Numpy

Latest version: v2.2.1

Safety actively analyzes 693883 Python packages for vulnerabilities to keep your Python projects secure.

Scan your dependencies

Page 13 of 23

1.20.0rc1

1.19.5

Not secure
the main improvement is the update to OpenBLAS 0.3.13 that works around
the windows 2004 bug while not breaking execution on other platforms.
This release supports Python 3.6-3.9 and is planned to be the last
release in the 1.19.x cycle.

Contributors
------------

A total of 8 people contributed to this release. People with a \"+\" by
their names contributed a patch for the first time.

- Charles Harris
- Christoph Gohlke
- Matti Picus
- Raghuveer Devulapalli
- Sebastian Berg
- Simon Graham +
- Veniamin Petrenko +
- Bernie Gray +

Pull requests merged
--------------------

A total of 11 pull requests were merged for this release.

- [\17756](https://github.com/numpy/numpy/pull/17756): BUG: Fix segfault due to out of bound pointer in floatstatus\...
- [\17774](https://github.com/numpy/numpy/pull/17774): BUG: fix np.timedelta64(\'nat\').\_\_format\_\_ throwing an exception
- [\17775](https://github.com/numpy/numpy/pull/17775): BUG: Fixed file handle leak in array\_tofile.
- [\17786](https://github.com/numpy/numpy/pull/17786): BUG: Raise recursion error during dimension discovery
- [\17917](https://github.com/numpy/numpy/pull/17917): BUG: Fix subarray dtype used with too large count in fromfile
- [\17918](https://github.com/numpy/numpy/pull/17918): BUG: \'bool\' object has no attribute \'ndim\'
- [\17919](https://github.com/numpy/numpy/pull/17919): BUG: ensure \_UFuncNoLoopError can be pickled
- [\17924](https://github.com/numpy/numpy/pull/17924): BLD: use BUFFERSIZE=20 in OpenBLAS
- [\18026](https://github.com/numpy/numpy/pull/18026): BLD: update to OpenBLAS 0.3.13
- [\18036](https://github.com/numpy/numpy/pull/18036): BUG: make a variable volatile to work around clang compiler bug
- [\18114](https://github.com/numpy/numpy/pull/18114): REL: Prepare for the NumPy 1.19.5 release.

Checksums
---------

MD5

2651049b70d2ec07d8afd7637f198807 numpy-1.19.5-cp36-cp36m-macosx_10_9_x86_64.whl
71cc7869a54cf55df4699aebe27e9344 numpy-1.19.5-cp36-cp36m-manylinux1_i686.whl
28d23e25c6e6654b2f65218c6e9b3825 numpy-1.19.5-cp36-cp36m-manylinux1_x86_64.whl
fb4128d719d72130cbf24baf308761c9 numpy-1.19.5-cp36-cp36m-manylinux2010_i686.whl
0c8edfbbb26823b7495b5371558b1ae5 numpy-1.19.5-cp36-cp36m-manylinux2010_x86_64.whl
ad8e6247a175f3a9786eedb4baff7c06 numpy-1.19.5-cp36-cp36m-manylinux2014_aarch64.whl
2a3e121d4f242cef4ef00d5e6e3cebc9 numpy-1.19.5-cp36-cp36m-win32.whl
baf1bd7e3a8c19367103483d1fd61cfc numpy-1.19.5-cp36-cp36m-win_amd64.whl
0086e5551c22e62244781e4179a013c9 numpy-1.19.5-cp37-cp37m-macosx_10_9_x86_64.whl
538fe864a8809a8d9b6b5c102ac8de1f numpy-1.19.5-cp37-cp37m-manylinux1_i686.whl
5323920ec3e1953078cfa0560ae53867 numpy-1.19.5-cp37-cp37m-manylinux1_x86_64.whl
464f0f6284ede3cb2ea3070fee729048 numpy-1.19.5-cp37-cp37m-manylinux2010_i686.whl
9aa2656bab43993cc99f9cd996c71997 numpy-1.19.5-cp37-cp37m-manylinux2010_x86_64.whl
bcd1e59d57515d2f7be107266cab4f00 numpy-1.19.5-cp37-cp37m-manylinux2014_aarch64.whl
4e87ab21f30016ea5b9a981e3ecd733a numpy-1.19.5-cp37-cp37m-win32.whl
c50b11de3b82163e6e75d17762368425 numpy-1.19.5-cp37-cp37m-win_amd64.whl
2beca0d3718c5b355f3c78d9f4f1fe87 numpy-1.19.5-cp38-cp38-macosx_10_9_x86_64.whl
8302aaa77a0978df894f9f62caac7ee7 numpy-1.19.5-cp38-cp38-manylinux1_i686.whl
6875515a35558ac17d3cdc8e8578debd numpy-1.19.5-cp38-cp38-manylinux1_x86_64.whl
2c72ca182bc4b4904b6c87f7d4312036 numpy-1.19.5-cp38-cp38-manylinux2010_i686.whl
1b334aad7bdfa96dc3eb10f55f8c44dd numpy-1.19.5-cp38-cp38-manylinux2010_x86_64.whl
f4e63f368fc230f482205e3b65b8f5c7 numpy-1.19.5-cp38-cp38-manylinux2014_aarch64.whl
d5a97ef684d53b04bf14e0b6cca7e8a1 numpy-1.19.5-cp38-cp38-win32.whl
abed55a50177d54a10d8e89ccde971ca numpy-1.19.5-cp38-cp38-win_amd64.whl
3c3fc07aeb311677975a58d1ab1f3e5e numpy-1.19.5-cp39-cp39-macosx_10_9_x86_64.whl
c7c070e284f49f9915ecbcec847760a5 numpy-1.19.5-cp39-cp39-manylinux1_i686.whl
2613261149a32771243bb71f53e3bc3a numpy-1.19.5-cp39-cp39-manylinux1_x86_64.whl
5f84721a5e286e383bf6ba251c8add31 numpy-1.19.5-cp39-cp39-manylinux2010_i686.whl
9a0ac6f630de2081302df9bbffe1b555 numpy-1.19.5-cp39-cp39-manylinux2010_x86_64.whl
b48e31d316e4803b5e463dd5e38c8339 numpy-1.19.5-cp39-cp39-manylinux2014_aarch64.whl
15589af64e734aa1ecc7e04767ccc63d numpy-1.19.5-cp39-cp39-win32.whl
cca2b2301f11a89329727ea5302d9b12 numpy-1.19.5-cp39-cp39-win_amd64.whl
c9b5c30dc035aa7bd9c1ebf6771939c3 numpy-1.19.5-pp36-pypy36_pp73-manylinux2010_x86_64.whl
e67564b7dfedf213fda112ee078c67bf numpy-1.19.5.tar.gz
f6a1b48717c552bbc18f1adc3cc1fe0e numpy-1.19.5.zip

