Numpy

Latest version: v2.2.1

Safety actively analyzes 693883 Python packages for vulnerabilities to keep your Python projects secure.

Scan your dependencies

Page 17 of 23

1.17.0rc1

==========================

1.16.6

Not secure
===

The NumPy 1.16.6 release fixes bugs reported against the 1.16.5 release,
and also backports several enhancements from master that seem
appropriate for a release series that is the last to support Python 2.7.
The wheels on PyPI are linked with OpenBLAS v0.3.7, which should fix
errors on Skylake series cpus.

Downstream developers building this release should use Cython \>= 0.29.2
and, if using OpenBLAS, OpenBLAS \>= v0.3.7. The supported Python
versions are 2.7 and 3.5-3.7.

Highlights
==========

- The `np.testing.utils` functions have been updated from 1.19.0-dev0.
This improves the function documentation and error messages as well
extending the `assert_array_compare` function to additional types.

New functions
=============

Allow matmul (``) to work with object arrays.

This is an enhancement that was added in NumPy 1.17 and seems reasonable
to include in the LTS 1.16 release series.

Compatibility notes
===================

Fix regression in matmul (``) for boolean types

Booleans were being treated as integers rather than booleans, which was
a regression from previous behavior.

Improvements
============

Array comparison assertions include maximum differences

Error messages from array comparison tests such as
`testing.assert_allclose` now include \"max absolute difference\" and
\"max relative difference,\" in addition to the previous \"mismatch\"
percentage. This information makes it easier to update absolute and
relative error tolerances.

Contributors
============

A total of 10 people contributed to this release.

- CakeWithSteak
- Charles Harris
- Chris Burr
- Eric Wieser
- Fernando Saravia
- Lars Grueter
- Matti Picus
- Maxwell Aladago
- Qiming Sun
- Warren Weckesser

Pull requests merged
====================

A total of 14 pull requests were merged for this release.

- [\14211](https://github.com/numpy/numpy/pull/14211): BUG: Fix
uint-overflow if padding with linear\_ramp and negative\...
- [\14275](https://github.com/numpy/numpy/pull/14275): BUG: fixing to
allow unpickling of PY3 pickles from PY2
- [\14340](https://github.com/numpy/numpy/pull/14340): BUG: Fix
misuse of .names and .fields in various places (backport\...
- [\14423](https://github.com/numpy/numpy/pull/14423): BUG: test, fix
regression in converting to ctypes.
- [\14434](https://github.com/numpy/numpy/pull/14434): BUG: Fixed
maximum relative error reporting in assert\_allclose
- [\14509](https://github.com/numpy/numpy/pull/14509): BUG: Fix
regression in boolean matmul.
- [\14686](https://github.com/numpy/numpy/pull/14686): BUG: properly
define PyArray\_DescrCheck
- [\14853](https://github.com/numpy/numpy/pull/14853): BLD: add \'apt
update\' to shippable
- [\14854](https://github.com/numpy/numpy/pull/14854): BUG: Fix
\_ctypes class circular reference. (\13808)
- [\14856](https://github.com/numpy/numpy/pull/14856): BUG: Fix
[np.einsum]{.title-ref} errors on Power9 Linux and z/Linux
- [\14863](https://github.com/numpy/numpy/pull/14863): BLD: Prevent
-flto from optimising long double representation\...
- [\14864](https://github.com/numpy/numpy/pull/14864): BUG: lib: Fix
histogram problem with signed integer arrays.
- [\15172](https://github.com/numpy/numpy/pull/15172): ENH: Backport
improvements to testing functions.
- [\15191](https://github.com/numpy/numpy/pull/15191): REL: Prepare
for 1.16.6 release.

Checksums
=========

MD5
---

4e224331023d95e98074d629b79cd4af numpy-1.16.6-cp27-cp27m-macosx_10_9_x86_64.whl
d3a48c10422909a5610b42380ed8ddc6 numpy-1.16.6-cp27-cp27m-manylinux1_i686.whl
6896018676021f6cff25abb30d9da143 numpy-1.16.6-cp27-cp27m-manylinux1_x86_64.whl
c961575405015b018a497e8f90db5e38 numpy-1.16.6-cp27-cp27m-win32.whl
8fa39acea08658ca355005c07e15f06f numpy-1.16.6-cp27-cp27m-win_amd64.whl
8802bee0140fd50aecddab0141d0eb82 numpy-1.16.6-cp27-cp27mu-manylinux1_i686.whl
2f9761f243249d33867f86c10c549dfa numpy-1.16.6-cp27-cp27mu-manylinux1_x86_64.whl
171a699d84b6ec8ac699627d606890e0 numpy-1.16.6-cp35-cp35m-macosx_10_9_intel.whl
7185860b022aa72cd9abb112b2d2b6cf numpy-1.16.6-cp35-cp35m-manylinux1_i686.whl
33f35e1b39f572ca98e697b7054fffd1 numpy-1.16.6-cp35-cp35m-manylinux1_x86_64.whl
2ec010ba75c0ac5602e1dbf7fe01ddbf numpy-1.16.6-cp35-cp35m-win32.whl
88c6c5e1f531e32f65f9f9437045f6f5 numpy-1.16.6-cp35-cp35m-win_amd64.whl
751f8ea2353e73bb3440f241ebad6c5d numpy-1.16.6-cp36-cp36m-macosx_10_9_x86_64.whl
819af6ec8c90e8209471ecbc6fc47b95 numpy-1.16.6-cp36-cp36m-manylinux1_i686.whl
56ab65e9d3bac5f502507d198634e675 numpy-1.16.6-cp36-cp36m-manylinux1_x86_64.whl
88d4ed4565d31a1978f4bf013f4ffd2e numpy-1.16.6-cp36-cp36m-win32.whl
167ac7f60d82bd32feb60e675a2c3b01 numpy-1.16.6-cp36-cp36m-win_amd64.whl
2e47bb698842b7289bb34951edf3be3d numpy-1.16.6-cp37-cp37m-macosx_10_9_x86_64.whl
169eb83d7f0a566207048cc282720ff8 numpy-1.16.6-cp37-cp37m-manylinux1_i686.whl
454ac4d3e09931bfb58cc01b679f4f5f numpy-1.16.6-cp37-cp37m-manylinux1_x86_64.whl
192593ce2df33b60eab445b31285ad96 numpy-1.16.6-cp37-cp37m-win32.whl
de3b92f1133613e1bd96d788ba9d4307 numpy-1.16.6-cp37-cp37m-win_amd64.whl
5e958c603605f3168b7b29f421f64cdd numpy-1.16.6.tar.gz
3dc21c84a295fe77eadf8f872685a7de numpy-1.16.6.zip

