21857c924d4b1b3c8ae8a9e9b9bb4 numpy-2.1.2-cp313-cp313t-macosx_10_13_x86_64.whl
cd6afcbd05835255750a2fba6012c565 numpy-2.1.2-cp313-cp313t-macosx_11_0_arm64.whl
d2fab663ea84f1cfe13dfc00dae74fb6 numpy-2.1.2-cp313-cp313t-macosx_14_0_arm64.whl
9477b923000d63617324c487a4ce0e28 numpy-2.1.2-cp313-cp313t-macosx_14_0_x86_64.whl
84b621a2c9a8c077bc9c471abd2b3933 numpy-2.1.2-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
b1c341c7192d03e8f0f5e7c4b9b6f894 numpy-2.1.2-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
b59750ea55cf274854f64109bf67a112 numpy-2.1.2-cp313-cp313t-musllinux_1_1_x86_64.whl
33f4d63f81ad85c1ea873197f2189d89 numpy-2.1.2-cp313-cp313t-musllinux_1_2_aarch64.whl
f26a9ac42953c84c94f8203b2dbc61c0 numpy-2.1.2-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
e7cf2857582d507dfa3e8644dd3562a6 numpy-2.1.2-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
9e3d44cb302c629c00fde8f25809b04d numpy-2.1.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
3f97ee2d9962cf9d84624f725bdd2a8f numpy-2.1.2-pp310-pypy310_pp73-win_amd64.whl
3d92e07d34f60dbac6b82a0982a98757 numpy-2.1.2.tar.gz