SHA256

cc6bd4fd593cb261332568485e20a0712883cf631f6f5e8e86a52caa8b2b50ff numpy-1.19.5-cp36-cp36m-macosx_10_9_x86_64.whl
aeb9ed923be74e659984e321f609b9ba54a48354bfd168d21a2b072ed1e833ea numpy-1.19.5-cp36-cp36m-manylinux1_i686.whl
8b5e972b43c8fc27d56550b4120fe6257fdc15f9301914380b27f74856299fea numpy-1.19.5-cp36-cp36m-manylinux1_x86_64.whl
43d4c81d5ffdff6bae58d66a3cd7f54a7acd9a0e7b18d97abb255defc09e3140 numpy-1.19.5-cp36-cp36m-manylinux2010_i686.whl
a4646724fba402aa7504cd48b4b50e783296b5e10a524c7a6da62e4a8ac9698d numpy-1.19.5-cp36-cp36m-manylinux2010_x86_64.whl
2e55195bc1c6b705bfd8ad6f288b38b11b1af32f3c8289d6c50d47f950c12e76 numpy-1.19.5-cp36-cp36m-manylinux2014_aarch64.whl
39b70c19ec771805081578cc936bbe95336798b7edf4732ed102e7a43ec5c07a numpy-1.19.5-cp36-cp36m-win32.whl
dbd18bcf4889b720ba13a27ec2f2aac1981bd41203b3a3b27ba7a33f88ae4827 numpy-1.19.5-cp36-cp36m-win_amd64.whl
603aa0706be710eea8884af807b1b3bc9fb2e49b9f4da439e76000f3b3c6ff0f numpy-1.19.5-cp37-cp37m-macosx_10_9_x86_64.whl
cae865b1cae1ec2663d8ea56ef6ff185bad091a5e33ebbadd98de2cfa3fa668f numpy-1.19.5-cp37-cp37m-manylinux1_i686.whl
36674959eed6957e61f11c912f71e78857a8d0604171dfd9ce9ad5cbf41c511c numpy-1.19.5-cp37-cp37m-manylinux1_x86_64.whl
06fab248a088e439402141ea04f0fffb203723148f6ee791e9c75b3e9e82f080 numpy-1.19.5-cp37-cp37m-manylinux2010_i686.whl
6149a185cece5ee78d1d196938b2a8f9d09f5a5ebfbba66969302a778d5ddd1d numpy-1.19.5-cp37-cp37m-manylinux2010_x86_64.whl
50a4a0ad0111cc1b71fa32dedd05fa239f7fb5a43a40663269bb5dc7877cfd28 numpy-1.19.5-cp37-cp37m-manylinux2014_aarch64.whl
d051ec1c64b85ecc69531e1137bb9751c6830772ee5c1c426dbcfe98ef5788d7 numpy-1.19.5-cp37-cp37m-win32.whl
a12ff4c8ddfee61f90a1633a4c4afd3f7bcb32b11c52026c92a12e1325922d0d numpy-1.19.5-cp37-cp37m-win_amd64.whl
cf2402002d3d9f91c8b01e66fbb436a4ed01c6498fffed0e4c7566da1d40ee1e numpy-1.19.5-cp38-cp38-macosx_10_9_x86_64.whl
1ded4fce9cfaaf24e7a0ab51b7a87be9038ea1ace7f34b841fe3b6894c721d1c numpy-1.19.5-cp38-cp38-manylinux1_i686.whl
012426a41bc9ab63bb158635aecccc7610e3eff5d31d1eb43bc099debc979d94 numpy-1.19.5-cp38-cp38-manylinux1_x86_64.whl
759e4095edc3c1b3ac031f34d9459fa781777a93ccc633a472a5468587a190ff numpy-1.19.5-cp38-cp38-manylinux2010_i686.whl
a9d17f2be3b427fbb2bce61e596cf555d6f8a56c222bd2ca148baeeb5e5c783c numpy-1.19.5-cp38-cp38-manylinux2010_x86_64.whl
99abf4f353c3d1a0c7a5f27699482c987cf663b1eac20db59b8c7b061eabd7fc numpy-1.19.5-cp38-cp38-manylinux2014_aarch64.whl
384ec0463d1c2671170901994aeb6dce126de0a95ccc3976c43b0038a37329c2 numpy-1.19.5-cp38-cp38-win32.whl
811daee36a58dc79cf3d8bdd4a490e4277d0e4b7d103a001a4e73ddb48e7e6aa numpy-1.19.5-cp38-cp38-win_amd64.whl
c843b3f50d1ab7361ca4f0b3639bf691569493a56808a0b0c54a051d260b7dbd numpy-1.19.5-cp39-cp39-macosx_10_9_x86_64.whl
d6631f2e867676b13026e2846180e2c13c1e11289d67da08d71cacb2cd93d4aa numpy-1.19.5-cp39-cp39-manylinux1_i686.whl
7fb43004bce0ca31d8f13a6eb5e943fa73371381e53f7074ed21a4cb786c32f8 numpy-1.19.5-cp39-cp39-manylinux1_x86_64.whl
2ea52bd92ab9f768cc64a4c3ef8f4b2580a17af0a5436f6126b08efbd1838371 numpy-1.19.5-cp39-cp39-manylinux2010_i686.whl
400580cbd3cff6ffa6293df2278c75aef2d58d8d93d3c5614cd67981dae68ceb numpy-1.19.5-cp39-cp39-manylinux2010_x86_64.whl
df609c82f18c5b9f6cb97271f03315ff0dbe481a2a02e56aeb1b1a985ce38e60 numpy-1.19.5-cp39-cp39-manylinux2014_aarch64.whl
ab83f24d5c52d60dbc8cd0528759532736b56db58adaa7b5f1f76ad551416a1e numpy-1.19.5-cp39-cp39-win32.whl
0eef32ca3132a48e43f6a0f5a82cb508f22ce5a3d6f67a8329c81c8e226d3f6e numpy-1.19.5-cp39-cp39-win_amd64.whl
a0d53e51a6cb6f0d9082decb7a4cb6dfb33055308c4c44f53103c073f649af73 numpy-1.19.5-pp36-pypy36_pp73-manylinux2010_x86_64.whl
d1654047d75fb9d55cc3d46f312d5247eec5f4999039874d2f571bb8021d8f0b numpy-1.19.5.tar.gz
a76f502430dd98d7546e1ea2250a7360c065a5fdea52b2dffe8ae7180909b6f4 numpy-1.19.5.zip

1.19.4

Not secure
==========================

NumPy 1.19.4 is a quick release to revert the OpenBLAS library version.
It was hoped that the 0.3.12 OpenBLAS version used in 1.19.3 would work
around the Microsoft fmod bug, but problems in some docker environments
turned up. Instead, 1.19.4 will use the older library and run a sanity
check on import, raising an error if the problem is detected. Microsoft
is aware of the problem and has promised a fix, users should upgrade
when it becomes available.

