Numpy

Latest version: v2.2.1

Safety actively analyzes 693883 Python packages for vulnerabilities to keep your Python projects secure.

Scan your dependencies

Page 14 of 23

1.19

will be compatible with NumPy 1.16 (from a C-API perspective). This
default will be increased in future non-bugfix releases. You can still
compile against an older NumPy version and run on a newer one.

For more details please see
`for-downstream-package-authors`{.interpreted-text role="ref"}.

([gh-23528](https://github.com/numpy/numpy/pull/23528))

New Features

`np.einsum` now accepts arrays with `object` dtype

The code path will call python operators on object dtype arrays, much
like `np.dot` and `np.matmul`.

([gh-18053](https://github.com/numpy/numpy/pull/18053))

Add support for inplace matrix multiplication

It is now possible to perform inplace matrix multiplication via the `=`
operator.

python
>>> import numpy as np

>>> a = np.arange(6).reshape(3, 2)
>>> print(a)
[[0 1]
[2 3]
[4 5]]

>>> b = np.ones((2, 2), dtype=int)
>>> a = b
>>> print(a)
[[1 1]
[5 5]
[9 9]]


([gh-21120](https://github.com/numpy/numpy/pull/21120))

Added `NPY_ENABLE_CPU_FEATURES` environment variable

Users may now choose to enable only a subset of the built CPU features
at runtime by specifying the `NPY_ENABLE_CPU_FEATURES`
environment variable. Note that these specified features must be outside
the baseline, since those are always assumed. Errors will be raised if
attempting to enable a feature that is either not supported by your CPU,
or that NumPy was not built with.

([gh-22137](https://github.com/numpy/numpy/pull/22137))

NumPy now has an `np.exceptions` namespace

NumPy now has a dedicated namespace making most exceptions and warnings
available. All of these remain available in the main namespace, although
some may be moved slowly in the future. The main reason for this is to
increase discoverability and add future exceptions.

([gh-22644](https://github.com/numpy/numpy/pull/22644))

`np.linalg` functions return NamedTuples

`np.linalg` functions that return tuples now return namedtuples. These
functions are `eig()`, `eigh()`, `qr()`, `slogdet()`, and `svd()`. The
return type is unchanged in instances where these functions return
non-tuples with certain keyword arguments (like
`svd(compute_uv=False)`).

([gh-22786](https://github.com/numpy/numpy/pull/22786))

String functions in `np.char` are compatible with NEP 42 custom dtypes

Custom dtypes that represent unicode strings or byte strings can now be
passed to the string functions in `np.char`.

([gh-22863](https://github.com/numpy/numpy/pull/22863))

String dtype instances can be created from the string abstract dtype classes

It is now possible to create a string dtype instance with a size without
using the string name of the dtype. For example,
`type(np.dtype('U'))(8)` will create a dtype that is equivalent to
`np.dtype('U8')`. This feature is most useful when writing generic code
dealing with string dtype classes.

([gh-22963](https://github.com/numpy/numpy/pull/22963))

Fujitsu C/C++ compiler is now supported

Support for Fujitsu compiler has been added. To build with Fujitsu
compiler, run:

> python setup.py build -c fujitsu

SSL2 is now supported

Support for SSL2 has been added. SSL2 is a library that provides
OpenBLAS compatible GEMM functions. To enable SSL2, it need to edit
site.cfg and build with Fujitsu compiler. See site.cfg.example.

([gh-22982](https://github.com/numpy/numpy/pull/22982))

Improvements

`NDArrayOperatorsMixin` specifies that it has no `__slots__`

The `NDArrayOperatorsMixin` class now specifies that it contains no
`__slots__`, ensuring that subclasses can now make use of this feature
in Python.

([gh-23113](https://github.com/numpy/numpy/pull/23113))

Fix power of complex zero

`np.power` now returns a different result for `0^{non-zero}` for complex
numbers. Note that the value is only defined when the real part of the
exponent is larger than zero. Previously, NaN was returned unless the
imaginary part was strictly zero. The return value is either `0+0j` or
`0-0j`.