SHA256
------

08bf4f66f190822f4642e036accde8da810b87fffc0b9409e7a00d9e54760099 numpy-1.16.6-cp27-cp27m-macosx_10_9_x86_64.whl
d759ca1b76ac6f6b6159fb74984126035feb1dee9f68b4b961889b6dc090f33a numpy-1.16.6-cp27-cp27m-manylinux1_i686.whl
d3c5377c6122de876e695937ef41ffee5d2831154c5e4856481b93406cdfeecb numpy-1.16.6-cp27-cp27m-manylinux1_x86_64.whl
345b1748e6b0d4773a518868c783b16fdc33a22683bdb863484cd29fe8d206e6 numpy-1.16.6-cp27-cp27m-win32.whl
7a5a1f49a643aa1ab3e0579da0a48b8a48ea4369eb63c5065459d0a37f430237 numpy-1.16.6-cp27-cp27m-win_amd64.whl
817eed5a6ec2fc9c1a0ee3fbf9a441c66b6766383580513ccbdf3121acc0b4fb numpy-1.16.6-cp27-cp27mu-manylinux1_i686.whl
1680c8d5086a88d293dfd1a10b6429a09140cacee878034fa2308472ec835db4 numpy-1.16.6-cp27-cp27mu-manylinux1_x86_64.whl
a4383edb1b8caa989c3541a37ef204916322c503b8eeacc7ee8f4ba24cac97b8 numpy-1.16.6-cp35-cp35m-macosx_10_9_intel.whl
9bb690692f3101583b0b99f3be362742e4f8ebe6c7934fa36cd8ca2b567a0bcc numpy-1.16.6-cp35-cp35m-manylinux1_i686.whl
b9e334568ca1bf56598eddfac6db6a75bcf1c91aa90d598648f21e45207daeae numpy-1.16.6-cp35-cp35m-manylinux1_x86_64.whl
55cae40d2024c56e7b79fb070106cb4289dcc6b55c62dba1d89a6944448c6a53 numpy-1.16.6-cp35-cp35m-win32.whl
a1ffc9c770ccc2be9284310a3726c918b26ca19b34c0079e7a41aba950ab175f numpy-1.16.6-cp35-cp35m-win_amd64.whl
3f423b06bf67cd1dbf72e13e9b53a9ca71972e5abf712ee6cb5d8cbb178fff02 numpy-1.16.6-cp36-cp36m-macosx_10_9_x86_64.whl
34e6bb44e3d9a663f903b8c297ede865b4dff039aa43cc9a0b249e02c27f1396 numpy-1.16.6-cp36-cp36m-manylinux1_i686.whl
60c56922c9d759d664078fbef94132377ef1498ab27dd3d0cc7a21b346e68c06 numpy-1.16.6-cp36-cp36m-manylinux1_x86_64.whl
23cad5e5858dfb73c0e5bce03fe78e5e5908c22263156c58d4afdbb240683c6c numpy-1.16.6-cp36-cp36m-win32.whl
77399828d96cca386bfba453025c34f22569909d90332b961d3d4341cdb46a84 numpy-1.16.6-cp36-cp36m-win_amd64.whl
97ddfa7688295d460ee48a4d76337e9fdd2506d9d1d0eee7f0348b42b430da4c numpy-1.16.6-cp37-cp37m-macosx_10_9_x86_64.whl
390f6e14a8d73591f086680464aa101a9be9187d0c633f48c98b429b31b712c2 numpy-1.16.6-cp37-cp37m-manylinux1_i686.whl
a1772dc227e3e415eeaa646d25690dc854bddc3d626e454c7c27acba060cb900 numpy-1.16.6-cp37-cp37m-manylinux1_x86_64.whl
c9fb4fcfcdcaccfe2c4e1f9e0133ed59df5df2aa3655f3d391887e892b0a784c numpy-1.16.6-cp37-cp37m-win32.whl
6b1853364775edb85ceb0f7f8214d9e993d4d1d9bd3310eae80529ea14ba2ba6 numpy-1.16.6-cp37-cp37m-win_amd64.whl
61562ddac78765969959500b0da9c6f9ba7d77eeb12ec3927afae5303df08777 numpy-1.16.6.tar.gz
e5cf3fdf13401885e8eea8170624ec96225e2174eb0c611c6f26dd33b489e3ff numpy-1.16.6.zip

1.16.5

Not secure
==========================

The NumPy 1.16.5 release fixes bugs reported against the 1.16.4 release, and
also backports several enhancements from master that seem appropriate for a
release series that is the last to support Python 2.7. The wheels on PyPI are
linked with OpenBLAS v0.3.7-dev, which should fix errors on Skylake series
cpus.

Downstream developers building this release should use Cython >= 0.29.2 and, if
using OpenBLAS, OpenBLAS >= v0.3.7. The supported Python versions are 2.7 and
3.5-3.7.


Contributors
============

A total of 18 people contributed to this release. People with a "+" by their
names contributed a patch for the first time.

* Alexander Shadchin
* Allan Haldane
* Bruce Merry +
* Charles Harris
* Colin Snyder +
* Dan Allan +
* Emile +
* Eric Wieser
* Grey Baker +
* Maksim Shabunin +
* Marten van Kerkwijk
* Matti Picus
* Peter Andreas Entschev +
* Ralf Gommers
* Richard Harris +
* Sebastian Berg
* Sergei Lebedev +
* Stephan Hoyer

Pull requests merged
====================

A total of 23 pull requests were merged for this release.

