Numpy

Latest version: v2.2.4

Safety actively analyzes 723177 Python packages for vulnerabilities to keep your Python projects secure.

Scan your dependencies

Page 16 of 24

1.18.1

Not secure
==========================

This release contains fixes for bugs reported against NumPy 1.18.0. Two
bugs in particular that caused widespread problems downstream were:

- The cython random extension test was not using a temporary directory
for building, resulting in a permission violation. Fixed.
- Numpy distutils was appending [-std=c99]{.title-ref} to all C
compiler runs, leading to changed behavior and compile problems
downstream. That flag is now only applied when building numpy C
code.

The Python versions supported in this release are 3.5-3.8. Downstream
developers should use Cython \>= 0.29.14 for Python 3.8 support and
OpenBLAS \>= 3.7 to avoid errors on the Skylake architecture.

Contributors
------------

A total of 7 people contributed to this release. People with a \"+\" by
their names contributed a patch for the first time.

- Charles Harris
- Matti Picus
- Maxwell Aladago
- Pauli Virtanen
- Ralf Gommers
- Tyler Reddy
- Warren Weckesser

Pull requests merged
--------------------

A total of 13 pull requests were merged for this release.

- [\15158](https://github.com/numpy/numpy/pull/15158): MAINT: Update pavement.py for towncrier.
- [\15159](https://github.com/numpy/numpy/pull/15159): DOC: add moved modules to 1.18 release note
- [\15161](https://github.com/numpy/numpy/pull/15161): MAINT, DOC: Minor backports and updates for 1.18.x
- [\15176](https://github.com/numpy/numpy/pull/15176): TST: Add assert\_array\_equal test for big integer arrays
- [\15184](https://github.com/numpy/numpy/pull/15184): BUG: use tmp dir and check version for cython test (\#15170)
- [\15220](https://github.com/numpy/numpy/pull/15220): BUG: distutils: fix msvc+gfortran openblas handling corner case
- [\15221](https://github.com/numpy/numpy/pull/15221): BUG: remove -std=c99 for c++ compilation (\#15194)
- [\15222](https://github.com/numpy/numpy/pull/15222): MAINT: unskip test on win32
- [\15223](https://github.com/numpy/numpy/pull/15223): TST: add BLAS ILP64 run in Travis & Azure
- [\15245](https://github.com/numpy/numpy/pull/15245): MAINT: only add \--std=c99 where needed
- [\15246](https://github.com/numpy/numpy/pull/15246): BUG: lib: Fix handling of integer arrays by gradient.
- [\15247](https://github.com/numpy/numpy/pull/15247): MAINT: Do not use private Python function in testing
- [\15250](https://github.com/numpy/numpy/pull/15250): REL: Prepare for the NumPy 1.18.1 release.

Checksums
---------

MD5

f41ef9a855aa0baeb900827e2f99ab7b numpy-1.18.1-cp35-cp35m-macosx_10_6_intel.whl
5239118baa2f0db334e70aac6cf26927 numpy-1.18.1-cp35-cp35m-manylinux1_i686.whl
78d95d2f1814b517e7cc887e559c7cd4 numpy-1.18.1-cp35-cp35m-manylinux1_x86_64.whl
c58a268ad42c31883b5756ad20cebe87 numpy-1.18.1-cp35-cp35m-win32.whl
2ffc13917b6813a85b8e1032402ca5f5 numpy-1.18.1-cp35-cp35m-win_amd64.whl
c3ac9936c6b21fef95a2304505fdb594 numpy-1.18.1-cp36-cp36m-macosx_10_9_x86_64.whl
e0a26cc2d04a7f115489b9ccc9678d3f numpy-1.18.1-cp36-cp36m-manylinux1_i686.whl
d79f59200a821f90acf73f97c5252902 numpy-1.18.1-cp36-cp36m-manylinux1_x86_64.whl
8ba2338c677f238a84264633e3b96d9d numpy-1.18.1-cp36-cp36m-win32.whl
2a2ab91e19bd2703eaa1506b06036958 numpy-1.18.1-cp36-cp36m-win_amd64.whl
6cc9c5767ffc0de03685f928e4e97f0f numpy-1.18.1-cp37-cp37m-macosx_10_9_x86_64.whl
486a5ab59cbdfc2861be08701702e251 numpy-1.18.1-cp37-cp37m-manylinux1_i686.whl
08123450dfbb9f53c812caa65895afcb numpy-1.18.1-cp37-cp37m-manylinux1_x86_64.whl
3e4e223ba7b784cd90f891e8867d0cf8 numpy-1.18.1-cp37-cp37m-win32.whl
4a51b085685511e95be3077a7360785f numpy-1.18.1-cp37-cp37m-win_amd64.whl
d1f034f563252a57b9235bc9ea2c1aef numpy-1.18.1-cp38-cp38-macosx_10_9_x86_64.whl
2252dcd00034da6f99c98584875dcb9d numpy-1.18.1-cp38-cp38-manylinux1_i686.whl
6e93a3c8618e87aee2b0cd648b1730f0 numpy-1.18.1-cp38-cp38-manylinux1_x86_64.whl
10f1d9a6faf6a2fdb0693347cb2348b0 numpy-1.18.1-cp38-cp38-win32.whl
b9d0e0840e3e6e37f384a794d48c4ae8 numpy-1.18.1-cp38-cp38-win_amd64.whl
9ab88e85f5b1fc70506287317b58f71d numpy-1.18.1.tar.gz
18787d6482681c85a66629a781fb84c3 numpy-1.18.1.zip