This release supports Python 3.6-3.9

Contributors
------------

A total of 1 people contributed to this release. People with a \"+\" by
their names contributed a patch for the first time.

- Charles Harris

Pull requests merged
--------------------

A total of 2 pull requests were merged for this release.

- [\17679](https://github.com/numpy/numpy/pull/17679): MAINT: Add check for Windows 10 version 2004 bug.
- [\17680](https://github.com/numpy/numpy/pull/17680): REV: Revert OpenBLAS to 1.19.2 version for 1.19.4

Checksums
---------

MD5

09b6f7f17ca61f0f3b943d4107ea6a6c numpy-1.19.4-cp36-cp36m-macosx_10_9_x86_64.whl
bfb801672e0d9916407352f7158b5584 numpy-1.19.4-cp36-cp36m-manylinux1_i686.whl
2469be359c8c383509eaded8e758488a numpy-1.19.4-cp36-cp36m-manylinux1_x86_64.whl
4af398903b0957ad3a40ec17631879ed numpy-1.19.4-cp36-cp36m-manylinux2010_i686.whl
bb3f911ba616d36a2daff5b8e1402b1b numpy-1.19.4-cp36-cp36m-manylinux2010_x86_64.whl
3b754c1135f7aa3e6a7c1f46af6a84c9 numpy-1.19.4-cp36-cp36m-manylinux2014_aarch64.whl
9db8749b90405780614f126c77eef3bb numpy-1.19.4-cp36-cp36m-win32.whl
25bc59391b8b4f06eb28e74e97afc488 numpy-1.19.4-cp36-cp36m-win_amd64.whl
355d7f49b9e442f9e73580e64c8bf2c2 numpy-1.19.4-cp37-cp37m-macosx_10_9_x86_64.whl
3c1ce8ca6f6f11ea9d49859b2ffb70cf numpy-1.19.4-cp37-cp37m-manylinux1_i686.whl
5524143ee95cc7e3400dbbff709de7cd numpy-1.19.4-cp37-cp37m-manylinux1_x86_64.whl
c40206040b8ddb62309cbef1cdf0fa82 numpy-1.19.4-cp37-cp37m-manylinux2010_i686.whl
552839ea3bc2dfc98611254f8188feb8 numpy-1.19.4-cp37-cp37m-manylinux2010_x86_64.whl
2e5c50e57cff5085ffb32185591e49ed numpy-1.19.4-cp37-cp37m-manylinux2014_aarch64.whl
ce6c1cd93d5fc56d0de608b84cc14a7e numpy-1.19.4-cp37-cp37m-win32.whl
a73acaea97da74db366372b3d70219a7 numpy-1.19.4-cp37-cp37m-win_amd64.whl
2f52c91231b2b3c54535dee98a5ad0a3 numpy-1.19.4-cp38-cp38-macosx_10_9_x86_64.whl
e619d04f2ac42a9feb0efcc1d9901d94 numpy-1.19.4-cp38-cp38-manylinux1_i686.whl
01c2f102e73b2569cf3ebe5eab112c4e numpy-1.19.4-cp38-cp38-manylinux1_x86_64.whl
6a66109907b356ddd67f1e282e1879e6 numpy-1.19.4-cp38-cp38-manylinux2010_i686.whl
79354b01e11789bb5d12c9edc754297b numpy-1.19.4-cp38-cp38-manylinux2010_x86_64.whl
4f1b335dfe5c7fcf5c8c89983cef9f0b numpy-1.19.4-cp38-cp38-manylinux2014_aarch64.whl
949a5f9e9a75b9cbb3c74e4bf4eb0683 numpy-1.19.4-cp38-cp38-win32.whl
27eb1b83f3cac67fb26c7fe9a25b0635 numpy-1.19.4-cp38-cp38-win_amd64.whl
ae1e4a06e721e83b530860835c708690 numpy-1.19.4-cp39-cp39-macosx_10_9_x86_64.whl
d263c7d04c46d5ecca3b32ad11925bad numpy-1.19.4-cp39-cp39-manylinux1_i686.whl
132e95910d76b045caf1883146ec34a6 numpy-1.19.4-cp39-cp39-manylinux1_x86_64.whl
4d4e5f147fe6fdedbdde4df9eaf2a4b1 numpy-1.19.4-cp39-cp39-manylinux2010_i686.whl
5ac2071e995ff4fc066741b1edcc159c numpy-1.19.4-cp39-cp39-manylinux2010_x86_64.whl
5d678c6cc45ee3ee976e8b3b2ebe9c13 numpy-1.19.4-cp39-cp39-manylinux2014_aarch64.whl
7bc02e21133a1b82994c81c7521156a8 numpy-1.19.4-cp39-cp39-win32.whl
55c735347e8fb2ce3674243b38b3cee3 numpy-1.19.4-cp39-cp39-win_amd64.whl
673234a8dc2d3d3912c24c64aef6263e numpy-1.19.4-pp36-pypy36_pp73-manylinux2010_x86_64.whl
a25e91ea62ffd37ccf8e0d917484962c numpy-1.19.4.tar.gz
d40f6fcf611ab40eed4ff90606e05307 numpy-1.19.4.zip