* 13742: ENH: Add project URLs to setup.py
* 13823: TEST, ENH: fix tests and ctypes code for PyPy
* 13845: BUG: use npy_intp instead of int for indexing array
* 13867: TST: Ignore DeprecationWarning during nose imports
* 13905: BUG: Fix use-after-free in boolean indexing
* 13933: MAINT/BUG/DOC: Fix errors in _add_newdocs
* 13984: BUG: fix byte order reversal for datetime64[ns]
* 13994: MAINT,BUG: Use nbytes to also catch empty descr during allocation
* 14042: BUG: np.array cleared errors occured in PyMemoryView_FromObject
* 14043: BUG: Fixes for Undefined Behavior Sanitizer (UBSan) errors.
* 14044: BUG: ensure that casting to/from structured is properly checked.
* 14045: MAINT: fix histogram*d dispatchers
* 14046: BUG: further fixup to histogram2d dispatcher.
* 14052: BUG: Replace contextlib.suppress for Python 2.7
* 14056: BUG: fix compilation of 3rd party modules with Py_LIMITED_API...
* 14057: BUG: Fix memory leak in dtype from dict contructor
* 14058: DOC: Document array_function at a higher level.
* 14084: BUG, DOC: add new recfunctions to `__all__`
* 14162: BUG: Remove stray print that causes a SystemError on python 3.7
* 14297: TST: Pin pytest version to 5.0.1.
* 14322: ENH: Enable huge pages in all Linux builds
* 14346: BUG: fix behavior of structured_to_unstructured on non-trivial...
* 14382: REL: Prepare for the NumPy 1.16.5 release.

Checksums
=========

MD5
---

cf7ff97464eb044cb49618be5fe29aee numpy-1.16.5-cp27-cp27m-macosx_10_9_x86_64.whl
6fbf51644f8722fa90276c04fe3d031f numpy-1.16.5-cp27-cp27m-manylinux1_i686.whl
df4ab8600495131e44ad1b173f6cc9fc numpy-1.16.5-cp27-cp27m-manylinux1_x86_64.whl
2f6fd50a02da9d56e3d950a6b738337e numpy-1.16.5-cp27-cp27m-win32.whl
d36b67522ee102b7865a83b26a1d97aa numpy-1.16.5-cp27-cp27m-win_amd64.whl
5b4f83c092257f6c98bedd44505e7b6d numpy-1.16.5-cp27-cp27mu-manylinux1_i686.whl
d6fd33607099abdea62752cf303a1763 numpy-1.16.5-cp27-cp27mu-manylinux1_x86_64.whl
fa48e45bd3e5dbac923296b039e70706 numpy-1.16.5-cp35-cp35m-macosx_10_9_x86_64.whl
85a7db0c597037cced7ab82c0f0cdcc8 numpy-1.16.5-cp35-cp35m-manylinux1_i686.whl
401e053e98faada4bc8cdcc9b04d619f numpy-1.16.5-cp35-cp35m-manylinux1_x86_64.whl
2912ba9109dca60115dba59606cac27b numpy-1.16.5-cp35-cp35m-win32.whl
756b7ff320ef821f2cd279c5df7c9f46 numpy-1.16.5-cp35-cp35m-win_amd64.whl
2ae22b506a07575a4bc6a91d2db25df5 numpy-1.16.5-cp36-cp36m-macosx_10_9_x86_64.whl
12cbf61ed2abec3f77cfa3a46b7e4bdc numpy-1.16.5-cp36-cp36m-manylinux1_i686.whl
ab726a4244e9e070cde814d8415cff4c numpy-1.16.5-cp36-cp36m-manylinux1_x86_64.whl
752e461d193b7049e25c7e20f7d4808a numpy-1.16.5-cp36-cp36m-win32.whl
2712434cdfb27a301c49cf97eee656d5 numpy-1.16.5-cp36-cp36m-win_amd64.whl
394fee86faa235dea6d2bb6270961266 numpy-1.16.5-cp37-cp37m-macosx_10_9_x86_64.whl
0713da36acc884897f76bc8117ca7a42 numpy-1.16.5-cp37-cp37m-manylinux1_i686.whl
7856a32b3b2d93d018d2ba5dce941ffa numpy-1.16.5-cp37-cp37m-manylinux1_x86_64.whl
33b7fd0d727c9f09d61879afde8096f6 numpy-1.16.5-cp37-cp37m-win32.whl
5287ce297cd8093463bb29bef42db103 numpy-1.16.5-cp37-cp37m-win_amd64.whl
f9c22f53f17e81b25af8e53b026a9831 numpy-1.16.5.tar.gz
adaad8c166cf0344af3ca1a664dd4a38 numpy-1.16.5.zip