SHA256

30d53720b726ec36a7f88dc873f0eec8447fbc93d93a8f079dfac2629598d6ee numpy-2.1.2-cp310-cp310-macosx_10_9_x86_64.whl
e8d3ca0a72dd8846eb6f7dfe8f19088060fcb76931ed592d29128e0219652884 numpy-2.1.2-cp310-cp310-macosx_11_0_arm64.whl
fc44e3c68ff00fd991b59092a54350e6e4911152682b4782f68070985aa9e648 numpy-2.1.2-cp310-cp310-macosx_14_0_arm64.whl
7c1c60328bd964b53f8b835df69ae8198659e2b9302ff9ebb7de4e5a5994db3d numpy-2.1.2-cp310-cp310-macosx_14_0_x86_64.whl
6cdb606a7478f9ad91c6283e238544451e3a95f30fb5467fbf715964341a8a86 numpy-2.1.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
d666cb72687559689e9906197e3bec7b736764df6a2e58ee265e360663e9baf7 numpy-2.1.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
c6eef7a2dbd0abfb0d9eaf78b73017dbfd0b54051102ff4e6a7b2980d5ac1a03 numpy-2.1.2-cp310-cp310-musllinux_1_1_x86_64.whl
12edb90831ff481f7ef5f6bc6431a9d74dc0e5ff401559a71e5e4611d4f2d466 numpy-2.1.2-cp310-cp310-musllinux_1_2_aarch64.whl
a65acfdb9c6ebb8368490dbafe83c03c7e277b37e6857f0caeadbbc56e12f4fb numpy-2.1.2-cp310-cp310-win32.whl
860ec6e63e2c5c2ee5e9121808145c7bf86c96cca9ad396c0bd3e0f2798ccbe2 numpy-2.1.2-cp310-cp310-win_amd64.whl
b42a1a511c81cc78cbc4539675713bbcf9d9c3913386243ceff0e9429ca892fe numpy-2.1.2-cp311-cp311-macosx_10_9_x86_64.whl
faa88bc527d0f097abdc2c663cddf37c05a1c2f113716601555249805cf573f1 numpy-2.1.2-cp311-cp311-macosx_11_0_arm64.whl
c82af4b2ddd2ee72d1fc0c6695048d457e00b3582ccde72d8a1c991b808bb20f numpy-2.1.2-cp311-cp311-macosx_14_0_arm64.whl
13602b3174432a35b16c4cfb5de9a12d229727c3dd47a6ce35111f2ebdf66ff4 numpy-2.1.2-cp311-cp311-macosx_14_0_x86_64.whl
1ebec5fd716c5a5b3d8dfcc439be82a8407b7b24b230d0ad28a81b61c2f4659a numpy-2.1.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
e2b49c3c0804e8ecb05d59af8386ec2f74877f7ca8fd9c1e00be2672e4d399b1 numpy-2.1.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
2cbba4b30bf31ddbe97f1c7205ef976909a93a66bb1583e983adbd155ba72ac2 numpy-2.1.2-cp311-cp311-musllinux_1_1_x86_64.whl
8e00ea6fc82e8a804433d3e9cedaa1051a1422cb6e443011590c14d2dea59146 numpy-2.1.2-cp311-cp311-musllinux_1_2_aarch64.whl
5006b13a06e0b38d561fab5ccc37581f23c9511879be7693bd33c7cd15ca227c numpy-2.1.2-cp311-cp311-win32.whl
f1eb068ead09f4994dec71c24b2844f1e4e4e013b9629f812f292f04bd1510d9 numpy-2.1.2-cp311-cp311-win_amd64.whl
d7bf0a4f9f15b32b5ba53147369e94296f5fffb783db5aacc1be15b4bf72f43b numpy-2.1.2-cp312-cp312-macosx_10_13_x86_64.whl
b1d0fcae4f0949f215d4632be684a539859b295e2d0cb14f78ec231915d644db numpy-2.1.2-cp312-cp312-macosx_11_0_arm64.whl
f751ed0a2f250541e19dfca9f1eafa31a392c71c832b6bb9e113b10d050cb0f1 numpy-2.1.2-cp312-cp312-macosx_14_0_arm64.whl
bd33f82e95ba7ad632bc57837ee99dba3d7e006536200c4e9124089e1bf42426 numpy-2.1.2-cp312-cp312-macosx_14_0_x86_64.whl
1b8cde4f11f0a975d1fd59373b32e2f5a562ade7cde4f85b7137f3de8fbb29a0 numpy-2.1.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
6d95f286b8244b3649b477ac066c6906fbb2905f8ac19b170e2175d3d799f4df numpy-2.1.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