SHA256

e9b30d4bd69498fc0c3fe9db5f62fffbb06b8eb9321f92cc970f2969be5e3949 numpy-1.19.4-cp36-cp36m-macosx_10_9_x86_64.whl
fedbd128668ead37f33917820b704784aff695e0019309ad446a6d0b065b57e4 numpy-1.19.4-cp36-cp36m-manylinux1_i686.whl
8ece138c3a16db8c1ad38f52eb32be6086cc72f403150a79336eb2045723a1ad numpy-1.19.4-cp36-cp36m-manylinux1_x86_64.whl
64324f64f90a9e4ef732be0928be853eee378fd6a01be21a0a8469c4f2682c83 numpy-1.19.4-cp36-cp36m-manylinux2010_i686.whl
ad6f2ff5b1989a4899bf89800a671d71b1612e5ff40866d1f4d8bcf48d4e5764 numpy-1.19.4-cp36-cp36m-manylinux2010_x86_64.whl
d6c7bb82883680e168b55b49c70af29b84b84abb161cbac2800e8fcb6f2109b6 numpy-1.19.4-cp36-cp36m-manylinux2014_aarch64.whl
13d166f77d6dc02c0a73c1101dd87fdf01339febec1030bd810dcd53fff3b0f1 numpy-1.19.4-cp36-cp36m-win32.whl
448ebb1b3bf64c0267d6b09a7cba26b5ae61b6d2dbabff7c91b660c7eccf2bdb numpy-1.19.4-cp36-cp36m-win_amd64.whl
27d3f3b9e3406579a8af3a9f262f5339005dd25e0ecf3cf1559ff8a49ed5cbf2 numpy-1.19.4-cp37-cp37m-macosx_10_9_x86_64.whl
16c1b388cc31a9baa06d91a19366fb99ddbe1c7b205293ed072211ee5bac1ed2 numpy-1.19.4-cp37-cp37m-manylinux1_i686.whl
e5b6ed0f0b42317050c88022349d994fe72bfe35f5908617512cd8c8ef9da2a9 numpy-1.19.4-cp37-cp37m-manylinux1_x86_64.whl
18bed2bcb39e3f758296584337966e68d2d5ba6aab7e038688ad53c8f889f757 numpy-1.19.4-cp37-cp37m-manylinux2010_i686.whl
fe45becb4c2f72a0907c1d0246ea6449fe7a9e2293bb0e11c4e9a32bb0930a15 numpy-1.19.4-cp37-cp37m-manylinux2010_x86_64.whl
6d7593a705d662be5bfe24111af14763016765f43cb6923ed86223f965f52387 numpy-1.19.4-cp37-cp37m-manylinux2014_aarch64.whl
6ae6c680f3ebf1cf7ad1d7748868b39d9f900836df774c453c11c5440bc15b36 numpy-1.19.4-cp37-cp37m-win32.whl
9eeb7d1d04b117ac0d38719915ae169aa6b61fca227b0b7d198d43728f0c879c numpy-1.19.4-cp37-cp37m-win_amd64.whl
cb1017eec5257e9ac6209ac172058c430e834d5d2bc21961dceeb79d111e5909 numpy-1.19.4-cp38-cp38-macosx_10_9_x86_64.whl
edb01671b3caae1ca00881686003d16c2209e07b7ef8b7639f1867852b948f7c numpy-1.19.4-cp38-cp38-manylinux1_i686.whl
f29454410db6ef8126c83bd3c968d143304633d45dc57b51252afbd79d700893 numpy-1.19.4-cp38-cp38-manylinux1_x86_64.whl
ec149b90019852266fec2341ce1db513b843e496d5a8e8cdb5ced1923a92faab numpy-1.19.4-cp38-cp38-manylinux2010_i686.whl
1aeef46a13e51931c0b1cf8ae1168b4a55ecd282e6688fdb0a948cc5a1d5afb9 numpy-1.19.4-cp38-cp38-manylinux2010_x86_64.whl
08308c38e44cc926bdfce99498b21eec1f848d24c302519e64203a8da99a97db numpy-1.19.4-cp38-cp38-manylinux2014_aarch64.whl
5734bdc0342aba9dfc6f04920988140fb41234db42381cf7ccba64169f9fe7ac numpy-1.19.4-cp38-cp38-win32.whl
09c12096d843b90eafd01ea1b3307e78ddd47a55855ad402b157b6c4862197ce numpy-1.19.4-cp38-cp38-win_amd64.whl
e452dc66e08a4ce642a961f134814258a082832c78c90351b75c41ad16f79f63 numpy-1.19.4-cp39-cp39-macosx_10_9_x86_64.whl
a5d897c14513590a85774180be713f692df6fa8ecf6483e561a6d47309566f37 numpy-1.19.4-cp39-cp39-manylinux1_i686.whl
a09f98011236a419ee3f49cedc9ef27d7a1651df07810ae430a6b06576e0b414 numpy-1.19.4-cp39-cp39-manylinux1_x86_64.whl
50e86c076611212ca62e5a59f518edafe0c0730f7d9195fec718da1a5c2bb1fc numpy-1.19.4-cp39-cp39-manylinux2010_i686.whl
f0d3929fe88ee1c155129ecd82f981b8856c5d97bcb0d5f23e9b4242e79d1de3 numpy-1.19.4-cp39-cp39-manylinux2010_x86_64.whl
c42c4b73121caf0ed6cd795512c9c09c52a7287b04d105d112068c1736d7c753 numpy-1.19.4-cp39-cp39-manylinux2014_aarch64.whl
8cac8790a6b1ddf88640a9267ee67b1aee7a57dfa2d2dd33999d080bc8ee3a0f numpy-1.19.4-cp39-cp39-win32.whl
4377e10b874e653fe96985c05feed2225c912e328c8a26541f7fc600fb9c637b numpy-1.19.4-cp39-cp39-win_amd64.whl
2a2740aa9733d2e5b2dfb33639d98a64c3b0f24765fed86b0fd2aec07f6a0a08 numpy-1.19.4-pp36-pypy36_pp73-manylinux2010_x86_64.whl
fe836a685d6838dbb3f603caef01183ea98e88febf4ce956a2ea484a75378413 numpy-1.19.4.tar.gz
141ec3a3300ab89c7f2b0775289954d193cc8edb621ea05f99db9cb181530512 numpy-1.19.4.zip

1.19.3

Not secure
- Python 3.9 binary wheels on all supported platforms.
- OpenBLAS fixes for Windows 10 version 2004 fmod bug.

This release supports Python 3.6-3.9 and is linked with OpenBLAS 3.7 to
avoid some of the fmod problems on Windows 10 version 2004. Microsoft is
aware of the problem and users should upgrade when the fix becomes
available, the fix here is limited in scope.

