Numpy

Latest version: v2.2.1

Safety actively analyzes 693883 Python packages for vulnerabilities to keep your Python projects secure.

Scan your dependencies

Page 4 of 23

2.0.0

numpy.argsort` and `numpy.argpartition`.

Removed ambiguity when broadcasting in `np.solve`

The broadcasting rules for `np.solve(a, b)` were ambiguous when `b` had
1 fewer dimensions than `a`. This has been resolved in a
backward-incompatible way and is now compliant with the Array API. The
old behaviour can be reconstructed by using
`np.solve(a, b[..., None])[..., 0]`.

([gh-25914](https://github.com/numpy/numpy/pull/25914))

Modified representation for `Polynomial`

The representation method for
`numpy.polynomial.polynomial.Polynomial` was updated to
include the domain in the representation. The plain text and latex
representations are now consistent. For example the output of
`str(np.polynomial.Polynomial([1, 1], domain=[.1, .2]))` used to be
`1.0 + 1.0 x`, but now is `1.0 + 1.0 (-3.0000000000000004 + 20.0 x)`.

([gh-21760](https://github.com/numpy/numpy/pull/21760))

C API changes

- The `PyArray_CGT`, `PyArray_CLT`, `PyArray_CGE`, `PyArray_CLE`,
`PyArray_CEQ`, `PyArray_CNE` macros have been removed.

- `PyArray_MIN` and `PyArray_MAX` have been moved from
`ndarraytypes.h` to `npy_math.h`.

([gh-24258](https://github.com/numpy/numpy/pull/24258))

- A C API for working with `numpy.dtypes.StringDType`
arrays has been exposed. This includes functions for acquiring and
releasing mutexes which lock access to the string data, as well as
packing and unpacking UTF-8 bytestreams from array entries.

- `NPY_NTYPES` has been renamed to `NPY_NTYPES_LEGACY` as it does not
include new NumPy built-in DTypes. In particular the new string
DType will likely not work correctly with code that handles legacy
DTypes.

([gh-25347](https://github.com/numpy/numpy/pull/25347))

- The C-API now only exports the static inline function versions of
the array accessors (previously this depended on using \"deprecated
API\"). While we discourage it, the struct fields can still be used
directly.

([gh-25789](https://github.com/numpy/numpy/pull/25789))

- NumPy now defines `PyArray_Pack` to set an individual memory address.
Unlike `PyArray_SETITEM` this function is equivalent to setting an
individual array item and does not require a NumPy array input.

([gh-25954](https://github.com/numpy/numpy/pull/25954))

- The `->f` slot has been removed from `PyArray_Descr`. If you use this slot,
replace accessing it with `PyDataType_GetArrFuncs` (see its documentation
and the `numpy-2-migration-guide`). In some cases using other functions
like `PyArray_GETITEM` may be an alternatives.

- `PyArray_GETITEM` and `PyArray_SETITEM` now require the import of
the NumPy API table to be used and are no longer defined in
`ndarraytypes.h`.

([gh-25812](https://github.com/numpy/numpy/pull/25812))

- Due to runtime dependencies, the definition for functionality
accessing the dtype flags was moved from `numpy/ndarraytypes.h` and
is only available after including `numpy/ndarrayobject.h` as it
requires `import_array()`. This includes `PyDataType_FLAGCHK`,
`PyDataType_REFCHK` and `NPY_BEGIN_THREADS_DESCR`.

- The dtype flags on `PyArray_Descr` must now be accessed through the
`PyDataType_FLAGS` inline function to be compatible with both 1.x
and 2.x. This function is defined in `npy_2_compat.h` to allow
backporting. Most or all users should use `PyDataType_FLAGCHK` which
is available on 1.x and does not require backporting. Cython users
should use Cython 3. Otherwise access will go through Python unless
they use `PyDataType_FLAGCHK` instead.

([gh-25816](https://github.com/numpy/numpy/pull/25816))

Datetime functionality exposed in the C API and Cython bindings

The functions `NpyDatetime_ConvertDatetime64ToDatetimeStruct`,
`NpyDatetime_ConvertDatetimeStructToDatetime64`,
`NpyDatetime_ConvertPyDateTimeToDatetimeStruct`,
`NpyDatetime_GetDatetimeISO8601StrLen`,
`NpyDatetime_MakeISO8601Datetime`, and
`NpyDatetime_ParseISO8601Datetime` have been added to the C API to
facilitate converting between strings, Python datetimes, and NumPy
datetimes in external libraries.

([gh-21199](https://github.com/numpy/numpy/pull/21199))

Const correctness for the generalized ufunc C API

The NumPy C API\'s functions for constructing generalized ufuncs
(`PyUFunc_FromFuncAndData`, `PyUFunc_FromFuncAndDataAndSignature`,
`PyUFunc_FromFuncAndDataAndSignatureAndIdentity`) take `types` and
`data` arguments that are not modified by NumPy\'s internals. Like the
`name` and `doc` arguments, third-party Python extension modules are
likely to supply these arguments from static constants. The `types` and
`data` arguments are now const-correct: they are declared as
`const char *types` and `void *const *data`, respectively. C code should
not be affected, but C++ code may be.

([gh-23847](https://github.com/numpy/numpy/pull/23847))

Larger `NPY_MAXDIMS` and `NPY_MAXARGS`, `NPY_RAVEL_AXIS` introduced

`NPY_MAXDIMS` is now 64, you may want to review its use. This is usually
used in a stack allocation, where the increase should be safe. However,
we do encourage generally to remove any use of `NPY_MAXDIMS` and
`NPY_MAXARGS` to eventually allow removing the constraint completely.
For the conversion helper and C-API functions mirroring Python ones such as
`take`, `NPY_MAXDIMS` was used to mean `axis=None`. Such usage must be replaced
with `NPY_RAVEL_AXIS`. See also `migration_maxdims`.

([gh-25149](https://github.com/numpy/numpy/pull/25149))

`NPY_MAXARGS` not constant and `PyArrayMultiIterObject` size change

Since `NPY_MAXARGS` was increased, it is now a runtime constant and not
compile-time constant anymore. We expect almost no users to notice this.
But if used for stack allocations it now must be replaced with a custom
constant using `NPY_MAXARGS` as an additional runtime check.

The `sizeof(PyArrayMultiIterObject)` no longer includes the full size of
the object. We expect nobody to notice this change. It was necessary to
avoid issues with Cython.