ab4754d432e3ac42d33a269c8567413bdb541689b02d93788af4131018cbf366 numpy-2.1.2-cp312-cp312-musllinux_1_1_x86_64.whl
e585c8ae871fd38ac50598f4763d73ec5497b0de9a0ab4ef5b69f01c6a046142 numpy-2.1.2-cp312-cp312-musllinux_1_2_aarch64.whl
9c6c754df29ce6a89ed23afb25550d1c2d5fdb9901d9c67a16e0b16eaf7e2550 numpy-2.1.2-cp312-cp312-win32.whl
456e3b11cb79ac9946c822a56346ec80275eaf2950314b249b512896c0d2505e numpy-2.1.2-cp312-cp312-win_amd64.whl
a84498e0d0a1174f2b3ed769b67b656aa5460c92c9554039e11f20a05650f00d numpy-2.1.2-cp313-cp313-macosx_10_13_x86_64.whl
4d6ec0d4222e8ffdab1744da2560f07856421b367928026fb540e1945f2eeeaf numpy-2.1.2-cp313-cp313-macosx_11_0_arm64.whl
259ec80d54999cc34cd1eb8ded513cb053c3bf4829152a2e00de2371bd406f5e numpy-2.1.2-cp313-cp313-macosx_14_0_arm64.whl
675c741d4739af2dc20cd6c6a5c4b7355c728167845e3c6b0e824e4e5d36a6c3 numpy-2.1.2-cp313-cp313-macosx_14_0_x86_64.whl
05b2d4e667895cc55e3ff2b56077e4c8a5604361fc21a042845ea3ad67465aa8 numpy-2.1.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
43cca367bf94a14aca50b89e9bc2061683116cfe864e56740e083392f533ce7a numpy-2.1.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
76322dcdb16fccf2ac56f99048af32259dcc488d9b7e25b51e5eca5147a3fb98 numpy-2.1.2-cp313-cp313-musllinux_1_1_x86_64.whl
32e16a03138cabe0cb28e1007ee82264296ac0983714094380b408097a418cfe numpy-2.1.2-cp313-cp313-musllinux_1_2_aarch64.whl
242b39d00e4944431a3cd2db2f5377e15b5785920421993770cddb89992c3f3a numpy-2.1.2-cp313-cp313-win32.whl
f2ded8d9b6f68cc26f8425eda5d3877b47343e68ca23d0d0846f4d312ecaa445 numpy-2.1.2-cp313-cp313-win_amd64.whl
2ffef621c14ebb0188a8633348504a35c13680d6da93ab5cb86f4e54b7e922b5 numpy-2.1.2-cp313-cp313t-macosx_10_13_x86_64.whl
ad369ed238b1959dfbade9018a740fb9392c5ac4f9b5173f420bd4f37ba1f7a0 numpy-2.1.2-cp313-cp313t-macosx_11_0_arm64.whl
d82075752f40c0ddf57e6e02673a17f6cb0f8eb3f587f63ca1eaab5594da5b17 numpy-2.1.2-cp313-cp313t-macosx_14_0_arm64.whl
1600068c262af1ca9580a527d43dc9d959b0b1d8e56f8a05d830eea39b7c8af6 numpy-2.1.2-cp313-cp313t-macosx_14_0_x86_64.whl
a26ae94658d3ba3781d5e103ac07a876b3e9b29db53f68ed7df432fd033358a8 numpy-2.1.2-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
13311c2db4c5f7609b462bc0f43d3c465424d25c626d95040f073e30f7570e35 numpy-2.1.2-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
2abbf905a0b568706391ec6fa15161fad0fb5d8b68d73c461b3c1bab6064dd62 numpy-2.1.2-cp313-cp313t-musllinux_1_1_x86_64.whl
ef444c57d664d35cac4e18c298c47d7b504c66b17c2ea91312e979fcfbdfb08a numpy-2.1.2-cp313-cp313t-musllinux_1_2_aarch64.whl
bdd407c40483463898b84490770199d5714dcc9dd9b792f6c6caccc523c00952 numpy-2.1.2-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
da65fb46d4cbb75cb417cddf6ba5e7582eb7bb0b47db4b99c9fe5787ce5d91f5 numpy-2.1.2-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
1c193d0b0238638e6fc5f10f1b074a6993cb13b0b431f64079a509d63d3aa8b7 numpy-2.1.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
a7d80b2e904faa63068ead63107189164ca443b42dd1930299e0d1cb041cec2e numpy-2.1.2-pp310-pypy310_pp73-win_amd64.whl
13532a088217fa624c99b843eeb54640de23b3414b14aa66d023805eb731066c numpy-2.1.2.tar.gz