SHA256

20b26aaa5b3da029942cdcce719b363dbe58696ad182aff0e5dcb1687ec946dc numpy-1.18.1-cp35-cp35m-macosx_10_6_intel.whl
70a840a26f4e61defa7bdf811d7498a284ced303dfbc35acb7be12a39b2aa121 numpy-1.18.1-cp35-cp35m-manylinux1_i686.whl
17aa7a81fe7599a10f2b7d95856dc5cf84a4eefa45bc96123cbbc3ebc568994e numpy-1.18.1-cp35-cp35m-manylinux1_x86_64.whl
f3d0a94ad151870978fb93538e95411c83899c9dc63e6fb65542f769568ecfa5 numpy-1.18.1-cp35-cp35m-win32.whl
1786a08236f2c92ae0e70423c45e1e62788ed33028f94ca99c4df03f5be6b3c6 numpy-1.18.1-cp35-cp35m-win_amd64.whl
ae0975f42ab1f28364dcda3dde3cf6c1ddab3e1d4b2909da0cb0191fa9ca0480 numpy-1.18.1-cp36-cp36m-macosx_10_9_x86_64.whl
cf7eb6b1025d3e169989416b1adcd676624c2dbed9e3bcb7137f51bfc8cc2572 numpy-1.18.1-cp36-cp36m-manylinux1_i686.whl
b765ed3930b92812aa698a455847141869ef755a87e099fddd4ccf9d81fffb57 numpy-1.18.1-cp36-cp36m-manylinux1_x86_64.whl
2d75908ab3ced4223ccba595b48e538afa5ecc37405923d1fea6906d7c3a50bc numpy-1.18.1-cp36-cp36m-win32.whl
9acdf933c1fd263c513a2df3dceecea6f3ff4419d80bf238510976bf9bcb26cd numpy-1.18.1-cp36-cp36m-win_amd64.whl
56bc8ded6fcd9adea90f65377438f9fea8c05fcf7c5ba766bef258d0da1554aa numpy-1.18.1-cp37-cp37m-macosx_10_9_x86_64.whl
e422c3152921cece8b6a2fb6b0b4d73b6579bd20ae075e7d15143e711f3ca2ca numpy-1.18.1-cp37-cp37m-manylinux1_i686.whl
b3af02ecc999c8003e538e60c89a2b37646b39b688d4e44d7373e11c2debabec numpy-1.18.1-cp37-cp37m-manylinux1_x86_64.whl
d92350c22b150c1cae7ebb0ee8b5670cc84848f6359cf6b5d8f86617098a9b73 numpy-1.18.1-cp37-cp37m-win32.whl
77c3bfe65d8560487052ad55c6998a04b654c2fbc36d546aef2b2e511e760971 numpy-1.18.1-cp37-cp37m-win_amd64.whl
c98c5ffd7d41611407a1103ae11c8b634ad6a43606eca3e2a5a269e5d6e8eb07 numpy-1.18.1-cp38-cp38-macosx_10_9_x86_64.whl
9537eecf179f566fd1c160a2e912ca0b8e02d773af0a7a1120ad4f7507cd0d26 numpy-1.18.1-cp38-cp38-manylinux1_i686.whl
e840f552a509e3380b0f0ec977e8124d0dc34dc0e68289ca28f4d7c1d0d79474 numpy-1.18.1-cp38-cp38-manylinux1_x86_64.whl
590355aeade1a2eaba17617c19edccb7db8d78760175256e3cf94590a1a964f3 numpy-1.18.1-cp38-cp38-win32.whl
39d2c685af15d3ce682c99ce5925cc66efc824652e10990d2462dfe9b8918c6a numpy-1.18.1-cp38-cp38-win_amd64.whl
e37802868ba5f389bf4e3f4c40c16e1b031814f0585ac122637de219de6279cb numpy-1.18.1.tar.gz
b6ff59cee96b454516e47e7721098e6ceebef435e3e21ac2d6c3b8b02628eb77 numpy-1.18.1.zip

1.18.0

Not secure
================================

In addition to the usual bug fixes, this NumPy release cleans up and
documents the new random C-API, expires a large number of old
deprecations, and improves the appearance of the documentation. The
Python versions supported are 3.5-3.8. This is the last NumPy release
series that will support Python 3.5.

Downstream developers should use Cython \>= 0.29.14 for Python 3.8
support and OpenBLAS \>= 3.7 to avoid problems on the Skylake
architecture.

Highlights
==========

- The C-API for `numpy.random` has been defined and documented.
- Basic infrastructure for linking with 64 bit BLAS and LAPACK
libraries.
- Many documentation improvements.