([gh-18535](https://github.com/numpy/numpy/pull/18535))

New `DTypePromotionError`

NumPy now has a new `DTypePromotionError` which is used when two dtypes
cannot be promoted to a common one, for example:

np.result_type("M8[s]", np.complex128)

raises this new exception.

([gh-22707](https://github.com/numpy/numpy/pull/22707))

`np.show_config` uses information from Meson

Build and system information now contains information from Meson.
`np.show_config` now has a new optional parameter `mode` to
help customize the output.

([gh-22769](https://github.com/numpy/numpy/pull/22769))

Fix `np.ma.diff` not preserving the mask when called with arguments prepend/append.

Calling `np.ma.diff` with arguments prepend and/or append now returns a
`MaskedArray` with the input mask preserved.

Previously, a `MaskedArray` without the mask was returned.

([gh-22776](https://github.com/numpy/numpy/pull/22776))

Corrected error handling for NumPy C-API in Cython

Many NumPy C functions defined for use in Cython were lacking the
correct error indicator like `except -1` or `except *`. These have now
been added.

([gh-22997](https://github.com/numpy/numpy/pull/22997))

Ability to directly spawn random number generators

`numpy.random.Generator.spawn` now allows to directly spawn new independent
child generators via the `numpy.random.SeedSequence.spawn` mechanism.
`numpy.random.BitGenerator.spawn` does the same for the underlying bit
generator.

Additionally, `numpy.random.BitGenerator.seed_seq` now gives
direct access to the seed sequence used for initializing the bit
generator. This allows for example:

seed = 0x2e09b90939db40c400f8f22dae617151
rng = np.random.default_rng(seed)
child_rng1, child_rng2 = rng.spawn(2)

safely use rng, child_rng1, and child_rng2

Previously, this was hard to do without passing the `SeedSequence`
explicitly. Please see `numpy.random.SeedSequence` for more
information.

([gh-23195](https://github.com/numpy/numpy/pull/23195))

`numpy.logspace` now supports a non-scalar `base` argument

The `base` argument of `numpy.logspace` can now be array-like if it is
broadcastable against the `start` and `stop` arguments.

([gh-23275](https://github.com/numpy/numpy/pull/23275))

`np.ma.dot()` now supports for non-2d arrays

Previously `np.ma.dot()` only worked if `a` and `b` were both 2d. Now it
works for non-2d arrays as well as `np.dot()`.

([gh-23322](https://github.com/numpy/numpy/pull/23322))

Explicitly show keys of .npz file in repr

`NpzFile` shows keys of loaded .npz file when printed.

python
>>> npzfile = np.load('arr.npz')
>>> npzfile
NpzFile 'arr.npz' with keys arr_0, arr_1, arr_2, arr_3, arr_4...


([gh-23357](https://github.com/numpy/numpy/pull/23357))

NumPy now exposes DType classes in `np.dtypes`

The new `numpy.dtypes` module now exposes DType classes and will contain
future dtype related functionality. Most users should have no need to
use these classes directly.

([gh-23358](https://github.com/numpy/numpy/pull/23358))

Drop dtype metadata before saving in .npy or .npz files

Currently, a `*.npy` file containing a table with a dtype with metadata cannot
be read back. Now, `np.save` and `np.savez` drop metadata before saving.

([gh-23371](https://github.com/numpy/numpy/pull/23371))

`numpy.lib.recfunctions.structured_to_unstructured` returns views in more cases

`structured_to_unstructured` now returns a view, if the stride between
the fields is constant. Prior, padding between the fields or a reversed
field would lead to a copy. This change only applies to `ndarray`,
`memmap` and `recarray`. For all other array subclasses, the behavior
remains unchanged.

([gh-23652](https://github.com/numpy/numpy/pull/23652))

Signed and unsigned integers always compare correctly

When `uint64` and `int64` are mixed in NumPy, NumPy typically promotes
both to `float64`. This behavior may be argued about but is confusing
for comparisons `==`, `<=`, since the results returned can be incorrect
but the conversion is hidden since the result is a boolean. NumPy will
now return the correct results for these by avoiding the cast to float.