Contributors
------------

A total of 8 people contributed to this release. People with a \"+\" by
their names contributed a patch for the first time.

- Charles Harris
- Chris Brown +
- Daniel Vanzo +
- E. Madison Bray +
- Hugo van Kemenade +
- Ralf Gommers
- Sebastian Berg
- \danbeibei +

Pull requests merged
--------------------

A total of 10 pull requests were merged for this release.

- [\17298](https://github.com/numpy/numpy/pull/17298): BLD: set upper versions for build dependencies
- [\17336](https://github.com/numpy/numpy/pull/17336): BUG: Set deprecated fields to null in PyArray\_InitArrFuncs
- [\17446](https://github.com/numpy/numpy/pull/17446): ENH: Warn on unsupported Python 3.10+
- [\17450](https://github.com/numpy/numpy/pull/17450): MAINT: Update test\_requirements.txt.
- [\17522](https://github.com/numpy/numpy/pull/17522): ENH: Support for the NVIDIA HPC SDK nvfortran compiler
- [\17568](https://github.com/numpy/numpy/pull/17568): BUG: Cygwin Workaround for \#14787 on affected platforms
- [\17647](https://github.com/numpy/numpy/pull/17647): BUG: Fix memory leak of buffer-info cache due to relaxed strides
- [\17652](https://github.com/numpy/numpy/pull/17652): MAINT: Backport openblas\_support from master.
- [\17653](https://github.com/numpy/numpy/pull/17653): TST: Add Python 3.9 to the CI testing on Windows, Mac.
- [\17660](https://github.com/numpy/numpy/pull/17660): TST: Simplify source path names in test\_extending.

Checksums
---------

MD5

e5c6c782b2f112c32dcc38242521ec83 numpy-1.19.3-cp36-cp36m-macosx_10_9_x86_64.whl
02323e4a20e14e6f7cded1c55f6a0afe numpy-1.19.3-cp36-cp36m-manylinux1_i686.whl
95f19f0b6c60a755a8454f22eb15f4d6 numpy-1.19.3-cp36-cp36m-manylinux1_x86_64.whl
e66cf5ea007a9b567be2b1a901b3d2e0 numpy-1.19.3-cp36-cp36m-manylinux2010_i686.whl
8c7d422f147392bd31f9e5bfc41a170e numpy-1.19.3-cp36-cp36m-manylinux2010_x86_64.whl
da02c95dcf0acf7688aebaba7ba2750d numpy-1.19.3-cp36-cp36m-manylinux2014_aarch64.whl
96e6ec05aca18516c8a5961c17a0cac6 numpy-1.19.3-cp36-cp36m-win32.whl
5aa36a829a7ce0a89e6fea502d4fa9ea numpy-1.19.3-cp36-cp36m-win_amd64.whl
9143b46601bc0457dd42795a71ccd2f1 numpy-1.19.3-cp37-cp37m-macosx_10_9_x86_64.whl
ebe09a5e206db0de65154ef75377f963 numpy-1.19.3-cp37-cp37m-manylinux1_i686.whl
96008f5c61368d4cd967ecd474525df6 numpy-1.19.3-cp37-cp37m-manylinux1_x86_64.whl
e61aaf0c971b667c5fed8b5de3773c6d numpy-1.19.3-cp37-cp37m-manylinux2010_i686.whl
74a9f9dab6f00bcf56096eaa910c48b9 numpy-1.19.3-cp37-cp37m-manylinux2010_x86_64.whl
18d911f7f462ee98333de9579adde331 numpy-1.19.3-cp37-cp37m-manylinux2014_aarch64.whl
f29846178b82bd4e8db1685a6e911336 numpy-1.19.3-cp37-cp37m-win32.whl
d372be03d9e57e5e0e1372bf39391241 numpy-1.19.3-cp37-cp37m-win_amd64.whl
c64b6538e07bca9d84287eebb3f3a01b numpy-1.19.3-cp38-cp38-macosx_10_9_x86_64.whl
8ac57941de395be58376611b211ea571 numpy-1.19.3-cp38-cp38-manylinux1_i686.whl
81cc1993ac8da61fea677a7eb49989e8 numpy-1.19.3-cp38-cp38-manylinux1_x86_64.whl
9b2b05db89068d1f3f32a231f3953355 numpy-1.19.3-cp38-cp38-manylinux2010_i686.whl
d26cfa5ad6f4aa6beb42246efc45f565 numpy-1.19.3-cp38-cp38-manylinux2010_x86_64.whl
969a13b40fceb950021e297d5427f329 numpy-1.19.3-cp38-cp38-manylinux2014_aarch64.whl
f978618640860e72b91c522f4e4085af numpy-1.19.3-cp38-cp38-win32.whl
af140a06f216c4100dc93c4135003d10 numpy-1.19.3-cp38-cp38-win_amd64.whl
fda3cdf138516040cad3de66496cf670 numpy-1.19.3-cp39-cp39-macosx_10_9_x86_64.whl
f683469f18abc8c84aa831d9e78f4eb6 numpy-1.19.3-cp39-cp39-manylinux1_i686.whl
26414c3db751ca4735f744b239bf9703 numpy-1.19.3-cp39-cp39-manylinux1_x86_64.whl
3164ede05e3a5d28dd8bd66aee56928c numpy-1.19.3-cp39-cp39-manylinux2010_i686.whl
fc0b0c73c5508247d21beb42cf3fff66 numpy-1.19.3-cp39-cp39-manylinux2010_x86_64.whl
75097b6e154469c63c50c8f7eaf52a89 numpy-1.19.3-cp39-cp39-manylinux2014_aarch64.whl
cd4363bde576c997bf737f420a85683a numpy-1.19.3-cp39-cp39-win32.whl
54fa685b3d30585763f59a7b2be7279b numpy-1.19.3-cp39-cp39-win_amd64.whl
ed5bd59a064fe5b95699c222dc7a4638 numpy-1.19.3-pp36-pypy36_pp73-manylinux2010_x86_64.whl
b2d13ca1b8ff89a9289174a86b835165 numpy-1.19.3.tar.gz
7f014f9964987b59083c8dc4d158d45a numpy-1.19.3.zip