New functions
=============

Multivariate hypergeometric distribution added to `numpy.random`
----------------------------------------------------------------

The method `multivariate_hypergeometric` has been added to the class
`numpy.random.Generator`. This method generates random variates from the
multivariate hypergeometric probability distribution.
(`gh-13794 <https://github.com/numpy/numpy/pull/13794>`\_\_)

Deprecations
============

`np.fromfile` and `np.fromstring` will error on bad data
--------------------------------------------------------

In future numpy releases, the functions `np.fromfile` and
`np.fromstring` will throw an error when parsing bad data. This will now
give a `DeprecationWarning` where previously partial or even invalid
data was silently returned. This deprecation also affects the C defined
functions `PyArray_FromString` and `PyArray_FromFile`
(`gh-13605 <https://github.com/numpy/numpy/pull/13605>`\_\_)

Deprecate non-scalar arrays as fill values in `ma.fill_value`
-------------------------------------------------------------

Setting a `MaskedArray.fill_value` to a non-scalar array is deprecated
since the logic to broadcast the fill value to the array is fragile,
especially when slicing.
(`gh-13698 <https://github.com/numpy/numpy/pull/13698>`\_\_)

Deprecate `PyArray_As1D`, `PyArray_As2D`
----------------------------------------

`PyArray_As1D`, `PyArray_As2D` are deprecated, use `PyArray_AsCArray`
instead (`gh-14036 <https://github.com/numpy/numpy/pull/14036>`\_\_)

Deprecate `np.alen`
-------------------

`np.alen` was deprecated. Use `len` instead.
(`gh-14181 <https://github.com/numpy/numpy/pull/14181>`\_\_)

Deprecate the financial functions
---------------------------------

In accordance with
`NEP-32 <https://numpy.org/neps/nep-0032-remove-financial-functions.html>`,
the financial functions `fv`, `ipmt`, `irr`, `mirr`, `nper`, `npv`,
`pmt`, `ppmt`, `pv` and `rate` are deprecated, and will be removed from
NumPy 1.20.The replacement for these functions is the Python package
`numpy-financial <https://pypi.org/project/numpy-financial>`*.
(`gh-14720 <https://github.com/numpy/numpy/pull/14720>`\_\_)

The `axis` argument to `numpy.ma.mask_cols` and `numpy.ma.mask_row` is deprecated
---------------------------------------------------------------------------------

This argument was always ignored.
(`gh-14996 <https://github.com/numpy/numpy/pull/14996>`\_\_)

Expired deprecations
====================

- `PyArray_As1D` and `PyArray_As2D` have been removed in favor of
`PyArray_AsCArray`
(`gh-14036 <https://github.com/numpy/numpy/pull/14036>`\_\_)

- `np.rank` has been removed. This was deprecated in NumPy 1.10 and
has been replaced by `np.ndim`.
(`gh-14039 <https://github.com/numpy/numpy/pull/14039>`\_\_)

- The deprecation of `expand_dims` out-of-range axes in 1.13.0 has
expired.
(`gh-14051 <https://github.com/numpy/numpy/pull/14051>`\_\_)

- `PyArray_FromDimsAndDataAndDescr` and `PyArray_FromDims` have been
removed (they will always raise an error). Use
`PyArray_NewFromDescr` and `PyArray_SimpleNew` instead.
(`gh-14100 <https://github.com/numpy/numpy/pull/14100>`\_\_)

- `numeric.loads`, `numeric.load`, `np.ma.dump`, `np.ma.dumps`,
`np.ma.load`, `np.ma.loads` are removed, use `pickle` methods
instead (`gh-14256 <https://github.com/numpy/numpy/pull/14256>`\_\_)

- `arrayprint.FloatFormat`, `arrayprint.LongFloatFormat` has been
removed, use `FloatingFormat` instead

- `arrayprint.ComplexFormat`, `arrayprint.LongComplexFormat` has been
removed, use `ComplexFloatingFormat` instead

- `arrayprint.StructureFormat` has been removed, use
`StructureVoidFormat` instead
(`gh-14259 <https://github.com/numpy/numpy/pull/14259>`\_\_)

- `np.testing.rand` has been removed. This was deprecated in NumPy
1.11 and has been replaced by `np.random.rand`.
(`gh-14325 <https://github.com/numpy/numpy/pull/14325>`\_\_)

- Class `SafeEval` in `numpy/lib/utils.py` has been removed. This was
deprecated in NumPy 1.10. Use `np.safe_eval` instead.
(`gh-14335 <https://github.com/numpy/numpy/pull/14335>`\_\_)

- Remove deprecated support for boolean and empty condition lists in
`np.select`
(`gh-14583 <https://github.com/numpy/numpy/pull/14583>`\_\_)

- Array order only accepts 'C', 'F', 'A', and 'K'. More permissive
options were deprecated in NumPy 1.11.
(`gh-14596 <https://github.com/numpy/numpy/pull/14596>`\_\_)

- np.linspace parameter `num` must be an integer. Deprecated in NumPy
1.12. (`gh-14620 <https://github.com/numpy/numpy/pull/14620>`\_\_)

- UFuncs with multiple outputs must use a tuple for the `out` kwarg.
This finishes a deprecation started in NumPy 1.10.
(`gh-14682 <https://github.com/numpy/numpy/pull/14682>`\_\_)

The files `numpy/testing/decorators.py`, `numpy/testing/noseclasses.py`
and `numpy/testing/nosetester.py` have been removed. They were never
meant to be public (all relevant objects are present in the
`numpy.testing` namespace), and importing them has given a deprecation

1.18.0rc1

1.17.5

Not secure
==========================

This release contains fixes for bugs reported against NumPy 1.17.4 along
with some build improvements. The Python versions supported in this
release are 3.5-3.8.