2.1.1

discovered after the 2.1.0 release.

The Python versions supported by this release are 3.10-3.13.

Contributors

A total of 7 people contributed to this release. People with a \"+\" by
their names contributed a patch for the first time.

- Andrew Nelson
- Charles Harris
- Mateusz Sokół
- Maximilian Weigand +
- Nathan Goldbaum
- Pieter Eendebak
- Sebastian Berg

Pull requests merged

A total of 10 pull requests were merged for this release.

- [27236](https://github.com/numpy/numpy/pull/27236): REL: Prepare for the NumPy 2.1.0 release \[wheel build\]
- [27252](https://github.com/numpy/numpy/pull/27252): MAINT: prepare 2.1.x for further development
- [27259](https://github.com/numpy/numpy/pull/27259): BUG: revert unintended change in the return value of set_printoptions
- [27266](https://github.com/numpy/numpy/pull/27266): BUG: fix reference counting bug in \_\_array_interface\_\_ implementation...
- [27267](https://github.com/numpy/numpy/pull/27267): TST: Add regression test for missing descr in array-interface
- [27276](https://github.com/numpy/numpy/pull/27276): BUG: Fix #27256 and 27257
- [27278](https://github.com/numpy/numpy/pull/27278): BUG: Fix array_equal for numeric and non-numeric scalar types
- [27287](https://github.com/numpy/numpy/pull/27287): MAINT: Update maintenance/2.1.x after the 2.0.2 release
- [27303](https://github.com/numpy/numpy/pull/27303): BLD: cp311- macosx_arm64 wheels \[wheel build\]
- [27304](https://github.com/numpy/numpy/pull/27304): BUG: f2py: better handle filtering of public/private subroutines