([gh-23713](https://github.com/numpy/numpy/pull/23713))

Performance improvements and changes

Faster `np.argsort` on AVX-512 enabled processors

32-bit and 64-bit quicksort algorithm for np.argsort gain up to 6x speed
up on processors that support AVX-512 instruction set.

Thanks to [Intel corporation](https://open.intel.com/) for sponsoring
this work.

([gh-23707](https://github.com/numpy/numpy/pull/23707))

Faster `np.sort` on AVX-512 enabled processors

Quicksort for 16-bit and 64-bit dtypes gain up to 15x and 9x speed up on
processors that support AVX-512 instruction set.

Thanks to [Intel corporation](https://open.intel.com/) for sponsoring
this work.

([gh-22315](https://github.com/numpy/numpy/pull/22315))

`__array_function__` machinery is now much faster

The overhead of the majority of functions in NumPy is now smaller
especially when keyword arguments are used. This change significantly
speeds up many simple function calls.

([gh-23020](https://github.com/numpy/numpy/pull/23020))

`ufunc.at` can be much faster

Generic `ufunc.at` can be up to 9x faster. The conditions for this
speedup:

- operands are aligned
- no casting

If ufuncs with appropriate indexed loops on 1d arguments with the above
conditions, `ufunc.at` can be up to 60x faster (an additional 7x
speedup). Appropriate indexed loops have been added to `add`,
`subtract`, `multiply`, `floor_divide`, `maximum`, `minimum`, `fmax`,
and `fmin`.

The internal logic is similar to the logic used for regular ufuncs,
which also have fast paths.

Thanks to the [D. E. Shaw group](https://deshaw.com/) for sponsoring
this work.

([gh-23136](https://github.com/numpy/numpy/pull/23136))

Faster membership test on `NpzFile`

Membership test on `NpzFile` will no longer decompress the archive if it
is successful.

([gh-23661](https://github.com/numpy/numpy/pull/23661))

Changes

`np.r_[]` and `np.c_[]` with certain scalar values

In rare cases, using mainly `np.r_` with scalars can lead to different
results. The main potential changes are highlighted by the following:

>>> np.r_[np.arange(5, dtype=np.uint8), -1].dtype
int16 rather than the default integer (int64 or int32)
>>> np.r_[np.arange(5, dtype=np.int8), 255]
array([ 0, 1, 2, 3, 4, 255], dtype=int16)

Where the second example returned:

array([ 0, 1, 2, 3, 4, -1], dtype=int8)

The first one is due to a signed integer scalar with an unsigned integer
array, while the second is due to `255` not fitting into `int8` and
NumPy currently inspecting values to make this work. (Note that the
second example is expected to change in the future due to
`NEP 50 <NEP50>`{.interpreted-text role="ref"}; it will then raise an
error.)

([gh-22539](https://github.com/numpy/numpy/pull/22539))

Most NumPy functions are wrapped into a C-callable

To speed up the `__array_function__` dispatching, most NumPy functions
are now wrapped into C-callables and are not proper Python functions or
C methods. They still look and feel the same as before (like a Python
function), and this should only improve performance and user experience
(cleaner tracebacks). However, please inform the NumPy developers if
this change confuses your program for some reason.

([gh-23020](https://github.com/numpy/numpy/pull/23020))

C++ standard library usage

NumPy builds now depend on the C++ standard library, because the
`numpy.core._multiarray_umath` extension is linked with the C++ linker.