Downstream developers should use Cython \>= 0.29.14 for Python 3.8
support and OpenBLAS \>= 3.7 to avoid errors on the Skylake
architecture.

It is recommended that developers interested in the new random bit
generators upgrade to the NumPy 1.18.x series, as it has updated
documentation and many small improvements.

Contributors
------------

A total of 6 people contributed to this release. People with a \"+\" by
their names contributed a patch for the first time.

- Charles Harris
- Eric Wieser
- Ilhan Polat
- Matti Picus
- Michael Hudson-Doyle
- Ralf Gommers

Pull requests merged
--------------------

A total of 8 pull requests were merged for this release.

- [\14593](https://github.com/numpy/numpy/pull/14593): MAINT:
backport Cython API cleanup to 1.17.x, remove docs
- [\14937](https://github.com/numpy/numpy/pull/14937): BUG: fix
integer size confusion in handling array\'s ndmin argument
- [\14939](https://github.com/numpy/numpy/pull/14939): BUILD: remove
SSE2 flag from numpy.random builds
- [\14993](https://github.com/numpy/numpy/pull/14993): MAINT: Added
Python3.8 branch to dll lib discovery
- [\15038](https://github.com/numpy/numpy/pull/15038): BUG: Fix
refcounting in ufunc object loops
- [\15067](https://github.com/numpy/numpy/pull/15067): BUG:
Exceptions tracebacks are dropped
- [\15175](https://github.com/numpy/numpy/pull/15175): ENH: Backport
improvements to testing functions.
- [\15213](https://github.com/numpy/numpy/pull/15213): REL: Prepare
for the NumPy 1.17.5 release.

Checksums
---------

MD5

e1d378317e20e340ea46937cbaf45094 numpy-1.17.5-cp35-cp35m-macosx_10_9_intel.whl
49b263605ab32a0880fa68b29c2586b0 numpy-1.17.5-cp35-cp35m-manylinux1_i686.whl
41b4800ea0b8410919500e264994fb6f numpy-1.17.5-cp35-cp35m-manylinux1_x86_64.whl
7ac18d112a745aabf5059da85de91c57 numpy-1.17.5-cp35-cp35m-win32.whl
98dfbe821c010b34771f789dff36ca76 numpy-1.17.5-cp35-cp35m-win_amd64.whl
3a14d2a58b72db3020b2d1760aefed5c numpy-1.17.5-cp36-cp36m-macosx_10_9_x86_64.whl
47810aa1c34d9d46581f0b8dee0d1acc numpy-1.17.5-cp36-cp36m-manylinux1_i686.whl
e0f2d037ecd1ecbfa5f3d282bf69fad2 numpy-1.17.5-cp36-cp36m-manylinux1_x86_64.whl
addda5c691eaca7b8aa2f8413c936f54 numpy-1.17.5-cp36-cp36m-win32.whl
ee5c057451e77ad2aeb1a7ed2df3754d numpy-1.17.5-cp36-cp36m-win_amd64.whl
8be28f068e0b2e9c5202debd6e2bcf6c numpy-1.17.5-cp37-cp37m-macosx_10_9_x86_64.whl
8400685497628c48b292ff8bb8b7286e numpy-1.17.5-cp37-cp37m-manylinux1_i686.whl
a399036176dd2e23e07b866b460b6f20 numpy-1.17.5-cp37-cp37m-manylinux1_x86_64.whl
f9497454c4d3a8fdcc62788420f365c7 numpy-1.17.5-cp37-cp37m-win32.whl
930a172f90ea6658adf2d25700a98757 numpy-1.17.5-cp37-cp37m-win_amd64.whl
1fddb7a3de3aba553614919411e70698 numpy-1.17.5-cp38-cp38-macosx_10_9_x86_64.whl
003e1514a5ed31cebb10a8055f7b63e6 numpy-1.17.5-cp38-cp38-manylinux1_i686.whl
de8f5f3f602f889fb0ed42cfd5da40bc numpy-1.17.5-cp38-cp38-manylinux1_x86_64.whl
91a89b84875f30f6b8166d4791212aa3 numpy-1.17.5-cp38-cp38-win32.whl
ba5eb1d2705e4a169df105ce7a95abc0 numpy-1.17.5-cp38-cp38-win_amd64.whl
59d27965e42caedf8913ebe03cf36f87 numpy-1.17.5.tar.gz
763a5646fa6eef7a22f4895bca0524f2 numpy-1.17.5.zip