Checksums

MD5

3053a97400db800b7377749e691eb39e numpy-2.1.1-cp310-cp310-macosx_10_9_x86_64.whl
84b752a2220dce7c96ff89eef4f4aec3 numpy-2.1.1-cp310-cp310-macosx_11_0_arm64.whl
47ed4f704a64261f07ca24ef2e674524 numpy-2.1.1-cp310-cp310-macosx_14_0_arm64.whl
b8a45caa870aee980c298053cf064d28 numpy-2.1.1-cp310-cp310-macosx_14_0_x86_64.whl
e097ad5eee572b791b4a25eedad6df4a numpy-2.1.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
ae502c99315884cda7f0236a07c035c4 numpy-2.1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
841a859d975c55090c0b60b72aab93a3 numpy-2.1.1-cp310-cp310-musllinux_1_1_x86_64.whl
d51be2b17f5b87aac64ab80fdfafc85e numpy-2.1.1-cp310-cp310-musllinux_1_2_aarch64.whl
1f8249bd725397c6233fe6a0e8ad18b1 numpy-2.1.1-cp310-cp310-win32.whl
d38d6f06589c1ec104a6a31ff6035781 numpy-2.1.1-cp310-cp310-win_amd64.whl
6a18fe3029aae00986975250313bf16f numpy-2.1.1-cp311-cp311-macosx_10_9_x86_64.whl
5b0b3aa01fbd0b5a8b0f354bb878351e numpy-2.1.1-cp311-cp311-macosx_11_0_arm64.whl
1c492dad399abe7b97274b4c6c12ae53 numpy-2.1.1-cp311-cp311-macosx_14_0_arm64.whl
4d55d91e71b62eb5fa6561c606524f60 numpy-2.1.1-cp311-cp311-macosx_14_0_x86_64.whl
88e99ecd063c178f25bc08d20792a9bf numpy-2.1.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
f3c8b0e4fb059b9219e8ec86d9fda861 numpy-2.1.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
df632b5fed7eb78d39e7194d2475c19b numpy-2.1.1-cp311-cp311-musllinux_1_1_x86_64.whl
65499daccdb178d26e322d9f359cf146 numpy-2.1.1-cp311-cp311-musllinux_1_2_aarch64.whl
eb97327fd7aa6027e2409d0dcca1129a numpy-2.1.1-cp311-cp311-win32.whl
9e4b05b38cbff22c2bdfead528b9d2bc numpy-2.1.1-cp311-cp311-win_amd64.whl
6b8a359bb865b5c624fd9ffc848393e1 numpy-2.1.1-cp312-cp312-macosx_10_9_x86_64.whl
eaf8dce312efa2b0f17ad46612fb1681 numpy-2.1.1-cp312-cp312-macosx_11_0_arm64.whl
c861ff048b336284fe7c0791b1a6b0b4 numpy-2.1.1-cp312-cp312-macosx_14_0_arm64.whl
7e1befccfe729dc5d6c450a5fb6b801c numpy-2.1.1-cp312-cp312-macosx_14_0_x86_64.whl
ea0a401ef653a167221987a10cbef260 numpy-2.1.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
97326ac792d26f2e536a519c82f2d6bc numpy-2.1.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
fdd2a82232c03d11bbc7cec0a8e01ab0 numpy-2.1.1-cp312-cp312-musllinux_1_1_x86_64.whl
0d6716e9a7b2c0d6e5ace9c01b9bca01 numpy-2.1.1-cp312-cp312-musllinux_1_2_aarch64.whl
ba589ed2a79c88187c3b8574ae72a1c7 numpy-2.1.1-cp312-cp312-win32.whl
806ca7c1e2a2013b786edbb619f6da47 numpy-2.1.1-cp312-cp312-win_amd64.whl
647665353e5af5884df4e51610990c22 numpy-2.1.1-cp313-cp313-macosx_10_13_x86_64.whl
bfd3b3c5c4616ef99d917bd94d39114a numpy-2.1.1-cp313-cp313-macosx_11_0_arm64.whl
cb989095f9c74e3b32250a984390faeb numpy-2.1.1-cp313-cp313-macosx_14_0_arm64.whl
55ad7548e58f61b9a4f91749e36d237f numpy-2.1.1-cp313-cp313-macosx_14_0_x86_64.whl
5bc73d67dd1032524bfd36ef877b09e4 numpy-2.1.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
c7dfb09db8284cb75296f708c3f77ea3 numpy-2.1.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
7cf90ce1b844a97aeea1a5b8c71fb49b numpy-2.1.1-cp313-cp313-musllinux_1_1_x86_64.whl
6ec8baeac5f979a3b98017679d457bbc numpy-2.1.1-cp313-cp313-musllinux_1_2_aarch64.whl
1f198cb5210c76faae81359a83d58230 numpy-2.1.1-cp313-cp313-win32.whl
1766258213ad41f7e36f2209ee6d2a30 numpy-2.1.1-cp313-cp313-win_amd64.whl
f0a7a0456308dbeb739ad886f1632f16 numpy-2.1.1-cp313-cp313t-macosx_10_13_x86_64.whl
302c9cf7b4aa695974500ee1935a92c9 numpy-2.1.1-cp313-cp313t-macosx_11_0_arm64.whl
f4aa7d784992abb9bd9fe9db09c01c06 numpy-2.1.1-cp313-cp313t-macosx_14_0_arm64.whl
3bb4ae9906499609769f1774438149a5 numpy-2.1.1-cp313-cp313t-macosx_14_0_x86_64.whl
ff6b9e1993d3d540074736014b1d13af numpy-2.1.1-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
749489c091ee9c00abf1ad1ef822c3ca numpy-2.1.1-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
32d2daf4064031f365ced5036757ad8b numpy-2.1.1-cp313-cp313t-musllinux_1_1_x86_64.whl
603dfe4ef56c01e1fc0dcc9d5e3090ed numpy-2.1.1-cp313-cp313t-musllinux_1_2_aarch64.whl
70fa2d3b78633bb6061c90e17364f27f numpy-2.1.1-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
9a430be5d14b689ed051eccc540dfbdc numpy-2.1.1-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
7291ff124e471d32c03464da18ff108d numpy-2.1.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e56ce141724af119c7c647a8705827a5 numpy-2.1.1-pp310-pypy310_pp73-win_amd64.whl
f63b4750618bfa5490f10cae37fde998 numpy-2.1.1.tar.gz