([gh-25271](https://github.com/numpy/numpy/pull/25271))

Required changes for custom legacy user dtypes

In order to improve our DTypes it is unfortunately necessary to break
the ABI, which requires some changes for dtypes registered with
`PyArray_RegisterDataType`. Please see the documentation of
`PyArray_RegisterDataType` for how to adapt your code and achieve
compatibility with both 1.x and 2.x.

([gh-25792](https://github.com/numpy/numpy/pull/25792))

New Public DType API

The C implementation of the NEP 42 DType API is now public. While the
DType API has shipped in NumPy for a few versions, it was only usable in
sessions with a special environment variable set. It is now possible to
write custom DTypes outside of NumPy using the new DType API and the
normal `import_array()` mechanism for importing the numpy C API.

See `dtype-api` for more details about the API. As always with a new feature,
please report any bugs you run into implementing or using a new DType. It is
likely that downstream C code that works with dtypes will need to be updated to
work correctly with new DTypes.

([gh-25754](https://github.com/numpy/numpy/pull/25754))

New C-API import functions

We have now added `PyArray_ImportNumPyAPI` and `PyUFunc_ImportUFuncAPI`
as static inline functions to import the NumPy C-API tables. The new
functions have two advantages over `import_array` and `import_ufunc`:

- They check whether the import was already performed and are
light-weight if not, allowing to add them judiciously (although this
is not preferable in most cases).
- The old mechanisms were macros rather than functions which included
a `return` statement.

The `PyArray_ImportNumPyAPI()` function is included in `npy_2_compat.h`
for simpler backporting.

([gh-25866](https://github.com/numpy/numpy/pull/25866))

Structured dtype information access through functions

The dtype structures fields `c_metadata`, `names`, `fields`, and
`subarray` must now be accessed through new functions following the same
names, such as `PyDataType_NAMES`. Direct access of the fields is not
valid as they do not exist for all `PyArray_Descr` instances. The
`metadata` field is kept, but the macro version should also be
preferred.

([gh-25802](https://github.com/numpy/numpy/pull/25802))

Descriptor `elsize` and `alignment` access

Unless compiling only with NumPy 2 support, the `elsize` and `aligment`
fields must now be accessed via `PyDataType_ELSIZE`,
`PyDataType_SET_ELSIZE`, and `PyDataType_ALIGNMENT`. In cases where the
descriptor is attached to an array, we advise using `PyArray_ITEMSIZE`
as it exists on all NumPy versions. Please see
`migration_c_descr` for more information.

([gh-25943](https://github.com/numpy/numpy/pull/25943))

2.0.0rc2

2.0.0rc1

avoid problems for their users.**

The Python versions supported by this release are 3.9-3.12.

NumPy 2.0 Python API removals

- `np.geterrobj`, `np.seterrobj` and the related ufunc keyword
argument `extobj=` have been removed. The preferred replacement for
all of these is using the context manager `with np.errstate():`.

([gh-23922](https://github.com/numpy/numpy/pull/23922))

- `np.cast` has been removed. The literal replacement for
`np.cast[dtype](arg)` is `np.asarray(arg, dtype=dtype)`.

- `np.source` has been removed. The preferred replacement is
`inspect.getsource`.

- `np.lookfor` has been removed.

([gh-24144](https://github.com/numpy/numpy/pull/24144))

- `numpy.who` has been removed. As an alternative for the removed
functionality, one can use a variable explorer that is available in
IDEs such as Spyder or Jupyter Notebook.

([gh-24321](https://github.com/numpy/numpy/pull/24321))

- Multiple niche enums, expired members and functions have been
removed from the main namespace, such as: `ERR_*`, `SHIFT_*`,
`np.fastCopyAndTranspose`, `np.kernel_version`, `np.numarray`,
`np.oldnumeric` and `np.set_numeric_ops`.

([gh-24316](https://github.com/numpy/numpy/pull/24316))

- Replaced `from ... import *` in the `numpy/__init__.py` with
explicit imports. As a result, these main namespace members got
removed: `np.FLOATING_POINT_SUPPORT`, `np.FPE_*`, `np.NINF`,
`np.PINF`, `np.NZERO`, `np.PZERO`, `np.CLIP`, `np.WRAP`, `np.WRAP`,
`np.RAISE`, `np.BUFSIZE`, `np.UFUNC_BUFSIZE_DEFAULT`,
`np.UFUNC_PYVALS_NAME`, `np.ALLOW_THREADS`, `np.MAXDIMS`,
`np.MAY_SHARE_EXACT`, `np.MAY_SHARE_BOUNDS`, `add_newdoc`,
`np.add_docstring` and `np.add_newdoc_ufunc`.

([gh-24357](https://github.com/numpy/numpy/pull/24357))

- Alias `np.float_` has been removed. Use `np.float64` instead.

- Alias `np.complex_` has been removed. Use `np.complex128` instead.

- Alias `np.longfloat` has been removed. Use `np.longdouble` instead.

- Alias `np.singlecomplex` has been removed. Use `np.complex64`
instead.

- Alias `np.cfloat` has been removed. Use `np.complex128` instead.

- Alias `np.longcomplex` has been removed. Use `np.clongdouble`
instead.

- Alias `np.clongfloat` has been removed. Use `np.clongdouble`
instead.

- Alias `np.string_` has been removed. Use `np.bytes_` instead.

- Alias `np.unicode_` has been removed. Use `np.str_` instead.

- Alias `np.Inf` has been removed. Use `np.inf` instead.

- Alias `np.Infinity` has been removed. Use `np.inf` instead.

- Alias `np.NaN` has been removed. Use `np.nan` instead.

- Alias `np.infty` has been removed. Use `np.inf` instead.

- Alias `np.mat` has been removed. Use `np.asmatrix` instead.

- `np.issubclass_` has been removed. Use the `issubclass` builtin
instead.

- `np.asfarray` has been removed. Use `np.asarray` with a proper dtype
instead.

- `np.set_string_function` has been removed. Use `np.set_printoptions`
instead with a formatter for custom printing of NumPy objects.

- `np.tracemalloc_domain` is now only available from `np.lib`.

- `np.recfromcsv` and `recfromtxt` are now only available from
`np.lib.npyio`.

- `np.issctype`, `np.maximum_sctype`, `np.obj2sctype`,
`np.sctype2char`, `np.sctypes`, `np.issubsctype` were all removed
from the main namespace without replacement, as they where niche
members.

- Deprecated `np.deprecate` and `np.deprecate_with_doc` has been
removed from the main namespace. Use `DeprecationWarning` instead.