([gh-23601](https://github.com/numpy/numpy/pull/23601))

Checksums

MD5

4657f046d9d9d62e4baeae9b2cc1b4ea numpy-1.25.0-cp310-cp310-macosx_10_9_x86_64.whl
f57f98fee3da2d98f752f755a880a508 numpy-1.25.0-cp310-cp310-macosx_11_0_arm64.whl
72b0ad52f96a41a7a82f511cb35c7ef1 numpy-1.25.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
a61227341b8903fa66ab0e0fdaa15430 numpy-1.25.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
bfccabfbd866c59545ce11ecdac60701 numpy-1.25.0-cp310-cp310-musllinux_1_1_x86_64.whl
22402904f194376b8d2de01481f04b03 numpy-1.25.0-cp310-cp310-win32.whl
e983b193f7d63568eac85d8bda8be62e numpy-1.25.0-cp310-cp310-win_amd64.whl
5f6477db172f59a4fd7f591e1007e632 numpy-1.25.0-cp311-cp311-macosx_10_9_x86_64.whl
6a85cca47af69e3d45b4efab9490af4d numpy-1.25.0-cp311-cp311-macosx_11_0_arm64.whl
ad1c0b4b406c9a2f1b42792502bc456b numpy-1.25.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
39e241f265611a9c1e89499054ead1c9 numpy-1.25.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e36b37acf1acfbc185face67c67bfe09 numpy-1.25.0-cp311-cp311-musllinux_1_1_x86_64.whl
67862d7849b4f0f943760142f1628aed numpy-1.25.0-cp311-cp311-win32.whl
6e8ed7865792246cac2213bad404f4da numpy-1.25.0-cp311-cp311-win_amd64.whl
25e843425697364f50dd7288ff9d2ce1 numpy-1.25.0-cp39-cp39-macosx_10_9_x86_64.whl
58641e53bcb1e13dfed1f5af1aff94bc numpy-1.25.0-cp39-cp39-macosx_11_0_arm64.whl
ce15327793c39beecee8401356bc6c9b numpy-1.25.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
34b734a2c7698d59954c29fe7c0536f3 numpy-1.25.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
6652d9df23c84e54466b10f4a2a290be numpy-1.25.0-cp39-cp39-musllinux_1_1_x86_64.whl
c228105e3c4c8887823d99e35eea9d2b numpy-1.25.0-cp39-cp39-win32.whl
1322210ae6a874293d13c4bb3abf24ee numpy-1.25.0-cp39-cp39-win_amd64.whl
dc36096628e65077c2a44c493606c668 numpy-1.25.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
942b4276f8d563efb111921d5995834c numpy-1.25.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
0fa0734a8ff952dd643e7b9826168099 numpy-1.25.0-pp39-pypy39_pp73-win_amd64.whl
b236497153bc19b4a560ac485e4c2754 numpy-1.25.0.tar.gz