SHA256
------

37fdd3bb05caaaacac58015cfa38e38b006ee9cef1eaacdb70bb68c16ac7db1d numpy-1.16.5-cp27-cp27m-macosx_10_9_x86_64.whl
f42e21d8db16315bc30b437bff63d6b143befb067b8cd396fa3ef17f1c21e1a0 numpy-1.16.5-cp27-cp27m-manylinux1_i686.whl
4208b225ae049641a7a99ab92e84ce9d642ded8250d2b6c9fd61a7fa8c072561 numpy-1.16.5-cp27-cp27m-manylinux1_x86_64.whl
4d790e2a37aa3350667d8bb8acc919010c7e46234c3d615738564ddc6d22026f numpy-1.16.5-cp27-cp27m-win32.whl
1594aec94e4896e0688f4f405481fda50fb70547000ae71f2e894299a088a661 numpy-1.16.5-cp27-cp27m-win_amd64.whl
2c5a556272c67566e8f4607d1c78ad98e954fa6c32802002a4a0b029ad8dd759 numpy-1.16.5-cp27-cp27mu-manylinux1_i686.whl
3a96e59f61c7a8f8838d0f4d19daeba551c5f07c5cdd5c81e8e9d4089ade0042 numpy-1.16.5-cp27-cp27mu-manylinux1_x86_64.whl
612297115bade249a118616c065597ff2e5e1f47ed220d7ba71f3e6c6ebcd814 numpy-1.16.5-cp35-cp35m-macosx_10_9_x86_64.whl
dbc9e9a6a5e0c4f57498855d4e30ef8b599c0ce13fdf9d64299197508d67d9e8 numpy-1.16.5-cp35-cp35m-manylinux1_i686.whl
fada0492dd35412cd96e0578677e9a4bdae8f102ef2b631301fcf19066b57119 numpy-1.16.5-cp35-cp35m-manylinux1_x86_64.whl
ada1a1cd68b9874fa480bd287438f92bd7ce88ca0dd6e8d56c70f2b3dab97314 numpy-1.16.5-cp35-cp35m-win32.whl
27aa457590268cb059c47daa8c55f48c610ce81da8a062ec117f74efa9124ec9 numpy-1.16.5-cp35-cp35m-win_amd64.whl
03b28330253904d410c3c82d66329f29645eb54a7345cb7dd7a1529d61fa603f numpy-1.16.5-cp36-cp36m-macosx_10_9_x86_64.whl
911d91ffc6688db0454d69318584415f7dfb0fc1b8ac9b549234e39495684230 numpy-1.16.5-cp36-cp36m-manylinux1_i686.whl
ceb353e3ae840ce76256935b18c17236ca808509f231f41d5173d7b2680d5e77 numpy-1.16.5-cp36-cp36m-manylinux1_x86_64.whl
e6ce7c0051ed5443f8343da2a14580aa438822ae6526900332c4564f371d2aaf numpy-1.16.5-cp36-cp36m-win32.whl
9a2b950bca9faca0145491ae9fd214c432f2b1e36783399bc2c3732e7bcc94f4 numpy-1.16.5-cp36-cp36m-win_amd64.whl
00836128feaf9a7c7fedeea05ad593e7965f523d23fe3ffbf20cfffd88e9f2b1 numpy-1.16.5-cp37-cp37m-macosx_10_9_x86_64.whl
3d6a354bb1a1ce2cabd47e0bdcf25364322fb55a29efb59f76944d7ee546d8b6 numpy-1.16.5-cp37-cp37m-manylinux1_i686.whl
f7fb27c0562206787011cf299c03f663c604b58a35a9c2b5218ba6485a17b145 numpy-1.16.5-cp37-cp37m-manylinux1_x86_64.whl
46469e7fcb689036e72ce61c3d432ed35eb4c71b5119e894845b434b0fae5813 numpy-1.16.5-cp37-cp37m-win32.whl
fb207362394567343d84c0462ec3ba203a21c78be9a0fdbb94982e76859ec37e numpy-1.16.5-cp37-cp37m-win_amd64.whl
2b63c414fb43a4f0cb69b29b7e9d48275af0dbb5b1ffd2f2de99c4df9967e151 numpy-1.16.5.tar.gz
8bb452d94e964b312205b0de1238dd7209da452343653ab214b5d681780e7a0c numpy-1.16.5.zip

1.16.4

Not secure
==========================

The NumPy 1.16.4 release fixes bugs reported against the 1.16.3 release, and
also backports several enhancements from master that seem appropriate for a
release series that is the last to support Python 2.7. The wheels on PyPI are
linked with OpenBLAS v0.3.7-dev, which should fix issues on Skylake series
cpus.

Downstream developers building this release should use Cython >= 0.29.2 and,
if using OpenBLAS, OpenBLAS > v0.3.7. The supported Python versions are 2.7 and
3.5-3.7.


New deprecations
================
Writeable flag of C-API wrapped arrays
--------------------------------------
When an array is created from the C-API to wrap a pointer to data, the only
indication we have of the read-write nature of the data is the ``writeable``
flag set during creation. It is dangerous to force the flag to writeable. In
the future it will not be possible to switch the writeable flag to ``True``
from python. This deprecation should not affect many users since arrays
created in such a manner are very rare in practice and only available through
the NumPy C-API.


Compatibility notes
===================

Potential changes to the random stream
--------------------------------------
Due to bugs in the application of log to random floating point numbers,
the stream may change when sampling from ``np.random.beta``, ``np.random.binomial``,
``np.random.laplace``, ``np.random.logistic``, ``np.random.logseries`` or
``np.random.multinomial`` if a 0 is generated in the underlying MT19937 random stream.
There is a 1 in :math:`10^{53}` chance of this occurring, and so the probability that
the stream changes for any given seed is extremely small. If a 0 is encountered in the
underlying generator, then the incorrect value produced (either ``np.inf``
or ``np.nan``) is now dropped.


Changes
=======

`numpy.lib.recfunctions.structured_to_unstructured` does not squeeze single-field views
---------------------------------------------------------------------------------------
Previously ``structured_to_unstructured(arr[['a']])`` would produce a squeezed
result inconsistent with ``structured_to_unstructured(arr[['a', b']])``. This
was accidental. The old behavior can be retained with
``structured_to_unstructured(arr[['a']]).squeeze(axis=-1)`` or far more simply,
``arr['a']``.


Contributors
============

A total of 10 people contributed to this release. People with a "+" by their
names contributed a patch for the first time.

* Charles Harris
* Eric Wieser
* Dennis Zollo +
* Hunter Damron +
* Jingbei Li +
* Kevin Sheppard
* Matti Picus
* Nicola Soranzo +
* Sebastian Berg
* Tyler Reddy


Pull requests merged
====================

A total of 16 pull requests were merged for this release.

* 13392: BUG: Some PyPy versions lack PyStructSequence_InitType2.
* 13394: MAINT, DEP: Fix deprecated ``assertEquals()``
* 13396: BUG: Fix structured_to_unstructured on single-field types (backport)
* 13549: BLD: Make CI pass again with pytest 4.5
* 13552: TST: Register markers in conftest.py.
* 13559: BUG: Removes ValueError for empty kwargs in arraymultiter_new
* 13560: BUG: Add TypeError to accepted exceptions in crackfortran.
* 13561: BUG: Handle subarrays in descr_to_dtype
* 13562: BUG: Protect generators from log(0.0)
* 13563: BUG: Always return views from structured_to_unstructured when...
* 13564: BUG: Catch stderr when checking compiler version
* 13565: BUG: longdouble(int) does not work
* 13587: BUG: distutils/system_info.py fix missing subprocess import (13523)
* 13620: BUG,DEP: Fix writeable flag setting for arrays without base
* 13641: MAINT: Prepare for the 1.16.4 release.
* 13644: BUG: special case object arrays when printing rel-, abs-error