- Deprecated `np.safe_eval` has been removed from the main namespace.
Use `ast.literal_eval` instead.

([gh-24376](https://github.com/numpy/numpy/pull/24376))

- `np.find_common_type` has been removed. Use `numpy.promote_types` or
`numpy.result_type` instead. To achieve semantics for the
`scalar_types` argument, use `numpy.result_type` and pass `0`,
`0.0`, or `0j` as a Python scalar instead.

- `np.round_` has been removed. Use `np.round` instead.

- `np.nbytes` has been removed. Use `np.dtype(<dtype>).itemsize`
instead.

([gh-24477](https://github.com/numpy/numpy/pull/24477))

- `np.compare_chararrays` has been removed from the main namespace.
Use `np.char.compare_chararrays` instead.

- The `charrarray` in the main namespace has been deprecated. It can
be imported without a deprecation warning from `np.char.chararray`
for now, but we are planning to fully deprecate and remove
`chararray` in the future.

- `np.format_parser` has been removed from the main namespace. Use
`np.rec.format_parser` instead.

([gh-24587](https://github.com/numpy/numpy/pull/24587))

- Support for seven data type string aliases has been removed from
`np.dtype`: `int0`, `uint0`, `void0`, `object0`, `str0`, `bytes0`
and `bool8`.

([gh-24807](https://github.com/numpy/numpy/pull/24807))

- The experimental `numpy.array_api` submodule has been removed. Use
the main `numpy` namespace for regular usage instead, or the
separate `array-api-strict` package for the compliance testing use
case for which `numpy.array_api` was mostly used.

([gh-25911](https://github.com/numpy/numpy/pull/25911))

`__array_prepare__` is removed

UFuncs called `__array_prepare__` before running computations for normal
ufunc calls (not generalized ufuncs, reductions, etc.). The function was
also called instead of `__array_wrap__` on the results of some linear
algebra functions.

It is now removed. If you use it, migrate to `__array_ufunc__` or rely
on `__array_wrap__` which is called with a context in all cases,
although only after the result array is filled. In those code paths,
`__array_wrap__` will now be passed a base class, rather than a subclass
array.

([gh-25105](https://github.com/numpy/numpy/pull/25105))

Deprecations

- `np.compat` has been deprecated, as Python 2 is no longer supported.

- `np.safe_eval` has been deprecated. `ast.literal_eval` should be
used instead.

([gh-23830](https://github.com/numpy/numpy/pull/23830))

- `np.recfromcsv`, `np.recfromtxt`, `np.disp`, `np.get_array_wrap`,
`np.maximum_sctype`, `np.deprecate` and `np.deprecate_with_doc` have
been deprecated.

([gh-24154](https://github.com/numpy/numpy/pull/24154))

- `np.trapz` has been deprecated. Use `np.trapezoid` or a
`scipy.integrate` function instead.

- `np.in1d` has been deprecated. Use `np.isin` instead.

- Alias `np.row_stack` has been deprecated. Use `np.vstack` directly.

([gh-24445](https://github.com/numpy/numpy/pull/24445))

- `__array_wrap__` is now passed `arr, context, return_scalar` and
support for implementations not accepting all three are deprecated.
Its signature should be
`__array_wrap__(self, arr, context=None, return_scalar=False)`

([gh-25408](https://github.com/numpy/numpy/pull/25408))

- Arrays of 2-dimensional vectors for `np.cross` have been deprecated.
Use arrays of 3-dimensional vectors instead.

([gh-24818](https://github.com/numpy/numpy/pull/24818))

- `np.dtype("a")` alias for `np.dtype(np.bytes_)` was deprecated. Use
`np.dtype("S")` alias instead.

([gh-24854](https://github.com/numpy/numpy/pull/24854))

- Use of keyword arguments `x` and `y` with functions
`assert_array_equal` and `assert_array_almost_equal` has been
deprecated. Pass the first two arguments as positional arguments
instead.

([gh-24978](https://github.com/numpy/numpy/pull/24978))

`numpy.fft` deprecations for n-D transforms with None values in arguments

Using `fftn`, `ifftn`, `rfftn`, `irfftn`, `fft2`, `ifft2`, `rfft2` or
`irfft2` with the `s` parameter set to a value that is not `None` and
the `axes` parameter set to `None` has been deprecated, in line with the
array API standard. To retain current behaviour, pass a sequence \[0,
\..., k-1\] to `axes` for an array of dimension k.

Furthermore, passing an array to `s` which contains `None` values is
deprecated as the parameter is documented to accept a sequence of
integers in both the NumPy docs and the array API specification. To use
the default behaviour of the corresponding 1-D transform, pass the value
matching the default for its `n` parameter. To use the default behaviour
for every axis, the `s` argument can be omitted.

([gh-25495](https://github.com/numpy/numpy/pull/25495))

`np.linalg.lstsq` now defaults to a new `rcond` value

`numpy.linalg.lstsq` now uses the new rcond value of the
machine precision times `max(M, N)`. Previously, the machine precision
was used but a FutureWarning was given to notify that this change will
happen eventually. That old behavior can still be achieved by passing
`rcond=-1`.

([gh-25721](https://github.com/numpy/numpy/pull/25721))

Expired deprecations

- The `np.core.umath_tests` submodule has been removed from the public
API. (Deprecated in NumPy 1.15)

([gh-23809](https://github.com/numpy/numpy/pull/23809))

- The `PyDataMem_SetEventHook` deprecation has expired and it is
removed. Use `tracemalloc` and the `np.lib.tracemalloc_domain`
domain. (Deprecated in NumPy 1.23)

([gh-23921](https://github.com/numpy/numpy/pull/23921))

- The deprecation of `set_numeric_ops` and the C functions
`PyArray_SetNumericOps` and `PyArray_GetNumericOps` has been expired
and the functions removed. (Deprecated in NumPy 1.16)

([gh-23998](https://github.com/numpy/numpy/pull/23998))

- The `fasttake`, `fastclip`, and `fastputmask` `ArrFuncs` deprecation
is now finalized.

- The deprecated function `fastCopyAndTranspose` and its C counterpart
are now removed.

- The deprecation of `PyArray_ScalarFromObject` is now finalized.

([gh-24312](https://github.com/numpy/numpy/pull/24312))

- `np.msort` has been removed. For a replacement, `np.sort(a, axis=0)`
should be used instead.