SHA256

8aa130c3042052d656751df5e81f6d61edff3e289b5994edcf77f54118a8d9f4 numpy-1.25.0-cp310-cp310-macosx_10_9_x86_64.whl
9e3f2b96e3b63c978bc29daaa3700c028fe3f049ea3031b58aa33fe2a5809d24 numpy-1.25.0-cp310-cp310-macosx_11_0_arm64.whl
d6b267f349a99d3908b56645eebf340cb58f01bd1e773b4eea1a905b3f0e4208 numpy-1.25.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
4aedd08f15d3045a4e9c648f1e04daca2ab1044256959f1f95aafeeb3d794c16 numpy-1.25.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
6d183b5c58513f74225c376643234c369468e02947b47942eacbb23c1671f25d numpy-1.25.0-cp310-cp310-musllinux_1_1_x86_64.whl
d76a84998c51b8b68b40448ddd02bd1081bb33abcdc28beee6cd284fe11036c6 numpy-1.25.0-cp310-cp310-win32.whl
c0dc071017bc00abb7d7201bac06fa80333c6314477b3d10b52b58fa6a6e38f6 numpy-1.25.0-cp310-cp310-win_amd64.whl
4c69fe5f05eea336b7a740e114dec995e2f927003c30702d896892403df6dbf0 numpy-1.25.0-cp311-cp311-macosx_10_9_x86_64.whl
9c7211d7920b97aeca7b3773a6783492b5b93baba39e7c36054f6e749fc7490c numpy-1.25.0-cp311-cp311-macosx_11_0_arm64.whl
ecc68f11404930e9c7ecfc937aa423e1e50158317bf67ca91736a9864eae0232 numpy-1.25.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
e559c6afbca484072a98a51b6fa466aae785cfe89b69e8b856c3191bc8872a82 numpy-1.25.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
6c284907e37f5e04d2412950960894b143a648dea3f79290757eb878b91acbd1 numpy-1.25.0-cp311-cp311-musllinux_1_1_x86_64.whl
95367ccd88c07af21b379be1725b5322362bb83679d36691f124a16357390153 numpy-1.25.0-cp311-cp311-win32.whl
b76aa836a952059d70a2788a2d98cb2a533ccd46222558b6970348939e55fc24 numpy-1.25.0-cp311-cp311-win_amd64.whl
b792164e539d99d93e4e5e09ae10f8cbe5466de7d759fc155e075237e0c274e4 numpy-1.25.0-cp39-cp39-macosx_10_9_x86_64.whl
7cd981ccc0afe49b9883f14761bb57c964df71124dcd155b0cba2b591f0d64b9 numpy-1.25.0-cp39-cp39-macosx_11_0_arm64.whl
5aa48bebfb41f93043a796128854b84407d4df730d3fb6e5dc36402f5cd594c0 numpy-1.25.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
5177310ac2e63d6603f659fadc1e7bab33dd5a8db4e0596df34214eeab0fee3b numpy-1.25.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
0ac6edfb35d2a99aaf102b509c8e9319c499ebd4978df4971b94419a116d0790 numpy-1.25.0-cp39-cp39-musllinux_1_1_x86_64.whl
7412125b4f18aeddca2ecd7219ea2d2708f697943e6f624be41aa5f8a9852cc4 numpy-1.25.0-cp39-cp39-win32.whl
26815c6c8498dc49d81faa76d61078c4f9f0859ce7817919021b9eba72b425e3 numpy-1.25.0-cp39-cp39-win_amd64.whl
5b1b90860bf7d8a8c313b372d4f27343a54f415b20fb69dd601b7efe1029c91e numpy-1.25.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
85cdae87d8c136fd4da4dad1e48064d700f63e923d5af6c8c782ac0df8044542 numpy-1.25.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
cc3fda2b36482891db1060f00f881c77f9423eead4c3579629940a3e12095fe8 numpy-1.25.0-pp39-pypy39_pp73-win_amd64.whl
f1accae9a28dc3cda46a91de86acf69de0d1b5f4edd44a9b0c3ceb8036dfff19 numpy-1.25.0.tar.gz

1.19.0

Not secure
==========================

This NumPy release is marked by the removal of much technical debt:
support for Python 2 has been removed, many deprecations have been
expired, and documentation has been improved. The polishing of the
random module continues apace with bug fixes and better usability from
Cython.

The Python versions supported for this release are 3.6-3.8. Downstream
developers should use Cython \>= 0.29.16 for Python 3.8 support and
OpenBLAS \>= 3.7 to avoid problems on the Skylake architecture.

Highlights
----------

- Code compatibility with Python versions \< 3.5 (including Python 2)
was dropped from both the python and C code. The shims in
`numpy.compat` will remain to support third-party packages, but they
may be deprecated in a future release.

([gh-15233](https://github.com/numpy/numpy/pull/15233))

Expired deprecations
--------------------

`numpy.insert` and `numpy.delete` can no longer be passed an axis on 0d arrays

This concludes a deprecation from 1.9, where when an `axis` argument was
passed to a call to `~numpy.insert` and `~numpy.delete` on a 0d array,
the `axis` and `obj` argument and indices would be completely ignored.
In these cases, `insert(arr, "nonsense", 42, axis=0)` would actually
overwrite the entire array, while `delete(arr, "nonsense", axis=0)`
would be `arr.copy()`

Now passing `axis` on a 0d array raises `~numpy.AxisError`.

([gh-15802](https://github.com/numpy/numpy/pull/15802))

`numpy.delete` no longer ignores out-of-bounds indices

This concludes deprecations from 1.8 and 1.9, where `np.delete` would
ignore both negative and out-of-bounds items in a sequence of indices.
This was at odds with its behavior when passed a single index.