SHA256

942d2cdcb362739908c26ce8dd88db6e139d3fa829dd7452dd9ff02cba6b58b2 numpy-1.19.3-cp36-cp36m-macosx_10_9_x86_64.whl
efd656893171bbf1331beca4ec9f2e74358fc732a2084f664fd149cc4b3441d2 numpy-1.19.3-cp36-cp36m-manylinux1_i686.whl
1a307bdd3dd444b1d0daa356b5f4c7de2e24d63bdc33ea13ff718b8ec4c6a268 numpy-1.19.3-cp36-cp36m-manylinux1_x86_64.whl
9d08d84bb4128abb9fbd9f073e5c69f70e5dab991a9c42e5b4081ea5b01b5db0 numpy-1.19.3-cp36-cp36m-manylinux2010_i686.whl
7197ee0a25629ed782c7bd01871ee40702ffeef35bc48004bc2fdcc71e29ba9d numpy-1.19.3-cp36-cp36m-manylinux2010_x86_64.whl
8edc4d687a74d0a5f8b9b26532e860f4f85f56c400b3a98899fc44acb5e27add numpy-1.19.3-cp36-cp36m-manylinux2014_aarch64.whl
522053b731e11329dd52d258ddf7de5288cae7418b55e4b7d32f0b7e31787e9d numpy-1.19.3-cp36-cp36m-win32.whl
eefc13863bf01583a85e8c1121a901cc7cb8f059b960c4eba30901e2e6aba95f numpy-1.19.3-cp36-cp36m-win_amd64.whl
6ff88bcf1872b79002569c63fe26cd2cda614e573c553c4d5b814fb5eb3d2822 numpy-1.19.3-cp37-cp37m-macosx_10_9_x86_64.whl
e080087148fd70469aade2abfeadee194357defd759f9b59b349c6192aba994c numpy-1.19.3-cp37-cp37m-manylinux1_i686.whl
50f68ebc439821b826823a8da6caa79cd080dee2a6d5ab9f1163465a060495ed numpy-1.19.3-cp37-cp37m-manylinux1_x86_64.whl
b9074d062d30c2779d8af587924f178a539edde5285d961d2dfbecbac9c4c931 numpy-1.19.3-cp37-cp37m-manylinux2010_i686.whl
463792a249a81b9eb2b63676347f996d3f0082c2666fd0604f4180d2e5445996 numpy-1.19.3-cp37-cp37m-manylinux2010_x86_64.whl
ea6171d2d8d648dee717457d0f75db49ad8c2f13100680e284d7becf3dc311a6 numpy-1.19.3-cp37-cp37m-manylinux2014_aarch64.whl
0ee77786eebbfa37f2141fd106b549d37c89207a0d01d8852fde1c82e9bfc0e7 numpy-1.19.3-cp37-cp37m-win32.whl
271139653e8b7a046d11a78c0d33bafbddd5c443a5b9119618d0652a4eb3a09f numpy-1.19.3-cp37-cp37m-win_amd64.whl
e983cbabe10a8989333684c98fdc5dd2f28b236216981e0c26ed359aaa676772 numpy-1.19.3-cp38-cp38-macosx_10_9_x86_64.whl
d78294f1c20f366cde8a75167f822538a7252b6e8b9d6dbfb3bdab34e7c1929e numpy-1.19.3-cp38-cp38-manylinux1_i686.whl
199bebc296bd8a5fc31c16f256ac873dd4d5b4928dfd50e6c4995570fc71a8f3 numpy-1.19.3-cp38-cp38-manylinux1_x86_64.whl
dffed17848e8b968d8d3692604e61881aa6ef1f8074c99e81647ac84f6038535 numpy-1.19.3-cp38-cp38-manylinux2010_i686.whl
5ea4401ada0d3988c263df85feb33818dc995abc85b8125f6ccb762009e7bc68 numpy-1.19.3-cp38-cp38-manylinux2010_x86_64.whl
604d2e5a31482a3ad2c88206efd43d6fcf666ada1f3188fd779b4917e49b7a98 numpy-1.19.3-cp38-cp38-manylinux2014_aarch64.whl
a2daea1cba83210c620e359de2861316f49cc7aea8e9a6979d6cb2ddab6dda8c numpy-1.19.3-cp38-cp38-win32.whl
dfdc8b53aa9838b9d44ed785431ca47aa3efaa51d0d5dd9c412ab5247151a7c4 numpy-1.19.3-cp38-cp38-win_amd64.whl
9f7f56b5e85b08774939622b7d45a5d00ff511466522c44fc0756ac7692c00f2 numpy-1.19.3-cp39-cp39-macosx_10_9_x86_64.whl
8802d23e4895e0c65e418abe67cdf518aa5cbb976d97f42fd591f921d6dffad0 numpy-1.19.3-cp39-cp39-manylinux1_i686.whl
c4aa79993f5d856765819a3651117520e41ac3f89c3fc1cb6dee11aa562df6da numpy-1.19.3-cp39-cp39-manylinux1_x86_64.whl
51e8d2ae7c7e985c7bebf218e56f72fa93c900ad0c8a7d9fbbbf362f45710f69 numpy-1.19.3-cp39-cp39-manylinux2010_i686.whl
50d3513469acf5b2c0406e822d3f314d7ac5788c2b438c24e5dd54d5a81ef522 numpy-1.19.3-cp39-cp39-manylinux2010_x86_64.whl
741d95eb2b505bb7a99fbf4be05fa69f466e240c2b4f2d3ddead4f1b5f82a5a5 numpy-1.19.3-cp39-cp39-manylinux2014_aarch64.whl
1ea7e859f16e72ab81ef20aae69216cfea870676347510da9244805ff9670170 numpy-1.19.3-cp39-cp39-win32.whl
83af653bb92d1e248ccf5fdb05ccc934c14b936bcfe9b917dc180d3f00250ac6 numpy-1.19.3-cp39-cp39-win_amd64.whl
9a0669787ba8c9d3bb5de5d9429208882fb47764aa79123af25c5edc4f5966b9 numpy-1.19.3-pp36-pypy36_pp73-manylinux2010_x86_64.whl
9179d259a9bc53ed7b153d31fc3156d1ca560d61079f53191cf177c3efc4a498 numpy-1.19.3.tar.gz
35bf5316af8dc7c7db1ad45bec603e5fb28671beb98ebd1d65e8059efcfd3b72 numpy-1.19.3.zip

1.19.2

Not secure
release. and pins setuptools to keep distutils working while upstream
modifications are ongoing. The aarch64 wheels are built with the latest
manylinux2014 release that fixes the problem of differing page sizes
used by different linux distros.