SHA256

d977a91f7b02b14843562d2e8740acfdfb46996e64985b69b2d404bfa43bc07d numpy-1.17.5-cp35-cp35m-macosx_10_9_intel.whl
6c6cab8089ad39554d7fed04d338e7bd7ea6ac48235a542ea0b37214c8d0a9bc numpy-1.17.5-cp35-cp35m-manylinux1_i686.whl
4760bcc6adaf0d853379d01ce60f320e5ab6d0d719662aef3c460dad3cf79989 numpy-1.17.5-cp35-cp35m-manylinux1_x86_64.whl
c3fb7eb84cd455ea2294980e557cc40b0042f7fc7ebab28c74ccae85c8b0c2c4 numpy-1.17.5-cp35-cp35m-win32.whl
6167d214a842610d4168311d803f2a6f2c1a9a866b6b370f7408ba508d265add numpy-1.17.5-cp35-cp35m-win_amd64.whl
ca43581440ce2585f83c8d524c3435569b212bf281b7c67395e78260fcffb341 numpy-1.17.5-cp36-cp36m-macosx_10_9_x86_64.whl
5347fc1258ebe501d352363da06229fc97785d67423b56a9fd032a8389355781 numpy-1.17.5-cp36-cp36m-manylinux1_i686.whl
1739f079e2fcc985cc187aa3ce489d127a02ff12bcc5178269bb7ce5dc860e8f numpy-1.17.5-cp36-cp36m-manylinux1_x86_64.whl
af51bc1d78ddc1588115b73a1d3824440f5cf55c498681e8ac4ab2f28f0efa99 numpy-1.17.5-cp36-cp36m-win32.whl
259b5aa0a1d2e63bbe9d985bc8249b515541b9993e1b1540563428f5db7bc389 numpy-1.17.5-cp36-cp36m-win_amd64.whl
8ba8ef37b16288dd2390cd9dea3c8470436f6cfe4c665f4640c349e98bae2908 numpy-1.17.5-cp37-cp37m-macosx_10_9_x86_64.whl
348efb76a26f9f3235e492813503639731a885aa5780579ee28d688607d188b2 numpy-1.17.5-cp37-cp37m-manylinux1_i686.whl
31db2f9604afbf897b23478942074bbbb2513467d2b4b4ac573a7b65c63c073c numpy-1.17.5-cp37-cp37m-manylinux1_x86_64.whl
68bdc37f3ccdc3e945914b3201acd8823ac9dec870ede5371cd5cfedcf5a901a numpy-1.17.5-cp37-cp37m-win32.whl
15db548aade41e32bfb6f6d3d9e91797261197622afe4102f79220d17da2a29f numpy-1.17.5-cp37-cp37m-win_amd64.whl
fc56ec046a2cc3aba91fe29e482c145c17925db1b00eafa924d9e16020a3eb88 numpy-1.17.5-cp38-cp38-macosx_10_9_x86_64.whl
73d20aebe518997dce89da356d4b8e4cf60143151c22a0ec76cb00840bb09320 numpy-1.17.5-cp38-cp38-manylinux1_i686.whl
aa3dd92c1427e032fe345f054503f45c9fc7883aa7156a60900641259dd78a78 numpy-1.17.5-cp38-cp38-manylinux1_x86_64.whl
6338f8fa99ea0b00944a256941eea406089a9c0242f594b69289edd91e2d6192 numpy-1.17.5-cp38-cp38-win32.whl
14804866e57322bf601c966e428c271b7e301b631bdfbe0522800483b802bc58 numpy-1.17.5-cp38-cp38-win_amd64.whl
ef0801b6feca0f50e56c29b02e0f3e2c8c40963d44c38484e6f47bfcfbf17d32 numpy-1.17.5.tar.gz
16507ba6617f62ae3c6ab1725ae6f550331025d4d9a369b83f6d5a470446c342 numpy-1.17.5.zip

1.17.4

Not secure
==========================

This release contains fixes for bugs reported against NumPy 1.17.3 along with
some build improvements. The Python versions supported in this release
are 3.5-3.8.

Downstream developers should use Cython >= 0.29.13 for Python 3.8 support and
OpenBLAS >= 3.7 to avoid errors on the Skylake architecture.


Highlights
==========

* Fixed `np.random.random_integers` biased generation of 8 and 16 bit integers.
* Fixed `np.einsum` regression on Power9 and z/Linux.
* Fixed histogram problem with signed integer arrays.


Contributors
============

A total of 5 people contributed to this release. People with a "+" by their
names contributed a patch for the first time.

* Charles Harris
* Chris Burr +
* Matti Picus
* Qiming Sun +
* Warren Weckesser


Pull requests merged
====================

A total of 8 pull requests were merged for this release.