([gh-24494](https://github.com/numpy/numpy/pull/24494))

- `np.dtype(("f8", 1)` will now return a shape 1 subarray dtype rather
than a non-subarray one.

([gh-25761](https://github.com/numpy/numpy/pull/25761))

- Assigning to the `.data` attribute of an ndarray is disallowed and
will raise.

- `np.binary_repr(a, width)` will raise if width is too small.

- Using `NPY_CHAR` in `PyArray_DescrFromType()` will raise, use
`NPY_STRING` `NPY_UNICODE`, or `NPY_VSTRING` instead.

([gh-25794](https://github.com/numpy/numpy/pull/25794))

Compatibility notes

`loadtxt` and `genfromtxt` default encoding changed

`loadtxt` and `genfromtxt` now both default to `encoding=None` which may
mainly modify how `converters` work. These will now be passed `str`
rather than `bytes`. Pass the encoding explicitly to always get the new
or old behavior. For `genfromtxt` the change also means that returned
values will now be unicode strings rather than bytes.

([gh-25158](https://github.com/numpy/numpy/pull/25158))

`f2py` compatibility notes

- `f2py` will no longer accept ambiguous `-m` and `.pyf` CLI
combinations. When more than one `.pyf` file is passed, an error is
raised. When both `-m` and a `.pyf` is passed, a warning is emitted
and the `-m` provided name is ignored.

([gh-25181](https://github.com/numpy/numpy/pull/25181))

- The `f2py.compile()` helper has been removed because it leaked
memory, has been marked as experimental for several years now, and
was implemented as a thin `subprocess.run` wrapper. It was also one
of the test bottlenecks. See
[gh-25122](https://github.com/numpy/numpy/issues/25122) for the full
rationale. It also used several `np.distutils` features which are
too fragile to be ported to work with `meson`.

- Users are urged to replace calls to `f2py.compile` with calls to
`subprocess.run("python", "-m", "numpy.f2py",...` instead, and to
use environment variables to interact with `meson`. [Native
files](https://mesonbuild.com/Machine-files.html) are also an
option.

([gh-25193](https://github.com/numpy/numpy/pull/25193))

Minor changes in behavior of sorting functions

Due to algorithmic changes and use of SIMD code, sorting functions with
methods that aren\'t stable may return slightly different results in

2.0.0b1

1.26.4

discovered after the 1.26.3 release. The Python versions supported by
this release are 3.9-3.12. This is the last planned release in the
1.26.x series.

Contributors

A total of 13 people contributed to this release. People with a \"+\" by
their names contributed a patch for the first time.

- Charles Harris
- Elliott Sales de Andrade
- Lucas Colley +
- Mark Ryan +
- Matti Picus
- Nathan Goldbaum
- Ola x Nilsson +
- Pieter Eendebak
- Ralf Gommers
- Sayed Adel
- Sebastian Berg
- Stefan van der Walt
- Stefano Rivera

Pull requests merged

A total of 19 pull requests were merged for this release.

- [25323](https://github.com/numpy/numpy/pull/25323): BUG: Restore missing asstr import
- [25523](https://github.com/numpy/numpy/pull/25523): MAINT: prepare 1.26.x for further development
- [25539](https://github.com/numpy/numpy/pull/25539): BUG: `numpy.array_api`: fix `linalg.cholesky` upper decomp\...
- [25584](https://github.com/numpy/numpy/pull/25584): CI: Bump azure pipeline timeout to 120 minutes
- [25585](https://github.com/numpy/numpy/pull/25585): MAINT, BLD: Fix unused inline functions warnings on clang
- [25599](https://github.com/numpy/numpy/pull/25599): BLD: include fix for MinGW platform detection
- [25618](https://github.com/numpy/numpy/pull/25618): TST: Fix test_numeric on riscv64
- [25619](https://github.com/numpy/numpy/pull/25619): BLD: fix building for windows ARM64
- [25620](https://github.com/numpy/numpy/pull/25620): MAINT: add `newaxis` to `__all__` in `numpy.array_api`
- [25630](https://github.com/numpy/numpy/pull/25630): BUG: Use large file fallocate on 32 bit linux platforms
- [25643](https://github.com/numpy/numpy/pull/25643): TST: Fix test_warning_calls on Python 3.12
- [25645](https://github.com/numpy/numpy/pull/25645): TST: Bump pytz to 2023.3.post1
- [25658](https://github.com/numpy/numpy/pull/25658): BUG: Fix AVX512 build flags on Intel Classic Compiler
- [25670](https://github.com/numpy/numpy/pull/25670): BLD: fix potential issue with escape sequences in `__config__.py`
- [25718](https://github.com/numpy/numpy/pull/25718): CI: pin cygwin python to 3.9.16-1 and fix typing tests \[skip\...
- [25720](https://github.com/numpy/numpy/pull/25720): MAINT: Bump cibuildwheel to v2.16.4
- [25748](https://github.com/numpy/numpy/pull/25748): BLD: unvendor meson-python on 1.26.x and upgrade to meson-python\...
- [25755](https://github.com/numpy/numpy/pull/25755): MAINT: Include header defining backtrace
- [25756](https://github.com/numpy/numpy/pull/25756): BUG: Fix np.quantile(\[Fraction(2,1)\], 0.5) (#24711)