Now out-of-bounds items throw `IndexError`, and negative items index
from the end.

([gh-15804](https://github.com/numpy/numpy/pull/15804))

`numpy.insert` and `numpy.delete` no longer accept non-integral indices

This concludes a deprecation from 1.9, where sequences of non-integers
indices were allowed and cast to integers. Now passing sequences of
non-integral indices raises `IndexError`, just like it does when passing
a single non-integral scalar.

([gh-15805](https://github.com/numpy/numpy/pull/15805))

`numpy.delete` no longer casts boolean indices to integers

This concludes a deprecation from 1.8, where `np.delete` would cast
boolean arrays and scalars passed as an index argument into integer
indices. The behavior now is to treat boolean arrays as a mask, and to
raise an error on boolean scalars.

([gh-15815](https://github.com/numpy/numpy/pull/15815))

Compatibility notes
-------------------

Changed random variate stream from `numpy.random.Generator.dirichlet`

A bug in the generation of random variates for the Dirichlet
distribution with small \'alpha\' values was fixed by using a different
algorithm when `max(alpha) < 0.1`. Because of the change, the stream of
variates generated by `dirichlet` in this case will be different from
previous releases.

([gh-14924](https://github.com/numpy/numpy/pull/14924))

Scalar promotion in `PyArray_ConvertToCommonType`

The promotion of mixed scalars and arrays in
`PyArray_ConvertToCommonType` has been changed to adhere to those used
by `np.result_type`. This means that input such as
`(1000, np.array([1], dtype=np.uint8)))` will now return `uint16`
dtypes. In most cases the behaviour is unchanged. Note that the use of
this C-API function is generally discouraged. This also fixes
`np.choose` to behave the same way as the rest of NumPy in this respect.

([gh-14933](https://github.com/numpy/numpy/pull/14933))

Fasttake and fastputmask slots are deprecated and NULL\'ed

The fasttake and fastputmask slots are now never used and must always be
set to NULL. This will result in no change in behaviour. However, if a
user dtype should set one of these a DeprecationWarning will be given.

([gh-14942](https://github.com/numpy/numpy/pull/14942))

`np.ediff1d` casting behaviour with `to_end` and `to_begin`

`np.ediff1d` now uses the `"same_kind"` casting rule for its additional
`to_end` and `to_begin` arguments. This ensures type safety except when
the input array has a smaller integer type than `to_begin` or `to_end`.
In rare cases, the behaviour will be more strict than it was previously
in 1.16 and 1.17. This is necessary to solve issues with floating point
NaN.

([gh-14981](https://github.com/numpy/numpy/pull/14981))

Converting of empty array-like objects to NumPy arrays

Objects with `len(obj) == 0` which implement an \"array-like\"
interface, meaning an object implementing `obj.__array__()`,
`obj.__array_interface__`, `obj.__array_struct__`, or the python buffer
interface and which are also sequences (i.e. Pandas objects) will now
always retain there shape correctly when converted to an array. If such
an object has a shape of `(0, 1)` previously, it could be converted into
an array of shape `(0,)` (losing all dimensions after the first 0).

([gh-14995](https://github.com/numpy/numpy/pull/14995))

Removed `multiarray.int_asbuffer`

As part of the continued removal of Python 2 compatibility,
`multiarray.int_asbuffer` was removed. On Python 3, it threw a
`NotImplementedError` and was unused internally. It is expected that
there are no downstream use cases for this method with Python 3.

([gh-15229](https://github.com/numpy/numpy/pull/15229))

`numpy.distutils.compat` has been removed

This module contained only the function `get_exception()`, which was
used as:

try:
...
except Exception:
e = get_exception()

Its purpose was to handle the change in syntax introduced in Python 2.6,
from `except Exception, e:` to `except Exception as e:`, meaning it was
only necessary for codebases supporting Python 2.5 and older.