Checksums
=========

MD5
---

a24c599ae3445d9d085e77ce4d072259 numpy-1.16.4-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
efcfb51254d83060a2af0d30aa1d1b81 numpy-1.16.4-cp27-cp27m-manylinux1_i686.whl
b62eca40cbab3e24c4962e22633d92a5 numpy-1.16.4-cp27-cp27m-manylinux1_x86_64.whl
c96618196f6dfc29f4931a2f6fea44ad numpy-1.16.4-cp27-cp27m-win32.whl
6dd36dfd23338844c1ecac8b92efd938 numpy-1.16.4-cp27-cp27m-win_amd64.whl
52c8e342f110b2fba426fca60b1c2774 numpy-1.16.4-cp27-cp27mu-manylinux1_i686.whl
038f16384a2af6bd3db61dc773ffbe10 numpy-1.16.4-cp27-cp27mu-manylinux1_x86_64.whl
32b18d06069d3d86b8e3193b2f455c15 numpy-1.16.4-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
d6550e24ff69d4a175d278f39f871d39 numpy-1.16.4-cp35-cp35m-manylinux1_i686.whl
07b33ea867cf2657e23dbf93069eff99 numpy-1.16.4-cp35-cp35m-manylinux1_x86_64.whl
cc84f9555a711a2bc867d3b941992a68 numpy-1.16.4-cp35-cp35m-win32.whl
cf671f2b0e651e701472456107c8e644 numpy-1.16.4-cp35-cp35m-win_amd64.whl
1376e801040a91f8b325e827e6d53f91 numpy-1.16.4-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
833f763fb0d69c850fae175c65f7b502 numpy-1.16.4-cp36-cp36m-manylinux1_i686.whl
255ae62cf215e647ee437d432b6511c2 numpy-1.16.4-cp36-cp36m-manylinux1_x86_64.whl
6fcb9a8f601795413ceaf06767caca2d numpy-1.16.4-cp36-cp36m-win32.whl
de4fa9f01692ec94932a289440f18255 numpy-1.16.4-cp36-cp36m-win_amd64.whl
dab4ec8a1c07a7a1a54932c461933992 numpy-1.16.4-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
c1d3c38c67396809c51f5c98aead5e13 numpy-1.16.4-cp37-cp37m-manylinux1_i686.whl
e98fc6a8d90ff7ed26d0ed7faad3aa8d numpy-1.16.4-cp37-cp37m-manylinux1_x86_64.whl
f84869efe5610e6ad6165237c012ea93 numpy-1.16.4-cp37-cp37m-win32.whl
17b46c338d04cb8b4773fb6b02919f2b numpy-1.16.4-cp37-cp37m-win_amd64.whl
6edf7334d04d8e8849ad058ccd3b3803 numpy-1.16.4.tar.gz
74f7d348c55ace4d22d7ad26c65755aa numpy-1.16.4.zip

SHA256
------

b5554368e4ede1856121b0dfa35ce71768102e4aa55e526cb8de7f374ff78722 numpy-1.16.4-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
e8baab1bc7c9152715844f1faca6744f2416929de10d7639ed49555a85549f52 numpy-1.16.4-cp27-cp27m-manylinux1_i686.whl
2a04dda79606f3d2f760384c38ccd3d5b9bb79d4c8126b67aff5eb09a253763e numpy-1.16.4-cp27-cp27m-manylinux1_x86_64.whl
94f5bd885f67bbb25c82d80184abbf7ce4f6c3c3a41fbaa4182f034bba803e69 numpy-1.16.4-cp27-cp27m-win32.whl
7dc253b542bfd4b4eb88d9dbae4ca079e7bf2e2afd819ee18891a43db66c60c7 numpy-1.16.4-cp27-cp27m-win_amd64.whl
0778076e764e146d3078b17c24c4d89e0ecd4ac5401beff8e1c87879043a0633 numpy-1.16.4-cp27-cp27mu-manylinux1_i686.whl
b0348be89275fd1d4c44ffa39530c41a21062f52299b1e3ee7d1c61f060044b8 numpy-1.16.4-cp27-cp27mu-manylinux1_x86_64.whl
52c40f1a4262c896420c6ea1c6fda62cf67070e3947e3307f5562bd783a90336 numpy-1.16.4-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
141c7102f20abe6cf0d54c4ced8d565b86df4d3077ba2343b61a6db996cefec7 numpy-1.16.4-cp35-cp35m-manylinux1_i686.whl
6e4f8d9e8aa79321657079b9ac03f3cf3fd067bf31c1cca4f56d49543f4356a5 numpy-1.16.4-cp35-cp35m-manylinux1_x86_64.whl
d79f18f41751725c56eceab2a886f021d70fd70a6188fd386e29a045945ffc10 numpy-1.16.4-cp35-cp35m-win32.whl
14270a1ee8917d11e7753fb54fc7ffd1934f4d529235beec0b275e2ccf00333b numpy-1.16.4-cp35-cp35m-win_amd64.whl
a89e188daa119ffa0d03ce5123dee3f8ffd5115c896c2a9d4f0dbb3d8b95bfa3 numpy-1.16.4-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
ec31fe12668af687b99acf1567399632a7c47b0e17cfb9ae47c098644ef36797 numpy-1.16.4-cp36-cp36m-manylinux1_i686.whl
27e11c7a8ec9d5838bc59f809bfa86efc8a4fd02e58960fa9c49d998e14332d5 numpy-1.16.4-cp36-cp36m-manylinux1_x86_64.whl
dc2ca26a19ab32dc475dbad9dfe723d3a64c835f4c23f625c2b6566ca32b9f29 numpy-1.16.4-cp36-cp36m-win32.whl
ad3399da9b0ca36e2f24de72f67ab2854a62e623274607e37e0ce5f5d5fa9166 numpy-1.16.4-cp36-cp36m-win_amd64.whl
f58ac38d5ca045a377b3b377c84df8175ab992c970a53332fa8ac2373df44ff7 numpy-1.16.4-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
f12b4f7e2d8f9da3141564e6737d79016fe5336cc92de6814eba579744f65b0a numpy-1.16.4-cp37-cp37m-manylinux1_i686.whl
cbddc56b2502d3f87fda4f98d948eb5b11f36ff3902e17cb6cc44727f2200525 numpy-1.16.4-cp37-cp37m-manylinux1_x86_64.whl
3c26010c1b51e1224a3ca6b8df807de6e95128b0908c7e34f190e7775455b0ca numpy-1.16.4-cp37-cp37m-win32.whl
dd9bcd4f294eb0633bb33d1a74febdd2b9018b8b8ed325f861fffcd2c7660bb8 numpy-1.16.4-cp37-cp37m-win_amd64.whl
a3bccb70ad94091a5b9e2469fabd41ac877c140a6828c2022e35560a2ec0346c numpy-1.16.4.tar.gz
7242be12a58fec245ee9734e625964b97cf7e3f2f7d016603f9e56660ce479c7 numpy-1.16.4.zip