Checksums

MD5

90f33cdd8934cd07192d6ede114d8d4d numpy-1.26.4-cp310-cp310-macosx_10_9_x86_64.whl
63ac60767f6724490e587f6010bd6839 numpy-1.26.4-cp310-cp310-macosx_11_0_arm64.whl
ad4e82b225aaaf5898ea9798b50978d8 numpy-1.26.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
d428e3da2df4fa359313348302cf003a numpy-1.26.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
89937c3bb596193f8ca9eae2ff84181e numpy-1.26.4-cp310-cp310-musllinux_1_1_aarch64.whl
de4f9da0a4e6dfd4cec39c7ad5139803 numpy-1.26.4-cp310-cp310-musllinux_1_1_x86_64.whl
2c1f73fd9b3acf4b9b0c23e985cdd38f numpy-1.26.4-cp310-cp310-win32.whl
920ad1f50e478b1a877fe7b7a46cc520 numpy-1.26.4-cp310-cp310-win_amd64.whl
719d1ff12db38903dcfd6749078fb11d numpy-1.26.4-cp311-cp311-macosx_10_9_x86_64.whl
eb601e80194d2e1c00d8daedd8dc68c4 numpy-1.26.4-cp311-cp311-macosx_11_0_arm64.whl
71a7ab11996fa370dc28e28731bd5c32 numpy-1.26.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
eb0cdd03e1ee2eb45c57c7340c98cf48 numpy-1.26.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
9d4ae1b0b27a625400f81ed1846a5667 numpy-1.26.4-cp311-cp311-musllinux_1_1_aarch64.whl
1b6771350d2f496157430437a895ba4b numpy-1.26.4-cp311-cp311-musllinux_1_1_x86_64.whl
1e4a18612ee4d0e54e0833574ebc6d25 numpy-1.26.4-cp311-cp311-win32.whl
5fd325dd8704023c1110835d7a1b095a numpy-1.26.4-cp311-cp311-win_amd64.whl
d95ce582923d24dbddbc108aa5fd2128 numpy-1.26.4-cp312-cp312-macosx_10_9_x86_64.whl
6f16f3d70e0d95ce2b032167c546cc95 numpy-1.26.4-cp312-cp312-macosx_11_0_arm64.whl
5369536d4c45fbe384147ff23185b48a numpy-1.26.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
1ceb224096686831ad731e472b65e96a numpy-1.26.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
cd8d3c00bbc89f9bc07e2df762f9e2ae numpy-1.26.4-cp312-cp312-musllinux_1_1_aarch64.whl
5bd81ce840bb2e42befe01efb0402b79 numpy-1.26.4-cp312-cp312-musllinux_1_1_x86_64.whl
2cc3b0757228078395da3efa3dc99f23 numpy-1.26.4-cp312-cp312-win32.whl
305155bd5ae879344c58968879584ed1 numpy-1.26.4-cp312-cp312-win_amd64.whl
ec2310f67215743e9c5d16b6c9fb87b6 numpy-1.26.4-cp39-cp39-macosx_10_9_x86_64.whl
406aea6081c1affbebdb6ad56b5deaf4 numpy-1.26.4-cp39-cp39-macosx_11_0_arm64.whl
fee12f0a3cbac7bbf1a1c2d82d3b02a9 numpy-1.26.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
baf4b7143c7b9ce170e62b33380fb573 numpy-1.26.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
376ff29f90b7840ae19ecd59ad1ddf53 numpy-1.26.4-cp39-cp39-musllinux_1_1_aarch64.whl
86785b3a7cd156c08c2ebc26f7816fb3 numpy-1.26.4-cp39-cp39-musllinux_1_1_x86_64.whl
ab8a9ab69f16b7005f238cda76bc0bac numpy-1.26.4-cp39-cp39-win32.whl
fafa4453e820c7ff40907e5dc79d8199 numpy-1.26.4-cp39-cp39-win_amd64.whl
7f13e2f07bd3e4a439ade0e4d27905c6 numpy-1.26.4-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
928954b41c1cd0e856f1a31d41722661 numpy-1.26.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
57bbd5c0b3848d804c416cbcab4a0ae8 numpy-1.26.4-pp39-pypy39_pp73-win_amd64.whl
19550cbe7bedd96a928da9d4ad69509d numpy-1.26.4.tar.gz

SHA256

9ff0f4f29c51e2803569d7a51c2304de5554655a60c5d776e35b4a41413830d0 numpy-1.26.4-cp310-cp310-macosx_10_9_x86_64.whl
2e4ee3380d6de9c9ec04745830fd9e2eccb3e6cf790d39d7b98ffd19b0dd754a numpy-1.26.4-cp310-cp310-macosx_11_0_arm64.whl
d209d8969599b27ad20994c8e41936ee0964e6da07478d6c35016bc386b66ad4 numpy-1.26.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
ffa75af20b44f8dba823498024771d5ac50620e6915abac414251bd971b4529f numpy-1.26.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
62b8e4b1e28009ef2846b4c7852046736bab361f7aeadeb6a5b89ebec3c7055a numpy-1.26.4-cp310-cp310-musllinux_1_1_aarch64.whl
a4abb4f9001ad2858e7ac189089c42178fcce737e4169dc61321660f1a96c7d2 numpy-1.26.4-cp310-cp310-musllinux_1_1_x86_64.whl
bfe25acf8b437eb2a8b2d49d443800a5f18508cd811fea3181723922a8a82b07 numpy-1.26.4-cp310-cp310-win32.whl
b97fe8060236edf3662adfc2c633f56a08ae30560c56310562cb4f95500022d5 numpy-1.26.4-cp310-cp310-win_amd64.whl
4c66707fabe114439db9068ee468c26bbdf909cac0fb58686a42a24de1760c71 numpy-1.26.4-cp311-cp311-macosx_10_9_x86_64.whl
edd8b5fe47dab091176d21bb6de568acdd906d1887a4584a15a9a96a1dca06ef numpy-1.26.4-cp311-cp311-macosx_11_0_arm64.whl
7ab55401287bfec946ced39700c053796e7cc0e3acbef09993a9ad2adba6ca6e numpy-1.26.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
666dbfb6ec68962c033a450943ded891bed2d54e6755e35e5835d63f4f6931d5 numpy-1.26.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
96ff0b2ad353d8f990b63294c8986f1ec3cb19d749234014f4e7eb0112ceba5a numpy-1.26.4-cp311-cp311-musllinux_1_1_aarch64.whl
60dedbb91afcbfdc9bc0b1f3f402804070deed7392c23eb7a7f07fa857868e8a numpy-1.26.4-cp311-cp311-musllinux_1_1_x86_64.whl
1af303d6b2210eb850fcf03064d364652b7120803a0b872f5211f5234b399f20 numpy-1.26.4-cp311-cp311-win32.whl
cd25bcecc4974d09257ffcd1f098ee778f7834c3ad767fe5db785be9a4aa9cb2 numpy-1.26.4-cp311-cp311-win_amd64.whl
b3ce300f3644fb06443ee2222c2201dd3a89ea6040541412b8fa189341847218 numpy-1.26.4-cp312-cp312-macosx_10_9_x86_64.whl
03a8c78d01d9781b28a6989f6fa1bb2c4f2d51201cf99d3dd875df6fbd96b23b numpy-1.26.4-cp312-cp312-macosx_11_0_arm64.whl
9fad7dcb1aac3c7f0584a5a8133e3a43eeb2fe127f47e3632d43d677c66c102b numpy-1.26.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
675d61ffbfa78604709862923189bad94014bef562cc35cf61d3a07bba02a7ed numpy-1.26.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
ab47dbe5cc8210f55aa58e4805fe224dac469cde56b9f731a4c098b91917159a numpy-1.26.4-cp312-cp312-musllinux_1_1_aarch64.whl
1dda2e7b4ec9dd512f84935c5f126c8bd8b9f2fc001e9f54af255e8c5f16b0e0 numpy-1.26.4-cp312-cp312-musllinux_1_1_x86_64.whl
50193e430acfc1346175fcbdaa28ffec49947a06918b7b92130744e81e640110 numpy-1.26.4-cp312-cp312-win32.whl
08beddf13648eb95f8d867350f6a018a4be2e5ad54c8d8caed89ebca558b2818 numpy-1.26.4-cp312-cp312-win_amd64.whl
7349ab0fa0c429c82442a27a9673fc802ffdb7c7775fad780226cb234965e53c numpy-1.26.4-cp39-cp39-macosx_10_9_x86_64.whl
52b8b60467cd7dd1e9ed082188b4e6bb35aa5cdd01777621a1658910745b90be numpy-1.26.4-cp39-cp39-macosx_11_0_arm64.whl
d5241e0a80d808d70546c697135da2c613f30e28251ff8307eb72ba696945764 numpy-1.26.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
f870204a840a60da0b12273ef34f7051e98c3b5961b61b0c2c1be6dfd64fbcd3 numpy-1.26.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
679b0076f67ecc0138fd2ede3a8fd196dddc2ad3254069bcb9faf9a79b1cebcd numpy-1.26.4-cp39-cp39-musllinux_1_1_aarch64.whl
47711010ad8555514b434df65f7d7b076bb8261df1ca9bb78f53d3b2db02e95c numpy-1.26.4-cp39-cp39-musllinux_1_1_x86_64.whl
a354325ee03388678242a4d7ebcd08b5c727033fcff3b2f536aea978e15ee9e6 numpy-1.26.4-cp39-cp39-win32.whl
3373d5d70a5fe74a2c1bb6d2cfd9609ecf686d47a2d7b1d37a8f3b6bf6003aea numpy-1.26.4-cp39-cp39-win_amd64.whl
afedb719a9dcfc7eaf2287b839d8198e06dcd4cb5d276a3df279231138e83d30 numpy-1.26.4-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
95a7476c59002f2f6c590b9b7b998306fba6a5aa646b1e22ddfeaf8f78c3a29c numpy-1.26.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
7e50d0a0cc3189f9cb0aeb3a6a6af18c16f59f004b866cd2be1c14b36134a4a0 numpy-1.26.4-pp39-pypy39_pp73-win_amd64.whl
2a02aba9ed12e4ac4eb3ea9421c420301a0c6460d9830d74a9df87efa4912010 numpy-1.26.4.tar.gz