This release supports Python 3.6-3.8. Cython \>= 0.29.21 needs to be
used when building with Python 3.9 for testing purposes.

There is a known problem with Windows 10 version=2004 and OpenBLAS svd
that we are trying to debug. If you are running that Windows version you
should use a NumPy version that links to the MKL library, earlier
Windows versions are fine.

Improvements
------------

Add NumPy declarations for Cython 3.0 and later

The pxd declarations for Cython 3.0 were improved to avoid using
deprecated NumPy C-API features. Extension modules built with Cython

1.19.1

Not secure
several functions deprecated in the upcoming Python-3.9 release, has
improved support for AIX, and has a number of development related
updates to keep CI working with recent upstream changes.

This release supports Python 3.6-3.8. Cython \>= 0.29.21 needs to be
used when building with Python 3.9 for testing purposes.

Contributors
------------

A total of 15 people contributed to this release. People with a \"+\" by
their names contributed a patch for the first time.

- Abhinav Reddy +
- Anirudh Subramanian
- Antonio Larrosa +
- Charles Harris
- Chunlin Fang
- Eric Wieser
- Etienne Guesnet +
- Kevin Sheppard
- Matti Picus
- Raghuveer Devulapalli
- Roman Yurchak
- Ross Barnowski
- Sayed Adel
- Sebastian Berg
- Tyler Reddy

Pull requests merged
--------------------

A total of 25 pull requests were merged for this release.

- [\16649](https://github.com/numpy/numpy/pull/16649): MAINT, CI: disable Shippable cache
- [\16652](https://github.com/numpy/numpy/pull/16652): MAINT: Replace PyUString\_GET\_SIZE with PyUnicode\_GetLength.
- [\16654](https://github.com/numpy/numpy/pull/16654): REL: Fix outdated docs link
- [\16656](https://github.com/numpy/numpy/pull/16656): BUG: raise IEEE exception on AIX
- [\16672](https://github.com/numpy/numpy/pull/16672): BUG: Fix bug in AVX complex absolute while processing array of\...
- [\16693](https://github.com/numpy/numpy/pull/16693): TST: Add extra debugging information to CPU features detection
- [\16703](https://github.com/numpy/numpy/pull/16703): BLD: Add CPU entry for Emscripten / WebAssembly
- [\16705](https://github.com/numpy/numpy/pull/16705): TST: Disable Python 3.9-dev testing.
- [\16714](https://github.com/numpy/numpy/pull/16714): MAINT: Disable use\_hugepages in case of ValueError
- [\16724](https://github.com/numpy/numpy/pull/16724): BUG: Fix PyArray\_SearchSorted signature.
- [\16768](https://github.com/numpy/numpy/pull/16768): MAINT: Fixes for deprecated functions in scalartypes.c.src
- [\16772](https://github.com/numpy/numpy/pull/16772): MAINT: Remove unneeded call to PyUnicode\_READY
- [\16776](https://github.com/numpy/numpy/pull/16776): MAINT: Fix deprecated functions in scalarapi.c
- [\16779](https://github.com/numpy/numpy/pull/16779): BLD, ENH: Add RPATH support for AIX
- [\16780](https://github.com/numpy/numpy/pull/16780): BUG: Fix default fallback in genfromtxt
- [\16784](https://github.com/numpy/numpy/pull/16784): BUG: Added missing return after raising error in methods.c
- [\16795](https://github.com/numpy/numpy/pull/16795): BLD: update cython to 0.29.21
- [\16832](https://github.com/numpy/numpy/pull/16832): MAINT: setuptools 49.2.0 emits a warning, avoid it
- [\16872](https://github.com/numpy/numpy/pull/16872): BUG: Validate output size in bin- and multinomial
- [\16875](https://github.com/numpy/numpy/pull/16875): BLD, MAINT: Pin setuptools
- [\16904](https://github.com/numpy/numpy/pull/16904): DOC: Reconstruct Testing Guideline.
- [\16905](https://github.com/numpy/numpy/pull/16905): TST, BUG: Re-raise MemoryError exception in test\_large\_zip\'s\...
- [\16906](https://github.com/numpy/numpy/pull/16906): BUG, DOC: Fix bad MPL kwarg.
- [\16916](https://github.com/numpy/numpy/pull/16916): BUG: Fix string/bytes to complex assignment
- [\16922](https://github.com/numpy/numpy/pull/16922): REL: Prepare for NumPy 1.19.1 release

Checksums
---------

MD5

a57df319841a487b22b932aa99562fd8 numpy-1.19.1-cp36-cp36m-macosx_10_9_x86_64.whl
c86be0ba1efc221cdd3aba05c21ab7a6 numpy-1.19.1-cp36-cp36m-manylinux1_i686.whl
09bb5d4ff277bc2caddc107af963f006 numpy-1.19.1-cp36-cp36m-manylinux1_x86_64.whl
c150ffb56704ff319e8ea525773de49e numpy-1.19.1-cp36-cp36m-manylinux2010_i686.whl
e7c22cfc5956330df8fc107968472e28 numpy-1.19.1-cp36-cp36m-manylinux2010_x86_64.whl
9255520a51c6aa591489f68ac7a4cb0e numpy-1.19.1-cp36-cp36m-manylinux2014_aarch64.whl
7de3e77a0cda438724e1d8f312805742 numpy-1.19.1-cp36-cp36m-win32.whl
d6d00a2e7b5bbfa7f5f097e8f99d17a7 numpy-1.19.1-cp36-cp36m-win_amd64.whl
c8bc9f328f3a89ab35c374e9cf36dd80 numpy-1.19.1-cp37-cp37m-macosx_10_9_x86_64.whl
8e2eb1614b6a7ce286a5ddf39805564c numpy-1.19.1-cp37-cp37m-manylinux1_i686.whl
884540e9a94a9da88cd35311a40e1f98 numpy-1.19.1-cp37-cp37m-manylinux1_x86_64.whl
c8dea76ce437f9795a2c38fc3a94cc64 numpy-1.19.1-cp37-cp37m-manylinux2010_i686.whl
fceff6d052e0729e0bc4725d415a0424 numpy-1.19.1-cp37-cp37m-manylinux2010_x86_64.whl
8a40347a7aa0a78ad652761b18646b94 numpy-1.19.1-cp37-cp37m-manylinux2014_aarch64.whl
6f83733af7f25219b1309ed6e2125b40 numpy-1.19.1-cp37-cp37m-win32.whl
5ffe9aaa1be9790546bf0805349d11de numpy-1.19.1-cp37-cp37m-win_amd64.whl
9fc17dd30d41000be08a5e76bda7cd13 numpy-1.19.1-cp38-cp38-macosx_10_9_x86_64.whl
e164a68bb255e40835243843fd748786 numpy-1.19.1-cp38-cp38-manylinux1_i686.whl
831327c74d9d0c69adba8c626e09a842 numpy-1.19.1-cp38-cp38-manylinux1_x86_64.whl
8d5cfc3f45d07874d427e9d62dfe6b0d numpy-1.19.1-cp38-cp38-manylinux2010_i686.whl
08a1030ceea2f30f51e6c39264aec2e3 numpy-1.19.1-cp38-cp38-manylinux2010_x86_64.whl
a4dab4ffba3b1b2600400f89ab065112 numpy-1.19.1-cp38-cp38-manylinux2014_aarch64.whl
3b7770f38ed195e24692d6581e4634a1 numpy-1.19.1-cp38-cp38-win32.whl
8ec6183c736b4eacec8de80c98261af1 numpy-1.19.1-cp38-cp38-win_amd64.whl
a15c1aec844788f6e55c1da12f6bfa86 numpy-1.19.1-pp36-pypy36_pp73-manylinux2010_x86_64.whl
bb6f87f7b2d15a2e2a983b972afbcde5 numpy-1.19.1.tar.gz
2ccca1881b2766040149629614d22a3f numpy-1.19.1.zip