SHA256

c8a0e34993b510fc19b9a2ce7f31cb8e94ecf6e924a40c0c9dd4f62d0aac47d9 numpy-2.1.1-cp310-cp310-macosx_10_9_x86_64.whl
7dd86dfaf7c900c0bbdcb8b16e2f6ddf1eb1fe39c6c8cca6e94844ed3152a8fd numpy-2.1.1-cp310-cp310-macosx_11_0_arm64.whl
5889dd24f03ca5a5b1e8a90a33b5a0846d8977565e4ae003a63d22ecddf6782f numpy-2.1.1-cp310-cp310-macosx_14_0_arm64.whl
59ca673ad11d4b84ceb385290ed0ebe60266e356641428c845b39cd9df6713ab numpy-2.1.1-cp310-cp310-macosx_14_0_x86_64.whl
13ce49a34c44b6de5241f0b38b07e44c1b2dcacd9e36c30f9c2fcb1bb5135db7 numpy-2.1.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
913cc1d311060b1d409e609947fa1b9753701dac96e6581b58afc36b7ee35af6 numpy-2.1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
caf5d284ddea7462c32b8d4a6b8af030b6c9fd5332afb70e7414d7fdded4bfd0 numpy-2.1.1-cp310-cp310-musllinux_1_1_x86_64.whl
57eb525e7c2a8fdee02d731f647146ff54ea8c973364f3b850069ffb42799647 numpy-2.1.1-cp310-cp310-musllinux_1_2_aarch64.whl
9a8e06c7a980869ea67bbf551283bbed2856915f0a792dc32dd0f9dd2fb56728 numpy-2.1.1-cp310-cp310-win32.whl
d10c39947a2d351d6d466b4ae83dad4c37cd6c3cdd6d5d0fa797da56f710a6ae numpy-2.1.1-cp310-cp310-win_amd64.whl
0d07841fd284718feffe7dd17a63a2e6c78679b2d386d3e82f44f0108c905550 numpy-2.1.1-cp311-cp311-macosx_10_9_x86_64.whl
b5613cfeb1adfe791e8e681128f5f49f22f3fcaa942255a6124d58ca59d9528f numpy-2.1.1-cp311-cp311-macosx_11_0_arm64.whl
0b8cc2715a84b7c3b161f9ebbd942740aaed913584cae9cdc7f8ad5ad41943d0 numpy-2.1.1-cp311-cp311-macosx_14_0_arm64.whl
b49742cdb85f1f81e4dc1b39dcf328244f4d8d1ded95dea725b316bd2cf18c95 numpy-2.1.1-cp311-cp311-macosx_14_0_x86_64.whl
e8d5f8a8e3bc87334f025194c6193e408903d21ebaeb10952264943a985066ca numpy-2.1.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
d51fc141ddbe3f919e91a096ec739f49d686df8af254b2053ba21a910ae518bf numpy-2.1.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
98ce7fb5b8063cfdd86596b9c762bf2b5e35a2cdd7e967494ab78a1fa7f8b86e numpy-2.1.1-cp311-cp311-musllinux_1_1_x86_64.whl
24c2ad697bd8593887b019817ddd9974a7f429c14a5469d7fad413f28340a6d2 numpy-2.1.1-cp311-cp311-musllinux_1_2_aarch64.whl
397bc5ce62d3fb73f304bec332171535c187e0643e176a6e9421a6e3eacef06d numpy-2.1.1-cp311-cp311-win32.whl
ae8ce252404cdd4de56dcfce8b11eac3c594a9c16c231d081fb705cf23bd4d9e numpy-2.1.1-cp311-cp311-win_amd64.whl
7c803b7934a7f59563db459292e6aa078bb38b7ab1446ca38dd138646a38203e numpy-2.1.1-cp312-cp312-macosx_10_9_x86_64.whl
6435c48250c12f001920f0751fe50c0348f5f240852cfddc5e2f97e007544cbe numpy-2.1.1-cp312-cp312-macosx_11_0_arm64.whl
3269c9eb8745e8d975980b3a7411a98976824e1fdef11f0aacf76147f662b15f numpy-2.1.1-cp312-cp312-macosx_14_0_arm64.whl
fac6e277a41163d27dfab5f4ec1f7a83fac94e170665a4a50191b545721c6521 numpy-2.1.1-cp312-cp312-macosx_14_0_x86_64.whl
fcd8f556cdc8cfe35e70efb92463082b7f43dd7e547eb071ffc36abc0ca4699b numpy-2.1.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
d2b9cd92c8f8e7b313b80e93cedc12c0112088541dcedd9197b5dee3738c1201 numpy-2.1.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
afd9c680df4de71cd58582b51e88a61feed4abcc7530bcd3d48483f20fc76f2a numpy-2.1.1-cp312-cp312-musllinux_1_1_x86_64.whl