1.16.3

Not secure
==========================

The NumPy 1.16.3 release fixes bugs reported against the 1.16.2 release, and
also backports several enhancements from master that seem appropriate for a
release series that is the last to support Python 2.7. The wheels on PyPI are
linked with OpenBLAS v0.3.4+, which should fix the known threading issues
found in previous OpenBLAS versions.

Downstream developers building this release should use Cython >= 0.29.2 and,
if using OpenBLAS, OpenBLAS > v0.3.4.

The most noticeable change in this release is that unpickling object arrays
when loading ``*.npy`` or ``*.npz`` files now requires an explicit opt-in.
This backwards incompatible change was made in response to
`CVE-2019-6446 <https://nvd.nist.gov/vuln/detail/CVE-2019-6446>`_.


Compatibility notes
===================

Unpickling while loading requires explicit opt-in
-------------------------------------------------
The functions ``np.load``, and ``np.lib.format.read_array`` take an
`allow_pickle` keyword which now defaults to ``False`` in response to
`CVE-2019-6446 <https://nvd.nist.gov/vuln/detail/CVE-2019-6446>`_.


Improvements
============

Covariance in `random.mvnormal` cast to double
----------------------------------------------
This should make the tolerance used when checking the singular values of the
covariance matrix more meaningful.


Changes
=======

``__array_interface__`` offset now works as documented
------------------------------------------------------
The interface may use an ``offset`` value that was previously mistakenly
ignored.


Checksums
=========

MD5
---

7039dd60e2066e8882149a8b8bd6cf2f numpy-1.16.3-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
c03c7365b58deefd03e3c080660d7157 numpy-1.16.3-cp27-cp27m-manylinux1_i686.whl
91900b9172e39c039326c56cf0149e15 numpy-1.16.3-cp27-cp27m-manylinux1_x86_64.whl
b06d87509a2228c5952096cb11c8b007 numpy-1.16.3-cp27-cp27m-win32.whl
88c1e91c6bd3626278b7938f12cafbe2 numpy-1.16.3-cp27-cp27m-win_amd64.whl
98fb024d8d63f056ef7c82e772c4bfa0 numpy-1.16.3-cp27-cp27mu-manylinux1_i686.whl
d2b8da12f0855765e9cd3cc49d9885b9 numpy-1.16.3-cp27-cp27mu-manylinux1_x86_64.whl
ec4f2fd2180fd68647f38a0d4c331dcf numpy-1.16.3-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
7add5c07a1679bfc086d5575be26ccc6 numpy-1.16.3-cp35-cp35m-manylinux1_i686.whl
bd3c27deac470bce5edf6936d08966b8 numpy-1.16.3-cp35-cp35m-manylinux1_x86_64.whl
c6ab529b105181fc846a8245e5e4d048 numpy-1.16.3-cp35-cp35m-win32.whl
1854757b3e127614ae01b0b814762f5c numpy-1.16.3-cp35-cp35m-win_amd64.whl
b23b0727562be62ffd943c7828822da9 numpy-1.16.3-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
93a2a4b48f160ffd1bdd30023b842be2 numpy-1.16.3-cp36-cp36m-manylinux1_i686.whl
453f5996ac600c4085656e82005fb0e5 numpy-1.16.3-cp36-cp36m-manylinux1_x86_64.whl
773f9e76235ab5edd9ef1c083e62ea9f numpy-1.16.3-cp36-cp36m-win32.whl
9ba2467b05eb4471817509cabff1b9a6 numpy-1.16.3-cp36-cp36m-win_amd64.whl
00594b150e69d1776164ffa60d7fdc01 numpy-1.16.3-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
fe3421cbae83004e7feca4d90043e9df numpy-1.16.3-cp37-cp37m-manylinux1_i686.whl
4e907ac7d841018c0a9130ca45d099ee numpy-1.16.3-cp37-cp37m-manylinux1_x86_64.whl
c7e8e9f9ded13b1356e72cd8506df224 numpy-1.16.3-cp37-cp37m-win32.whl
370ec58a5fdfe9e7ffe90857577806c6 numpy-1.16.3-cp37-cp37m-win_amd64.whl
0886e5b5017f08f2b7a624c0b5931e61 numpy-1.16.3.tar.gz
cab84884fba39fbd352550896bf22bfd numpy-1.16.3.zip

