==========================
NumPy 1.16.2 is a quick release fixing several problems encountered on Windows.
The Python versions supported are 2.7 and 3.5-3.7. The Windows problems
addressed are:
- DLL load problems for NumPy wheels on Windows,
- distutils command line parsing on Windows.
There is also a regression fix correcting signed zeros produced by divmod, see
below for details.
Downstream developers building this release should use Cython >= 0.29.2 and, if
using OpenBLAS, OpenBLAS > v0.3.4.
If you are installing using pip, you may encounter a problem with older
installed versions of NumPy that pip did not delete becoming mixed with the
current version, resulting in an ``ImportError``. That problem is particularly
common on Debian derived distributions due to a modified pip. The fix is to
make sure all previous NumPy versions installed by pip have been removed. See
`12736 <https://github.com/numpy/numpy/issues/12736>`__ for discussion of the
issue.
Compatibility notes
===================
Signed zero when using divmod
-----------------------------
Starting in version 1.12.0, numpy incorrectly returned a negatively signed zero
when using the ``divmod`` and ``floor_divide`` functions when the result was
zero. For example:
>>> np.zeros(10)//1
array([-0., -0., -0., -0., -0., -0., -0., -0., -0., -0.])
With this release, the result is correctly returned as a positively signed
zero:
>>> np.zeros(10)//1
array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])
Contributors
============
A total of 5 people contributed to this release. People with a "+" by their
names contributed a patch for the first time.
* Charles Harris
* Eric Wieser
* Matti Picus
* Tyler Reddy
* Tony LaTorre +
Pull requests merged
====================
A total of 7 pull requests were merged for this release.
* 12909: TST: fix vmImage dispatch in Azure
* 12923: MAINT: remove complicated test of multiarray import failure mode
* 13020: BUG: fix signed zero behavior in npy_divmod
* 13026: MAINT: Add functions to parse shell-strings in the platform-native...
* 13028: BUG: Fix regression in parsing of F90 and F77 environment variables
* 13038: BUG: parse shell escaping in extra_compile_args and extra_link_args
* 13041: BLD: Windows absolute path DLL loading
Checksums
=========
MD5
---
a166c7e850f9375552f9950ba95f3a8a numpy-1.16.2-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
cfc866763a75e7cb247c189e141e4506 numpy-1.16.2-cp27-cp27m-manylinux1_i686.whl
0756e1901d81033143ad55583118598e numpy-1.16.2-cp27-cp27m-manylinux1_x86_64.whl
1242a10df37701abe8c8afc59809e1ac numpy-1.16.2-cp27-cp27m-win32.whl
60da6aed692fc96c97efde2daca52d6f numpy-1.16.2-cp27-cp27m-win_amd64.whl
62b92da3423dd59230c9369a43299506 numpy-1.16.2-cp27-cp27mu-manylinux1_i686.whl
5125ec60d3895d89e5d6d71d9e21b349 numpy-1.16.2-cp27-cp27mu-manylinux1_x86_64.whl
15bbe3a9ac6024ac631ed420c04fde47 numpy-1.16.2-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
ca025ce06f5bc7b81627bc5bf523d589 numpy-1.16.2-cp35-cp35m-manylinux1_i686.whl
ca9953287417064b44a47a6ec92c797c numpy-1.16.2-cp35-cp35m-manylinux1_x86_64.whl
f8fa8bda14131b2714c42b775dfde349 numpy-1.16.2-cp35-cp35m-win32.whl
ce7abc3bb59c549ffe3b56984a291eaa numpy-1.16.2-cp35-cp35m-win_amd64.whl
4f26f55f35c58b4228cb3f60cb98f32d numpy-1.16.2-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