1.26.3

discovered after the 1.26.2 release. The most notable changes are the
f2py bug fixes. The Python versions supported by this release are
3.9-3.12.

Compatibility

`f2py` will no longer accept ambiguous `-m` and `.pyf` CLI combinations.
When more than one `.pyf` file is passed, an error is raised. When both
`-m` and a `.pyf` is passed, a warning is emitted and the `-m` provided
name is ignored.

Improvements

`f2py` now handles `common` blocks which have `kind` specifications from
modules. This further expands the usability of intrinsics like
`iso_fortran_env` and `iso_c_binding`.

Contributors

A total of 18 people contributed to this release. People with a \"+\" by
their names contributed a patch for the first time.

- \DWesl
- \Illviljan
- Alexander Grund
- Andrea Bianchi +
- Charles Harris
- Daniel Vanzo
- Johann Rohwer +
- Matti Picus
- Nathan Goldbaum
- Peter Hawkins
- Raghuveer Devulapalli
- Ralf Gommers
- Rohit Goswami
- Sayed Adel
- Sebastian Berg
- Stefano Rivera +
- Thomas A Caswell
- matoro

Pull requests merged

A total of 42 pull requests were merged for this release.

- [25130](https://github.com/numpy/numpy/pull/25130): MAINT: prepare 1.26.x for further development
- [25188](https://github.com/numpy/numpy/pull/25188): TYP: add None to `__getitem__` in `numpy.array_api`
- [25189](https://github.com/numpy/numpy/pull/25189): BLD,BUG: quadmath required where available \[f2py\]
- [25190](https://github.com/numpy/numpy/pull/25190): BUG: alpha doesn\'t use REAL(10)
- [25191](https://github.com/numpy/numpy/pull/25191): BUG: Fix FP overflow error in division when the divisor is scalar
- [25192](https://github.com/numpy/numpy/pull/25192): MAINT: Pin scipy-openblas version.
- [25201](https://github.com/numpy/numpy/pull/25201): BUG: Fix f2py to enable use of string optional inout argument
- [25202](https://github.com/numpy/numpy/pull/25202): BUG: Fix -fsanitize=alignment issue in numpy/\_core/src/multiarray/arraytypes.c.src
- [25203](https://github.com/numpy/numpy/pull/25203): TST: Explicitly pass NumPy path to cython during tests (also\...
- [25204](https://github.com/numpy/numpy/pull/25204): BUG: fix issues with `newaxis` and `linalg.solve` in `numpy.array_api`
- [25205](https://github.com/numpy/numpy/pull/25205): BUG: Disallow shadowed modulenames
- [25217](https://github.com/numpy/numpy/pull/25217): BUG: Handle common blocks with kind specifications from modules
- [25218](https://github.com/numpy/numpy/pull/25218): BUG: Fix moving compiled executable to root with f2py -c on Windows
- [25219](https://github.com/numpy/numpy/pull/25219): BUG: Fix single to half-precision conversion on PPC64/VSX3
- [25227](https://github.com/numpy/numpy/pull/25227): TST: f2py: fix issue in test skip condition
- [25240](https://github.com/numpy/numpy/pull/25240): Revert \"MAINT: Pin scipy-openblas version.\"
- [25249](https://github.com/numpy/numpy/pull/25249): MAINT: do not use `long` type
- [25377](https://github.com/numpy/numpy/pull/25377): TST: PyPy needs another gc.collect on latest versions
- [25378](https://github.com/numpy/numpy/pull/25378): CI: Install Lapack runtime on Cygwin.
- [25379](https://github.com/numpy/numpy/pull/25379): MAINT: Bump conda-incubator/setup-miniconda from 2.2.0 to 3.0.1
- [25380](https://github.com/numpy/numpy/pull/25380): BLD: update vendored Meson for AIX shared library fix
- [25419](https://github.com/numpy/numpy/pull/25419): MAINT: Init `base` in cpu_avx512_kn
- [25420](https://github.com/numpy/numpy/pull/25420): BUG: Fix failing test_features on SapphireRapids
- [25422](https://github.com/numpy/numpy/pull/25422): BUG: Fix non-contiguous memory load when ARM/Neon is enabled
- [25428](https://github.com/numpy/numpy/pull/25428): MAINT,BUG: Never import distutils above 3.12 \[f2py\]
- [25452](https://github.com/numpy/numpy/pull/25452): MAINT: make the import-time check for old Accelerate more specific
- [25458](https://github.com/numpy/numpy/pull/25458): BUG: fix macOS version checks for Accelerate support
- [25465](https://github.com/numpy/numpy/pull/25465): MAINT: Bump actions/setup-node and larsoner/circleci-artifacts-redirector-action
- [25466](https://github.com/numpy/numpy/pull/25466): BUG: avoid seg fault from OOB access in RandomState.set_state()
- [25467](https://github.com/numpy/numpy/pull/25467): BUG: Fix two errors related to not checking for failed allocations
- [25468](https://github.com/numpy/numpy/pull/25468): BUG: Fix regression with `f2py` wrappers when modules and subroutines\...
- [25475](https://github.com/numpy/numpy/pull/25475): BUG: Fix build issues on SPR
- [25478](https://github.com/numpy/numpy/pull/25478): BLD: fix uninitialized variable warnings from simd/neon/memory.h
- [25480](https://github.com/numpy/numpy/pull/25480): BUG: Handle `iso_c_type` mappings more consistently
- [25481](https://github.com/numpy/numpy/pull/25481): BUG: Fix module name bug in signature files \[urgent\] \[f2py\]
- [25482](https://github.com/numpy/numpy/pull/25482): BUG: Handle .pyf.src and fix SciPy \[urgent\]
- [25483](https://github.com/numpy/numpy/pull/25483): DOC: `f2py` rewrite with `meson` details
- [25485](https://github.com/numpy/numpy/pull/25485): BUG: Add external library handling for meson \[f2py\]
- [25486](https://github.com/numpy/numpy/pull/25486): MAINT: Run f2py\'s meson backend with the same python that ran\...
- [25489](https://github.com/numpy/numpy/pull/25489): MAINT: Update `numpy/f2py/_backends` from main.
- [25490](https://github.com/numpy/numpy/pull/25490): MAINT: Easy updates of `f2py/*.py` from main.
- [25491](https://github.com/numpy/numpy/pull/25491): MAINT: Update crackfortran.py and f2py2e.py from main