SHA256
------

b78a1defedb0e8f6ae1eb55fa6ac74ab42acc4569c3a2eacc2a407ee5d42ebcb numpy-1.16.3-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
0e2eed77804b2a6a88741f8fcac02c5499bba3953ec9c71e8b217fad4912c56c numpy-1.16.3-cp27-cp27m-manylinux1_i686.whl
754a6be26d938e6ca91942804eb209307b73f806a1721176278a6038869a1686 numpy-1.16.3-cp27-cp27m-manylinux1_x86_64.whl
315fa1b1dfc16ae0f03f8fd1c55f23fd15368710f641d570236f3d78af55e340 numpy-1.16.3-cp27-cp27m-win32.whl
80d99399c97f646e873dd8ce87c38cfdbb668956bbc39bc1e6cac4b515bba2a0 numpy-1.16.3-cp27-cp27m-win_amd64.whl
a61255a765b3ac73ee4b110b28fccfbf758c985677f526c2b4b39c48cc4b509d numpy-1.16.3-cp27-cp27mu-manylinux1_i686.whl
88a72c1e45a0ae24d1f249a529d9f71fe82e6fa6a3fd61414b829396ec585900 numpy-1.16.3-cp27-cp27mu-manylinux1_x86_64.whl
54fe3b7ed9e7eb928bbc4318f954d133851865f062fa4bbb02ef8940bc67b5d2 numpy-1.16.3-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
abbd6b1c2ef6199f4b7ca9f818eb6b31f17b73a6110aadc4e4298c3f00fab24e numpy-1.16.3-cp35-cp35m-manylinux1_i686.whl
771147e654e8b95eea1293174a94f34e2e77d5729ad44aefb62fbf8a79747a15 numpy-1.16.3-cp35-cp35m-manylinux1_x86_64.whl
48241759b99d60aba63b0e590332c600fc4b46ad597c9b0a53f350b871ef0634 numpy-1.16.3-cp35-cp35m-win32.whl
b16d88da290334e33ea992c56492326ea3b06233a00a1855414360b77ca72f26 numpy-1.16.3-cp35-cp35m-win_amd64.whl
ab4896a8c910b9a04c0142871d8800c76c8a2e5ff44763513e1dd9d9631ce897 numpy-1.16.3-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
7fde5c2a3a682a9e101e61d97696687ebdba47637611378b4127fe7e47fdf2bf numpy-1.16.3-cp36-cp36m-manylinux1_i686.whl
4b4f2924b36d857cf302aec369caac61e43500c17eeef0d7baacad1084c0ee84 numpy-1.16.3-cp36-cp36m-manylinux1_x86_64.whl
d160e57731fcdec2beda807ebcabf39823c47e9409485b5a3a1db3a8c6ce763e numpy-1.16.3-cp36-cp36m-win32.whl
1f46532afa7b2903bfb1b79becca2954c0a04389d19e03dc73f06b039048ac40 numpy-1.16.3-cp36-cp36m-win_amd64.whl
1c666f04553ef70fda54adf097dbae7080645435fc273e2397f26bbf1d127bbb numpy-1.16.3-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
3d5fcea4f5ed40c3280791d54da3ad2ecf896f4c87c877b113576b8280c59441 numpy-1.16.3-cp37-cp37m-manylinux1_i686.whl
5a8f021c70e6206c317974c93eaaf9bc2b56295b6b1cacccf88846e44a1f33fc numpy-1.16.3-cp37-cp37m-manylinux1_x86_64.whl
cfef82c43b8b29ca436560d51b2251d5117818a8d1fb74a8384a83c096745dad numpy-1.16.3-cp37-cp37m-win32.whl
a4f4460877a16ac73302a9c077ca545498d9fe64e6a81398d8e1a67e4695e3df numpy-1.16.3-cp37-cp37m-win_amd64.whl
adf063a3f87ab89393f5eea0eb903293b112fa0a308e8c594a75ffa585d81d4f numpy-1.16.3.tar.gz
78a6f89da87eeb48014ec652a65c4ffde370c036d780a995edaeb121d3625621 numpy-1.16.3.zip

1.16.2

Not secure
==========================

NumPy 1.16.2 is a quick release fixing several problems encountered on Windows.
The Python versions supported are 2.7 and 3.5-3.7. The Windows problems
addressed are:

- DLL load problems for NumPy wheels on Windows,
- distutils command line parsing on Windows.

There is also a regression fix correcting signed zeros produced by divmod, see
below for details.

Downstream developers building this release should use Cython >= 0.29.2 and, if
using OpenBLAS, OpenBLAS > v0.3.4.

If you are installing using pip, you may encounter a problem with older
installed versions of NumPy that pip did not delete becoming mixed with the
current version, resulting in an ``ImportError``. That problem is particularly
common on Debian derived distributions due to a modified pip. The fix is to
make sure all previous NumPy versions installed by pip have been removed. See
`12736 <https://github.com/numpy/numpy/issues/12736>`__ for discussion of the
issue.


Compatibility notes
===================

Signed zero when using divmod
-----------------------------
Starting in version 1.12.0, numpy incorrectly returned a negatively signed zero
when using the ``divmod`` and ``floor_divide`` functions when the result was
zero. For example:

>>> np.zeros(10)//1
array([-0., -0., -0., -0., -0., -0., -0., -0., -0., -0.])

With this release, the result is correctly returned as a positively signed
zero:

>>> np.zeros(10)//1
array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])


Contributors
============

A total of 5 people contributed to this release. People with a "+" by their
names contributed a patch for the first time.

* Charles Harris
* Eric Wieser
* Matti Picus
* Tyler Reddy
* Tony LaTorre +


Pull requests merged
====================

A total of 7 pull requests were merged for this release.

* 12909: TST: fix vmImage dispatch in Azure
* 12923: MAINT: remove complicated test of multiarray import failure mode
* 13020: BUG: fix signed zero behavior in npy_divmod
* 13026: MAINT: Add functions to parse shell-strings in the platform-native...
* 13028: BUG: Fix regression in parsing of F90 and F77 environment variables
* 13038: BUG: parse shell escaping in extra_compile_args and extra_link_args
* 13041: BLD: Windows absolute path DLL loading