SHA256

b1cca51512299841bf69add3b75361779962f9cee7d9ee3bb446d5982e925b69 numpy-1.19.1-cp36-cp36m-macosx_10_9_x86_64.whl
c9591886fc9cbe5532d5df85cb8e0cc3b44ba8ce4367bd4cf1b93dc19713da72 numpy-1.19.1-cp36-cp36m-manylinux1_i686.whl
cf1347450c0b7644ea142712619533553f02ef23f92f781312f6a3553d031fc7 numpy-1.19.1-cp36-cp36m-manylinux1_x86_64.whl
ed8a311493cf5480a2ebc597d1e177231984c818a86875126cfd004241a73c3e numpy-1.19.1-cp36-cp36m-manylinux2010_i686.whl
3673c8b2b29077f1b7b3a848794f8e11f401ba0b71c49fbd26fb40b71788b132 numpy-1.19.1-cp36-cp36m-manylinux2010_x86_64.whl
56ef7f56470c24bb67fb43dae442e946a6ce172f97c69f8d067ff8550cf782ff numpy-1.19.1-cp36-cp36m-manylinux2014_aarch64.whl
aaf42a04b472d12515debc621c31cf16c215e332242e7a9f56403d814c744624 numpy-1.19.1-cp36-cp36m-win32.whl
082f8d4dd69b6b688f64f509b91d482362124986d98dc7dc5f5e9f9b9c3bb983 numpy-1.19.1-cp36-cp36m-win_amd64.whl
e4f6d3c53911a9d103d8ec9518190e52a8b945bab021745af4939cfc7c0d4a9e numpy-1.19.1-cp37-cp37m-macosx_10_9_x86_64.whl
5b6885c12784a27e957294b60f97e8b5b4174c7504665333c5e94fbf41ae5d6a numpy-1.19.1-cp37-cp37m-manylinux1_i686.whl
1bc0145999e8cb8aed9d4e65dd8b139adf1919e521177f198529687dbf613065 numpy-1.19.1-cp37-cp37m-manylinux1_x86_64.whl
5a936fd51049541d86ccdeef2833cc89a18e4d3808fe58a8abeb802665c5af93 numpy-1.19.1-cp37-cp37m-manylinux2010_i686.whl
ef71a1d4fd4858596ae80ad1ec76404ad29701f8ca7cdcebc50300178db14dfc numpy-1.19.1-cp37-cp37m-manylinux2010_x86_64.whl
b9792b0ac0130b277536ab8944e7b754c69560dac0415dd4b2dbd16b902c8954 numpy-1.19.1-cp37-cp37m-manylinux2014_aarch64.whl
b12e639378c741add21fbffd16ba5ad25c0a1a17cf2b6fe4288feeb65144f35b numpy-1.19.1-cp37-cp37m-win32.whl
8343bf67c72e09cfabfab55ad4a43ce3f6bf6e6ced7acf70f45ded9ebb425055 numpy-1.19.1-cp37-cp37m-win_amd64.whl
e45f8e981a0ab47103181773cc0a54e650b2aef8c7b6cd07405d0fa8d869444a numpy-1.19.1-cp38-cp38-macosx_10_9_x86_64.whl
667c07063940e934287993366ad5f56766bc009017b4a0fe91dbd07960d0aba7 numpy-1.19.1-cp38-cp38-manylinux1_i686.whl
480fdd4dbda4dd6b638d3863da3be82873bba6d32d1fc12ea1b8486ac7b8d129 numpy-1.19.1-cp38-cp38-manylinux1_x86_64.whl
935c27ae2760c21cd7354402546f6be21d3d0c806fffe967f745d5f2de5005a7 numpy-1.19.1-cp38-cp38-manylinux2010_i686.whl
309cbcfaa103fc9a33ec16d2d62569d541b79f828c382556ff072442226d1968 numpy-1.19.1-cp38-cp38-manylinux2010_x86_64.whl
7ed448ff4eaffeb01094959b19cbaf998ecdee9ef9932381420d514e446601cd numpy-1.19.1-cp38-cp38-manylinux2014_aarch64.whl
de8b4a9b56255797cbddb93281ed92acbc510fb7b15df3f01bd28f46ebc4edae numpy-1.19.1-cp38-cp38-win32.whl
92feb989b47f83ebef246adabc7ff3b9a59ac30601c3f6819f8913458610bdcc numpy-1.19.1-cp38-cp38-win_amd64.whl
e1b1dc0372f530f26a03578ac75d5e51b3868b9b76cd2facba4c9ee0eb252ab1 numpy-1.19.1-pp36-pypy36_pp73-manylinux2010_x86_64.whl
1396e6c3d20cbfc119195303b0272e749610b7042cc498be4134f013e9a3215c numpy-1.19.1.tar.gz
b8456987b637232602ceb4d663cb34106f7eb780e247d51a260b84760fd8f491 numpy-1.19.1.zip

Page 13 of 23

© 2025 Safety CLI Cybersecurity Inc. All Rights Reserved.