* 14758: BLD: declare support for python 3.8
* 14781: BUG: random: biased samples from integers() with 8 or 16 bit...
* 14851: BUG: Fix _ctypes class circular reference. (13808)
* 14852: BLD: add 'apt update' to shippable
* 14855: BUG: Fix `np.einsum` errors on Power9 Linux and z/Linux
* 14857: BUG: lib: Fix histogram problem with signed integer arrays.
* 14858: BLD: Prevent -flto from optimising long double representation...
* 14866: MAINT: move buffer.h -> npy_buffer.h to avoid conflicts


Checksums
=========

MD5
---

1d5b9a989a22e2c5d0774d9a8e19f3db numpy-1.17.4-cp35-cp35m-macosx_10_6_intel.whl
3b3fc8a8db5a026349b3ead44e755bc5 numpy-1.17.4-cp35-cp35m-manylinux1_i686.whl
bfcafd2994423e9ed8337eb4a10cc885 numpy-1.17.4-cp35-cp35m-manylinux1_x86_64.whl
8196de4edb9f37578acab2749e2af61c numpy-1.17.4-cp35-cp35m-win32.whl
71292c5b45feec7cae81a1fc6272b0e0 numpy-1.17.4-cp35-cp35m-win_amd64.whl
39cfbfdf236a20f9901b918b39e20e54 numpy-1.17.4-cp36-cp36m-macosx_10_9_x86_64.whl
8cff96c6bc944b44b7232d72244e0838 numpy-1.17.4-cp36-cp36m-manylinux1_i686.whl
d62a4e3880432bb8deec3a51bcc8a30e numpy-1.17.4-cp36-cp36m-manylinux1_x86_64.whl
aaa948d1ef36659450791229a966ed19 numpy-1.17.4-cp36-cp36m-win32.whl
e4482c52d63ab698d2e81ad71903b64b numpy-1.17.4-cp36-cp36m-win_amd64.whl
4fadb49558c6089d8f8f32d775de91ae numpy-1.17.4-cp37-cp37m-macosx_10_9_x86_64.whl
2e3a09d2aefd90856600c821db49cf99 numpy-1.17.4-cp37-cp37m-manylinux1_i686.whl
2f0527f8eedcb2b3d83912dd254356f9 numpy-1.17.4-cp37-cp37m-manylinux1_x86_64.whl
aded41f748a1dc3f71924200c3fe1bc0 numpy-1.17.4-cp37-cp37m-win32.whl
34a187a48ceb4378ac28c6951d7f8dd6 numpy-1.17.4-cp37-cp37m-win_amd64.whl
f5da7b0b94eacde2898654cfc25e8e78 numpy-1.17.4-cp38-cp38-macosx_10_9_x86_64.whl
08f4a5d6ea64c3f1f22ff9e4da4b55dd numpy-1.17.4-cp38-cp38-manylinux1_i686.whl
bafe3eb23ae8cb6f062e55c7aab52a98 numpy-1.17.4-cp38-cp38-manylinux1_x86_64.whl
0f1add30eb00bf40e5456e8ab10b5342 numpy-1.17.4-cp38-cp38-win32.whl
11649cda484b4d0d4426c3dab2c8ed5f numpy-1.17.4-cp38-cp38-win_amd64.whl
9147c3ee75e58d657b5b8b5a4f3564e0 numpy-1.17.4.tar.gz
d7d3563cca0b99ba68a3f064a9e46ebe numpy-1.17.4.zip

SHA256
------

ede47b98de79565fcd7f2decb475e2dcc85ee4097743e551fe26cfc7eb3ff143 numpy-1.17.4-cp35-cp35m-macosx_10_6_intel.whl
43bb4b70585f1c2d153e45323a886839f98af8bfa810f7014b20be714c37c447 numpy-1.17.4-cp35-cp35m-manylinux1_i686.whl
c7354e8f0eca5c110b7e978034cd86ed98a7a5ffcf69ca97535445a595e07b8e numpy-1.17.4-cp35-cp35m-manylinux1_x86_64.whl
64874913367f18eb3013b16123c9fed113962e75d809fca5b78ebfbb73ed93ba numpy-1.17.4-cp35-cp35m-win32.whl
6ca4000c4a6f95a78c33c7dadbb9495c10880be9c89316aa536eac359ab820ae numpy-1.17.4-cp35-cp35m-win_amd64.whl
75fd817b7061f6378e4659dd792c84c0b60533e867f83e0d1e52d5d8e53df88c numpy-1.17.4-cp36-cp36m-macosx_10_9_x86_64.whl
7d81d784bdbed30137aca242ab307f3e65c8d93f4c7b7d8f322110b2e90177f9 numpy-1.17.4-cp36-cp36m-manylinux1_i686.whl
fe39f5fd4103ec4ca3cb8600b19216cd1ff316b4990f4c0b6057ad982c0a34d5 numpy-1.17.4-cp36-cp36m-manylinux1_x86_64.whl
e467c57121fe1b78a8f68dd9255fbb3bb3f4f7547c6b9e109f31d14569f490c3 numpy-1.17.4-cp36-cp36m-win32.whl
8d0af8d3664f142414fd5b15cabfd3b6cc3ef242a3c7a7493257025be5a6955f numpy-1.17.4-cp36-cp36m-win_amd64.whl
9679831005fb16c6df3dd35d17aa31dc0d4d7573d84f0b44cc481490a65c7725 numpy-1.17.4-cp37-cp37m-macosx_10_9_x86_64.whl
acbf5c52db4adb366c064d0b7c7899e3e778d89db585feadd23b06b587d64761 numpy-1.17.4-cp37-cp37m-manylinux1_i686.whl
3d52298d0be333583739f1aec9026f3b09fdfe3ddf7c7028cb16d9d2af1cca7e numpy-1.17.4-cp37-cp37m-manylinux1_x86_64.whl
475963c5b9e116c38ad7347e154e5651d05a2286d86455671f5b1eebba5feb76 numpy-1.17.4-cp37-cp37m-win32.whl
0c0763787133dfeec19904c22c7e358b231c87ba3206b211652f8cbe1241deb6 numpy-1.17.4-cp37-cp37m-win_amd64.whl
683828e50c339fc9e68720396f2de14253992c495fdddef77a1e17de55f1decc numpy-1.17.4-cp38-cp38-macosx_10_9_x86_64.whl
e2e9d8c87120ba2c591f60e32736b82b67f72c37ba88a4c23c81b5b8fa49c018 numpy-1.17.4-cp38-cp38-manylinux1_i686.whl
a8f67ebfae9f575d85fa859b54d3bdecaeece74e3274b0b5c5f804d7ca789fe1 numpy-1.17.4-cp38-cp38-manylinux1_x86_64.whl
0a7a1dd123aecc9f0076934288ceed7fd9a81ba3919f11a855a7887cbe82a02f numpy-1.17.4-cp38-cp38-win32.whl
ada4805ed51f5bcaa3a06d3dd94939351869c095e30a2b54264f5a5004b52170 numpy-1.17.4-cp38-cp38-win_amd64.whl
fb0415475e673cb9a6dd816df999e0ab9f86fa3af2b1770944e7288d2bea4ac9 numpy-1.17.4.tar.gz
f58913e9227400f1395c7b800503ebfdb0772f1c33ff8cb4d6451c06cabdf316 numpy-1.17.4.zip