Checksums

MD5

7660db27715df261948e7f0f13634f16 numpy-1.26.3-cp310-cp310-macosx_10_9_x86_64.whl
98d5b98c822de4bed0cf1b0b8f367192 numpy-1.26.3-cp310-cp310-macosx_11_0_arm64.whl
b71cd0710cec5460292a97a02fa349cd numpy-1.26.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
0f98a05c92598f849b1be2595f4a52a8 numpy-1.26.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
b866c6aea8070c0753b776d2b521e875 numpy-1.26.3-cp310-cp310-musllinux_1_1_aarch64.whl
cfdde5868e469fb27655ea73b0b9593b numpy-1.26.3-cp310-cp310-musllinux_1_1_x86_64.whl
2655440d61671b5e32b049d30397c58f numpy-1.26.3-cp310-cp310-win32.whl
7718a5d33344784ca7821f3bdd467550 numpy-1.26.3-cp310-cp310-win_amd64.whl
28e4b2ed9192c392f792d88b3c246d1c numpy-1.26.3-cp311-cp311-macosx_10_9_x86_64.whl
fb1ae72749463e2c82f0127699728364 numpy-1.26.3-cp311-cp311-macosx_11_0_arm64.whl
304dec822b508a1d495917610e7562bf numpy-1.26.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
2cc0d8b073dfd55946a60ba8ed4369f6 numpy-1.26.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
c99962375c599501820899c8ccab6960 numpy-1.26.3-cp311-cp311-musllinux_1_1_aarch64.whl
47ed42d067ce4863bbf1f40da61ba7d1 numpy-1.26.3-cp311-cp311-musllinux_1_1_x86_64.whl
3ab3757255feb54ca3793fb9db226586 numpy-1.26.3-cp311-cp311-win32.whl
c33f2a4518bae535645357a08a93be1a numpy-1.26.3-cp311-cp311-win_amd64.whl
bea43600aaff3a4d9978611ccfa44198 numpy-1.26.3-cp312-cp312-macosx_10_9_x86_64.whl
c678d909ebe737fdabf215d8622ce2a3 numpy-1.26.3-cp312-cp312-macosx_11_0_arm64.whl
9f21f1875c92425cec1060564b3abb1c numpy-1.26.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
c44a1998965d45ec136078ee09d880f2 numpy-1.26.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
9274f5c51fa4f3c8fac5efa3d78acd63 numpy-1.26.3-cp312-cp312-musllinux_1_1_aarch64.whl
07c9f8f86f45077febc46c87ebc0b644 numpy-1.26.3-cp312-cp312-musllinux_1_1_x86_64.whl
a4857b2f7b6a23bca41178bd344bb28a numpy-1.26.3-cp312-cp312-win32.whl
495d9534961d7b10f16fec4515a3d72b numpy-1.26.3-cp312-cp312-win_amd64.whl
6494f2d94fd1f184923a33e634692b5e numpy-1.26.3-cp39-cp39-macosx_10_9_x86_64.whl
515a7314a0ff6aaba8d53a7a1aaa73ab numpy-1.26.3-cp39-cp39-macosx_11_0_arm64.whl
c856adc6a6a78773c43e9c738d662ed5 numpy-1.26.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
09848456158a01feff28f88c6106aef1 numpy-1.26.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
adec00ea2bc98580a436f82e188c0e2f numpy-1.26.3-cp39-cp39-musllinux_1_1_aarch64.whl
718bd35dd0431a6434bb30bf8d91d77d numpy-1.26.3-cp39-cp39-musllinux_1_1_x86_64.whl
e813aa59cb807efb4a8fee52a6dd41ba numpy-1.26.3-cp39-cp39-win32.whl
08e1b0973d0ae5976b38563eaec1253f numpy-1.26.3-cp39-cp39-win_amd64.whl
e8887a14750161709636e9fb87df4f36 numpy-1.26.3-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
0bdb19040525451553fb5758b65caf4c numpy-1.26.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
b931c14d06cc37d85d63ed1ddd88e875 numpy-1.26.3-pp39-pypy39_pp73-win_amd64.whl
1c915dc6c36dd4c674d9379e9470ff8b numpy-1.26.3.tar.gz