8661c94e3aad18e1ea17a11f60f843a4933ccaf1a25a7c6a9182af70610b2313 numpy-2.1.1-cp312-cp312-musllinux_1_2_aarch64.whl
950802d17a33c07cba7fd7c3dcfa7d64705509206be1606f196d179e539111ed numpy-2.1.1-cp312-cp312-win32.whl
3fc5eabfc720db95d68e6646e88f8b399bfedd235994016351b1d9e062c4b270 numpy-2.1.1-cp312-cp312-win_amd64.whl
046356b19d7ad1890c751b99acad5e82dc4a02232013bd9a9a712fddf8eb60f5 numpy-2.1.1-cp313-cp313-macosx_10_13_x86_64.whl
6e5a9cb2be39350ae6c8f79410744e80154df658d5bea06e06e0ac5bb75480d5 numpy-2.1.1-cp313-cp313-macosx_11_0_arm64.whl
d4c57b68c8ef5e1ebf47238e99bf27657511ec3f071c465f6b1bccbef12d4136 numpy-2.1.1-cp313-cp313-macosx_14_0_arm64.whl
8ae0fd135e0b157365ac7cc31fff27f07a5572bdfc38f9c2d43b2aff416cc8b0 numpy-2.1.1-cp313-cp313-macosx_14_0_x86_64.whl
981707f6b31b59c0c24bcda52e5605f9701cb46da4b86c2e8023656ad3e833cb numpy-2.1.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
2ca4b53e1e0b279142113b8c5eb7d7a877e967c306edc34f3b58e9be12fda8df numpy-2.1.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e097507396c0be4e547ff15b13dc3866f45f3680f789c1a1301b07dadd3fbc78 numpy-2.1.1-cp313-cp313-musllinux_1_1_x86_64.whl
f7506387e191fe8cdb267f912469a3cccc538ab108471291636a96a54e599556 numpy-2.1.1-cp313-cp313-musllinux_1_2_aarch64.whl
251105b7c42abe40e3a689881e1793370cc9724ad50d64b30b358bbb3a97553b numpy-2.1.1-cp313-cp313-win32.whl
f212d4f46b67ff604d11fff7cc62d36b3e8714edf68e44e9760e19be38c03eb0 numpy-2.1.1-cp313-cp313-win_amd64.whl
920b0911bb2e4414c50e55bd658baeb78281a47feeb064ab40c2b66ecba85553 numpy-2.1.1-cp313-cp313t-macosx_10_13_x86_64.whl
bab7c09454460a487e631ffc0c42057e3d8f2a9ddccd1e60c7bb8ed774992480 numpy-2.1.1-cp313-cp313t-macosx_11_0_arm64.whl
cea427d1350f3fd0d2818ce7350095c1a2ee33e30961d2f0fef48576ddbbe90f numpy-2.1.1-cp313-cp313t-macosx_14_0_arm64.whl
e30356d530528a42eeba51420ae8bf6c6c09559051887196599d96ee5f536468 numpy-2.1.1-cp313-cp313t-macosx_14_0_x86_64.whl
e8dfa9e94fc127c40979c3eacbae1e61fda4fe71d84869cc129e2721973231ef numpy-2.1.1-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
910b47a6d0635ec1bd53b88f86120a52bf56dcc27b51f18c7b4a2e2224c29f0f numpy-2.1.1-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
13cc11c00000848702322af4de0147ced365c81d66053a67c2e962a485b3717c numpy-2.1.1-cp313-cp313t-musllinux_1_1_x86_64.whl
53e27293b3a2b661c03f79aa51c3987492bd4641ef933e366e0f9f6c9bf257ec numpy-2.1.1-cp313-cp313t-musllinux_1_2_aarch64.whl
7be6a07520b88214ea85d8ac8b7d6d8a1839b0b5cb87412ac9f49fa934eb15d5 numpy-2.1.1-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
52ac2e48f5ad847cd43c4755520a2317f3380213493b9d8a4c5e37f3b87df504 numpy-2.1.1-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
50a95ca3560a6058d6ea91d4629a83a897ee27c00630aed9d933dff191f170cd numpy-2.1.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
99f4a9ee60eed1385a86e82288971a51e71df052ed0b2900ed30bc840c0f2e39 numpy-2.1.1-pp310-pypy310_pp73-win_amd64.whl
d0cf7d55b1051387807405b3898efafa862997b4cba8aa5dbe657be794afeafd numpy-2.1.1.tar.gz

Page 2 of 23

© 2025 Safety CLI Cybersecurity Inc. All Rights Reserved.