1.17.3

Not secure
==========================

This release contains fixes for bugs reported against NumPy 1.17.2 along with a
some documentation improvements. The Python versions supported in this release
are 3.5-3.8.

Downstream developers should use Cython >= 0.29.13 for Python 3.8 support and
OpenBLAS >= 3.7 to avoid errors on the Skylake architecture.


Highlights
==========

- Wheels for Python 3.8
- Boolean ``matmul`` fixed to use booleans instead of integers.


Compatibility notes
===================

- The seldom used ``PyArray_DescrCheck`` macro has been changed/fixed.


Contributors
============

A total of 7 people contributed to this release. People with a "+" by their
names contributed a patch for the first time.

* Allan Haldane
* Charles Harris
* Kevin Sheppard
* Matti Picus
* Ralf Gommers
* Sebastian Berg
* Warren Weckesser


Pull requests merged
====================

A total of 12 pull requests were merged for this release.

* 14456: MAINT: clean up pocketfft modules inside numpy.fft namespace.
* 14463: BUG: random.hypergeometic assumes npy_long is npy_int64, hung...
* 14502: BUG: random: Revert gh-14458 and refix gh-14557.
* 14504: BUG: add a specialized loop for boolean matmul.
* 14506: MAINT: Update pytest version for Python 3.8
* 14512: DOC: random: fix doc linking, was referencing private submodules.
* 14513: BUG,MAINT: Some fixes and minor cleanup based on clang analysis
* 14515: BUG: Fix randint when range is 2**32
* 14519: MAINT: remove the entropy c-extension module
* 14563: DOC: remove note about Pocketfft license file (non-existing here).
* 14578: BUG: random: Create a legacy implementation of random.binomial.
* 14687: BUG: properly define PyArray_DescrCheck

Checksums
=========

MD5
---

7e96dd5ca587fa647d21628072f08751 numpy-1.17.3-cp35-cp35m-macosx_10_6_intel.whl
f5fd3a434d9e426c9f01ca5669e84973 numpy-1.17.3-cp35-cp35m-manylinux1_i686.whl
d4520794f05e6466a1064e046b4ade2c numpy-1.17.3-cp35-cp35m-manylinux1_x86_64.whl
67967e337b8378c92af9c2b6926b6dcd numpy-1.17.3-cp35-cp35m-win32.whl
341b29b85c5305edd3f5ca9d9981f1b4 numpy-1.17.3-cp35-cp35m-win_amd64.whl
7d9492ee0fbe8292518af104772bcee0 numpy-1.17.3-cp36-cp36m-macosx_10_9_x86_64.whl
b0f1a9b0da552e2baa2e6db4668efee8 numpy-1.17.3-cp36-cp36m-manylinux1_i686.whl
8b9c50124ae13279e9969fc0cf3b5e5f numpy-1.17.3-cp36-cp36m-manylinux1_x86_64.whl
428766619877efec34ba224d9252396c numpy-1.17.3-cp36-cp36m-win32.whl
a2fd25bf087e7765a4322ef3fa7f87b6 numpy-1.17.3-cp36-cp36m-win_amd64.whl
98eb0ec4fe00f9f3309f2e523e76e36e numpy-1.17.3-cp37-cp37m-macosx_10_9_x86_64.whl
415f086791be02d658a2800fa25874e4 numpy-1.17.3-cp37-cp37m-manylinux1_i686.whl
3f5fd3e63dc84db7dd3745b007faea46 numpy-1.17.3-cp37-cp37m-manylinux1_x86_64.whl
3f7ba813f7318d9671da66c610ab1e91 numpy-1.17.3-cp37-cp37m-win32.whl
deb55760769373ad1da9844df8b9c865 numpy-1.17.3-cp37-cp37m-win_amd64.whl
964b1cdad1cf20c63461246fe0638956 numpy-1.17.3-cp38-cp38-macosx_10_9_x86_64.whl
ece34643fc0c42801a8d3a53708f09ed numpy-1.17.3-cp38-cp38-manylinux1_i686.whl
081fd68219088577857ebd265e963d1e numpy-1.17.3-cp38-cp38-manylinux1_x86_64.whl
a231efeb2cfe69cf94764ccecba73d50 numpy-1.17.3-cp38-cp38-win32.whl
1c548f96188826e6999d3ba3fde99cf9 numpy-1.17.3-cp38-cp38-win_amd64.whl
48d6d97d6037eb8e171064a850b53aab numpy-1.17.3.tar.gz
a3195ccbbd97b0366f0c46e36a62717a numpy-1.17.3.zip