ac1e770a95ff3f8a47f74e64bd034768 numpy-1.16.2-cp36-cp36m-manylinux1_i686.whl
990a95c5f6bb34ed5588c996890bf9c7 numpy-1.16.2-cp36-cp36m-manylinux1_x86_64.whl
79bbaffa096bbbaf42c029bf85df5ac2 numpy-1.16.2-cp36-cp36m-win32.whl
83ddd33ccf7a434895ade64199424a07 numpy-1.16.2-cp36-cp36m-win_amd64.whl
ee8c8d67fa75a2c4a733fc491590419a numpy-1.16.2-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
4fce2fe91abe1e8b09232c5aaafa484a numpy-1.16.2-cp37-cp37m-manylinux1_i686.whl
9cac844e1fc29972e63cb80512379805 numpy-1.16.2-cp37-cp37m-manylinux1_x86_64.whl
38d9fccdc6ae4420c9ee5303f1298974 numpy-1.16.2-cp37-cp37m-win32.whl
a1dcfcbe4993d77357bb2213aacf9e82 numpy-1.16.2-cp37-cp37m-win_amd64.whl
4fc754be7ec3e0f80b042d907e99f4ad numpy-1.16.2.tar.gz
ec99ec2763a6be3817675f92b8847d3c numpy-1.16.2.zip
SHA256
------
972ea92f9c1b54cc1c1a3d8508e326c0114aaf0f34996772a30f3f52b73b942f numpy-1.16.2-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
1980f8d84548d74921685f68096911585fee393975f53797614b34d4f409b6da numpy-1.16.2-cp27-cp27m-manylinux1_i686.whl
560ceaa24f971ab37dede7ba030fc5d8fa173305d94365f814d9523ffd5d5916 numpy-1.16.2-cp27-cp27m-manylinux1_x86_64.whl
62be044cd58da2a947b7e7b2252a10b42920df9520fc3d39f5c4c70d5460b8ba numpy-1.16.2-cp27-cp27m-win32.whl
adab43bf657488300d3aeeb8030d7f024fcc86e3a9b8848741ea2ea903e56610 numpy-1.16.2-cp27-cp27m-win_amd64.whl
9f1d4865436f794accdabadc57a8395bd3faa755449b4f65b88b7df65ae05f89 numpy-1.16.2-cp27-cp27mu-manylinux1_i686.whl
fb3c83554f39f48f3fa3123b9c24aecf681b1c289f9334f8215c1d3c8e2f6e5b numpy-1.16.2-cp27-cp27mu-manylinux1_x86_64.whl
6f65e37b5a331df950ef6ff03bd4136b3c0bbcf44d4b8e99135d68a537711b5a numpy-1.16.2-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
d3b3ed87061d2314ff3659bb73896e622252da52558f2380f12c421fbdee3d89 numpy-1.16.2-cp35-cp35m-manylinux1_i686.whl
893f4d75255f25a7b8516feb5766c6b63c54780323b9bd4bc51cdd7efc943c73 numpy-1.16.2-cp35-cp35m-manylinux1_x86_64.whl
3a0bd1edf64f6a911427b608a894111f9fcdb25284f724016f34a84c9a3a6ea9 numpy-1.16.2-cp35-cp35m-win32.whl
2b0b118ff547fecabc247a2668f48f48b3b1f7d63676ebc5be7352a5fd9e85a5 numpy-1.16.2-cp35-cp35m-win_amd64.whl
bd2834d496ba9b1bdda3a6cf3de4dc0d4a0e7be306335940402ec95132ad063d numpy-1.16.2-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
3f25f6c7b0d000017e5ac55977a3999b0b1a74491eacb3c1aa716f0e01f6dcd1 numpy-1.16.2-cp36-cp36m-manylinux1_i686.whl
23cc40313036cffd5d1873ef3ce2e949bdee0646c5d6f375bf7ee4f368db2511 numpy-1.16.2-cp36-cp36m-manylinux1_x86_64.whl
22752cd809272671b273bb86df0f505f505a12368a3a5fc0aa811c7ece4dfd5c numpy-1.16.2-cp36-cp36m-win32.whl
d20c0360940f30003a23c0adae2fe50a0a04f3e48dc05c298493b51fd6280197 numpy-1.16.2-cp36-cp36m-win_amd64.whl
80a41edf64a3626e729a62df7dd278474fc1726836552b67a8c6396fd7e86760 numpy-1.16.2-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
7a78cc4ddb253a55971115f8320a7ce28fd23a065fc33166d601f51760eecfa9 numpy-1.16.2-cp37-cp37m-manylinux1_i686.whl
9f4cd7832b35e736b739be03b55875706c8c3e5fe334a06210f1a61e5c2c8ca5 numpy-1.16.2-cp37-cp37m-manylinux1_x86_64.whl
dc235bf29a406dfda5790d01b998a1c01d7d37f449128c0b1b7d1c89a84fae8b numpy-1.16.2-cp37-cp37m-win32.whl
4061c79ac2230594a7419151028e808239450e676c39e58302ad296232e3c2e8 numpy-1.16.2-cp37-cp37m-win_amd64.whl
8088221e6e27da8d5907729f0bfe798f526836f22cc59ae83a0f867e67416a3e numpy-1.16.2.tar.gz
6c692e3879dde0b67a9dc78f9bfb6f61c666b4562fd8619632d7043fb5b691b0 numpy-1.16.2.zip