Checksums
=========

MD5
---

a166c7e850f9375552f9950ba95f3a8a numpy-1.16.2-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
cfc866763a75e7cb247c189e141e4506 numpy-1.16.2-cp27-cp27m-manylinux1_i686.whl
0756e1901d81033143ad55583118598e numpy-1.16.2-cp27-cp27m-manylinux1_x86_64.whl
1242a10df37701abe8c8afc59809e1ac numpy-1.16.2-cp27-cp27m-win32.whl
60da6aed692fc96c97efde2daca52d6f numpy-1.16.2-cp27-cp27m-win_amd64.whl
62b92da3423dd59230c9369a43299506 numpy-1.16.2-cp27-cp27mu-manylinux1_i686.whl
5125ec60d3895d89e5d6d71d9e21b349 numpy-1.16.2-cp27-cp27mu-manylinux1_x86_64.whl
15bbe3a9ac6024ac631ed420c04fde47 numpy-1.16.2-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
ca025ce06f5bc7b81627bc5bf523d589 numpy-1.16.2-cp35-cp35m-manylinux1_i686.whl
ca9953287417064b44a47a6ec92c797c numpy-1.16.2-cp35-cp35m-manylinux1_x86_64.whl
f8fa8bda14131b2714c42b775dfde349 numpy-1.16.2-cp35-cp35m-win32.whl
ce7abc3bb59c549ffe3b56984a291eaa numpy-1.16.2-cp35-cp35m-win_amd64.whl
4f26f55f35c58b4228cb3f60cb98f32d numpy-1.16.2-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
ac1e770a95ff3f8a47f74e64bd034768 numpy-1.16.2-cp36-cp36m-manylinux1_i686.whl
990a95c5f6bb34ed5588c996890bf9c7 numpy-1.16.2-cp36-cp36m-manylinux1_x86_64.whl
79bbaffa096bbbaf42c029bf85df5ac2 numpy-1.16.2-cp36-cp36m-win32.whl
83ddd33ccf7a434895ade64199424a07 numpy-1.16.2-cp36-cp36m-win_amd64.whl
ee8c8d67fa75a2c4a733fc491590419a numpy-1.16.2-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
4fce2fe91abe1e8b09232c5aaafa484a numpy-1.16.2-cp37-cp37m-manylinux1_i686.whl
9cac844e1fc29972e63cb80512379805 numpy-1.16.2-cp37-cp37m-manylinux1_x86_64.whl
38d9fccdc6ae4420c9ee5303f1298974 numpy-1.16.2-cp37-cp37m-win32.whl
a1dcfcbe4993d77357bb2213aacf9e82 numpy-1.16.2-cp37-cp37m-win_amd64.whl
4fc754be7ec3e0f80b042d907e99f4ad numpy-1.16.2.tar.gz
ec99ec2763a6be3817675f92b8847d3c numpy-1.16.2.zip

SHA256
------

972ea92f9c1b54cc1c1a3d8508e326c0114aaf0f34996772a30f3f52b73b942f numpy-1.16.2-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
1980f8d84548d74921685f68096911585fee393975f53797614b34d4f409b6da numpy-1.16.2-cp27-cp27m-manylinux1_i686.whl
560ceaa24f971ab37dede7ba030fc5d8fa173305d94365f814d9523ffd5d5916 numpy-1.16.2-cp27-cp27m-manylinux1_x86_64.whl
62be044cd58da2a947b7e7b2252a10b42920df9520fc3d39f5c4c70d5460b8ba numpy-1.16.2-cp27-cp27m-win32.whl
adab43bf657488300d3aeeb8030d7f024fcc86e3a9b8848741ea2ea903e56610 numpy-1.16.2-cp27-cp27m-win_amd64.whl
9f1d4865436f794accdabadc57a8395bd3faa755449b4f65b88b7df65ae05f89 numpy-1.16.2-cp27-cp27mu-manylinux1_i686.whl
fb3c83554f39f48f3fa3123b9c24aecf681b1c289f9334f8215c1d3c8e2f6e5b numpy-1.16.2-cp27-cp27mu-manylinux1_x86_64.whl
6f65e37b5a331df950ef6ff03bd4136b3c0bbcf44d4b8e99135d68a537711b5a numpy-1.16.2-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
d3b3ed87061d2314ff3659bb73896e622252da52558f2380f12c421fbdee3d89 numpy-1.16.2-cp35-cp35m-manylinux1_i686.whl
893f4d75255f25a7b8516feb5766c6b63c54780323b9bd4bc51cdd7efc943c73 numpy-1.16.2-cp35-cp35m-manylinux1_x86_64.whl
3a0bd1edf64f6a911427b608a894111f9fcdb25284f724016f34a84c9a3a6ea9 numpy-1.16.2-cp35-cp35m-win32.whl
2b0b118ff547fecabc247a2668f48f48b3b1f7d63676ebc5be7352a5fd9e85a5 numpy-1.16.2-cp35-cp35m-win_amd64.whl
bd2834d496ba9b1bdda3a6cf3de4dc0d4a0e7be306335940402ec95132ad063d numpy-1.16.2-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
3f25f6c7b0d000017e5ac55977a3999b0b1a74491eacb3c1aa716f0e01f6dcd1 numpy-1.16.2-cp36-cp36m-manylinux1_i686.whl
23cc40313036cffd5d1873ef3ce2e949bdee0646c5d6f375bf7ee4f368db2511 numpy-1.16.2-cp36-cp36m-manylinux1_x86_64.whl
22752cd809272671b273bb86df0f505f505a12368a3a5fc0aa811c7ece4dfd5c numpy-1.16.2-cp36-cp36m-win32.whl
d20c0360940f30003a23c0adae2fe50a0a04f3e48dc05c298493b51fd6280197 numpy-1.16.2-cp36-cp36m-win_amd64.whl
80a41edf64a3626e729a62df7dd278474fc1726836552b67a8c6396fd7e86760 numpy-1.16.2-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
7a78cc4ddb253a55971115f8320a7ce28fd23a065fc33166d601f51760eecfa9 numpy-1.16.2-cp37-cp37m-manylinux1_i686.whl
9f4cd7832b35e736b739be03b55875706c8c3e5fe334a06210f1a61e5c2c8ca5 numpy-1.16.2-cp37-cp37m-manylinux1_x86_64.whl
dc235bf29a406dfda5790d01b998a1c01d7d37f449128c0b1b7d1c89a84fae8b numpy-1.16.2-cp37-cp37m-win32.whl
4061c79ac2230594a7419151028e808239450e676c39e58302ad296232e3c2e8 numpy-1.16.2-cp37-cp37m-win_amd64.whl
8088221e6e27da8d5907729f0bfe798f526836f22cc59ae83a0f867e67416a3e numpy-1.16.2.tar.gz
6c692e3879dde0b67a9dc78f9bfb6f61c666b4562fd8619632d7043fb5b691b0 numpy-1.16.2.zip

Page 17 of 23

© 2025 Safety CLI Cybersecurity Inc. All Rights Reserved.