SHA256
------

4dd830a11e8724c9c9379feed1d1be43113f8bcce55f47ea7186d3946769ce26 numpy-1.17.3-cp35-cp35m-macosx_10_6_intel.whl
30c84e3a62cfcb9e3066f25226e131451312a044f1fe2040e69ce792cb7de418 numpy-1.17.3-cp35-cp35m-manylinux1_i686.whl
9395b0a41e8b7e9a284e3be7060db9d14ad80273841c952c83a5afc241d2bd98 numpy-1.17.3-cp35-cp35m-manylinux1_x86_64.whl
9e37c35fc4e9410093b04a77d11a34c64bf658565e30df7cbe882056088a91c1 numpy-1.17.3-cp35-cp35m-win32.whl
de2b1c20494bdf47f0160bd88ed05f5e48ae5dc336b8de7cfade71abcc95c0b9 numpy-1.17.3-cp35-cp35m-win_amd64.whl
669795516d62f38845c7033679c648903200980d68935baaa17ac5c7ae03ae0c numpy-1.17.3-cp36-cp36m-macosx_10_9_x86_64.whl
4650d94bb9c947151737ee022b934b7d9a845a7c76e476f3e460f09a0c8c6f39 numpy-1.17.3-cp36-cp36m-manylinux1_i686.whl
4f2a2b279efde194877aff1f76cf61c68e840db242a5c7169f1ff0fd59a2b1e2 numpy-1.17.3-cp36-cp36m-manylinux1_x86_64.whl
ffca69e29079f7880c5392bf675eb8b4146479d976ae1924d01cd92b04cccbcc numpy-1.17.3-cp36-cp36m-win32.whl
2e418f0a59473dac424f888dd57e85f77502a593b207809211c76e5396ae4f5c numpy-1.17.3-cp36-cp36m-win_amd64.whl
75fcd60d682db3e1f8fbe2b8b0c6761937ad56d01c1dc73edf4ef2748d5b6bc4 numpy-1.17.3-cp37-cp37m-macosx_10_9_x86_64.whl
28b1180c758abf34a5c3fea76fcee66a87def1656724c42bb14a6f9717a5bdf7 numpy-1.17.3-cp37-cp37m-manylinux1_i686.whl
dd0667f5be56fb1b570154c2c0516a528e02d50da121bbbb2cbb0b6f87f59bc2 numpy-1.17.3-cp37-cp37m-manylinux1_x86_64.whl
25ffe71f96878e1da7e014467e19e7db90ae7d4e12affbc73101bcf61785214e numpy-1.17.3-cp37-cp37m-win32.whl
0b0dd8f47fb177d00fa6ef2d58783c4f41ad3126b139c91dd2f7c4b3fdf5e9a5 numpy-1.17.3-cp37-cp37m-win_amd64.whl
62d22566b3e3428dfc9ec972014c38ed9a4db4f8969c78f5414012ccd80a149e numpy-1.17.3-cp38-cp38-macosx_10_9_x86_64.whl
26efd7f7d755e6ca966a5c0ac5a930a87dbbaab1c51716ac26a38f42ecc9bc4b numpy-1.17.3-cp38-cp38-manylinux1_i686.whl
b46554ad4dafb2927f88de5a1d207398c5385edbb5c84d30b3ef187c4a3894d8 numpy-1.17.3-cp38-cp38-manylinux1_x86_64.whl
c867eeccd934920a800f65c6068acdd6b87e80d45cd8c8beefff783b23cdc462 numpy-1.17.3-cp38-cp38-win32.whl
f1df7b2b7740dd777571c732f98adb5aad5450aee32772f1b39249c8a50386f6 numpy-1.17.3-cp38-cp38-win_amd64.whl
c93733dbebc2599d2747ceac4b18825a73767d289176ed8e02090325656d69aa numpy-1.17.3.tar.gz
a0678793096205a4d784bd99f32803ba8100f639cf3b932dc63b21621390ea7e numpy-1.17.3.zip

Page 16 of 24

© 2025 Safety CLI Cybersecurity Inc. All Rights Reserved.