SHA256

806dd64230dbbfaca8a27faa64e2f414bf1c6622ab78cc4264f7f5f028fee3bf numpy-1.26.3-cp310-cp310-macosx_10_9_x86_64.whl
02f98011ba4ab17f46f80f7f8f1c291ee7d855fcef0a5a98db80767a468c85cd numpy-1.26.3-cp310-cp310-macosx_11_0_arm64.whl
6d45b3ec2faed4baca41c76617fcdcfa4f684ff7a151ce6fc78ad3b6e85af0a6 numpy-1.26.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
bdd2b45bf079d9ad90377048e2747a0c82351989a2165821f0c96831b4a2a54b numpy-1.26.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
211ddd1e94817ed2d175b60b6374120244a4dd2287f4ece45d49228b4d529178 numpy-1.26.3-cp310-cp310-musllinux_1_1_aarch64.whl
b1240f767f69d7c4c8a29adde2310b871153df9b26b5cb2b54a561ac85146485 numpy-1.26.3-cp310-cp310-musllinux_1_1_x86_64.whl
21a9484e75ad018974a2fdaa216524d64ed4212e418e0a551a2d83403b0531d3 numpy-1.26.3-cp310-cp310-win32.whl
9e1591f6ae98bcfac2a4bbf9221c0b92ab49762228f38287f6eeb5f3f55905ce numpy-1.26.3-cp310-cp310-win_amd64.whl
b831295e5472954104ecb46cd98c08b98b49c69fdb7040483aff799a755a7374 numpy-1.26.3-cp311-cp311-macosx_10_9_x86_64.whl
9e87562b91f68dd8b1c39149d0323b42e0082db7ddb8e934ab4c292094d575d6 numpy-1.26.3-cp311-cp311-macosx_11_0_arm64.whl
8c66d6fec467e8c0f975818c1796d25c53521124b7cfb760114be0abad53a0a2 numpy-1.26.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
f25e2811a9c932e43943a2615e65fc487a0b6b49218899e62e426e7f0a57eeda numpy-1.26.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
af36e0aa45e25c9f57bf684b1175e59ea05d9a7d3e8e87b7ae1a1da246f2767e numpy-1.26.3-cp311-cp311-musllinux_1_1_aarch64.whl
51c7f1b344f302067b02e0f5b5d2daa9ed4a721cf49f070280ac202738ea7f00 numpy-1.26.3-cp311-cp311-musllinux_1_1_x86_64.whl
7ca4f24341df071877849eb2034948459ce3a07915c2734f1abb4018d9c49d7b numpy-1.26.3-cp311-cp311-win32.whl
39763aee6dfdd4878032361b30b2b12593fb445ddb66bbac802e2113eb8a6ac4 numpy-1.26.3-cp311-cp311-win_amd64.whl
a7081fd19a6d573e1a05e600c82a1c421011db7935ed0d5c483e9dd96b99cf13 numpy-1.26.3-cp312-cp312-macosx_10_9_x86_64.whl
12c70ac274b32bc00c7f61b515126c9205323703abb99cd41836e8125ea0043e numpy-1.26.3-cp312-cp312-macosx_11_0_arm64.whl
7f784e13e598e9594750b2ef6729bcd5a47f6cfe4a12cca13def35e06d8163e3 numpy-1.26.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
5f24750ef94d56ce6e33e4019a8a4d68cfdb1ef661a52cdaee628a56d2437419 numpy-1.26.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
77810ef29e0fb1d289d225cabb9ee6cf4d11978a00bb99f7f8ec2132a84e0166 numpy-1.26.3-cp312-cp312-musllinux_1_1_aarch64.whl
8ed07a90f5450d99dad60d3799f9c03c6566709bd53b497eb9ccad9a55867f36 numpy-1.26.3-cp312-cp312-musllinux_1_1_x86_64.whl
f73497e8c38295aaa4741bdfa4fda1a5aedda5473074369eca10626835445511 numpy-1.26.3-cp312-cp312-win32.whl
da4b0c6c699a0ad73c810736303f7fbae483bcb012e38d7eb06a5e3b432c981b numpy-1.26.3-cp312-cp312-win_amd64.whl
1666f634cb3c80ccbd77ec97bc17337718f56d6658acf5d3b906ca03e90ce87f numpy-1.26.3-cp39-cp39-macosx_10_9_x86_64.whl
18c3319a7d39b2c6a9e3bb75aab2304ab79a811ac0168a671a62e6346c29b03f numpy-1.26.3-cp39-cp39-macosx_11_0_arm64.whl
0b7e807d6888da0db6e7e75838444d62495e2b588b99e90dd80c3459594e857b numpy-1.26.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
b4d362e17bcb0011738c2d83e0a65ea8ce627057b2fdda37678f4374a382a137 numpy-1.26.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
b8c275f0ae90069496068c714387b4a0eba5d531aace269559ff2b43655edd58 numpy-1.26.3-cp39-cp39-musllinux_1_1_aarch64.whl
cc0743f0302b94f397a4a65a660d4cd24267439eb16493fb3caad2e4389bccbb numpy-1.26.3-cp39-cp39-musllinux_1_1_x86_64.whl
9bc6d1a7f8cedd519c4b7b1156d98e051b726bf160715b769106661d567b3f03 numpy-1.26.3-cp39-cp39-win32.whl
867e3644e208c8922a3be26fc6bbf112a035f50f0a86497f98f228c50c607bb2 numpy-1.26.3-cp39-cp39-win_amd64.whl
3c67423b3703f8fbd90f5adaa37f85b5794d3366948efe9a5190a5f3a83fc34e numpy-1.26.3-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
46f47ee566d98849323f01b349d58f2557f02167ee301e5e28809a8c0e27a2d0 numpy-1.26.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
a8474703bffc65ca15853d5fd4d06b18138ae90c17c8d12169968e998e448bb5 numpy-1.26.3-pp39-pypy39_pp73-win_amd64.whl
697df43e2b6310ecc9d95f05d5ef20eacc09c7c4ecc9da3f235d39e71b7da1e4 numpy-1.26.3.tar.gz

Page 4 of 23

© 2025 Safety CLI Cybersecurity Inc. All Rights Reserved.