([gh-15255](https://github.com/numpy/numpy/pull/15255))

`issubdtype` no longer interprets `float` as `np.floating`

`numpy.issubdtype` had a FutureWarning since NumPy 1.14 which has
expired now. This means that certain input where the second argument was
neither a datatype nor a NumPy scalar type (such as a string or a python
type like `int` or `float`) will now be consistent with passing in
`np.dtype(arg2).type`. This makes the result consistent with
expectations and leads to a false result in some cases which previously
returned true.

([gh-15773](https://github.com/numpy/numpy/pull/15773))

Change output of `round` on scalars to be consistent with Python

Output of the `__round__` dunder method and consequently the Python
built-in `round` has been changed to be a Python `int` to be consistent
with calling it on Python `float` objects when called with no arguments.
Previously, it would return a scalar of the `np.dtype` that was passed
in.

([gh-15840](https://github.com/numpy/numpy/pull/15840))

The `numpy.ndarray` constructor no longer interprets `strides=()` as `strides=None`

The former has changed to have the expected meaning of setting
`numpy.ndarray.strides` to `()`, while the latter continues to result in
strides being chosen automatically.

([gh-15882](https://github.com/numpy/numpy/pull/15882))

C-Level string to datetime casts changed

The C-level casts from strings were simplified. This changed also fixes
string to datetime and timedelta casts to behave correctly (i.e. like
Python casts using `string_arr.astype("M8")` while previously the cast
would behave like `string_arr.astype(np.int_).astype("M8")`. This only
affects code using low-level C-API to do manual casts (not full array
casts) of single scalar values or using e.g. `PyArray_GetCastFunc`, and
should thus not affect the vast majority of users.

([gh-16068](https://github.com/numpy/numpy/pull/16068))

Deprecations
------------

Deprecate automatic `dtype=object` for ragged input

Calling `np.array([[1, [1, 2, 3]])` will issue a `DeprecationWarning` as
per [NEP 34](https://numpy.org/neps/nep-0034.html). Users should
explicitly use `dtype=object` to avoid the warning.

([gh-15119](https://github.com/numpy/numpy/pull/15119))

Passing `shape=0` to factory functions in `numpy.rec` is deprecated

`0` is treated as a special case and is aliased to `None` in the
functions:

- `numpy.core.records.fromarrays`
- `numpy.core.records.fromrecords`
- `numpy.core.records.fromstring`
- `numpy.core.records.fromfile`

In future, `0` will not be special cased, and will be treated as an
array length like any other integer.

([gh-15217](https://github.com/numpy/numpy/pull/15217))

Deprecation of probably unused C-API functions

The following C-API functions are probably unused and have been
deprecated:

- `PyArray_GetArrayParamsFromObject`
- `PyUFunc_GenericFunction`
- `PyUFunc_SetUsesArraysAsData`

In most cases `PyArray_GetArrayParamsFromObject` should be replaced by
converting to an array, while `PyUFunc_GenericFunction` can be replaced
with `PyObject_Call` (see documentation for details).

([gh-15427](https://github.com/numpy/numpy/pull/15427))

Converting certain types to dtypes is Deprecated

The super classes of scalar types, such as `np.integer`, `np.generic`,
or `np.inexact` will now give a deprecation warning when converted to a
dtype (or used in a dtype keyword argument). The reason for this is that
`np.integer` is converted to `np.int_`, while it would be expected to
represent *any* integer (e.g. also `int8`, `int16`, etc. For example,
`dtype=np.floating` is currently identical to `dtype=np.float64`, even
though also `np.float32` is a subclass of `np.floating`.

([gh-15534](https://github.com/numpy/numpy/pull/15534))

Deprecation of `round` for `np.complexfloating` scalars

Output of the `__round__` dunder method and consequently the Python
built-in `round` has been deprecated on complex scalars. This does not
affect `np.round`.

([gh-15840](https://github.com/numpy/numpy/pull/15840))

`numpy.ndarray.tostring()` is deprecated in favor of `tobytes()`

`~numpy.ndarray.tobytes` has existed since the 1.9 release, but until
this release `~numpy.ndarray.tostring` emitted no warning. The change to
emit a warning brings NumPy in line with the builtin `array.array`
methods of the same name.

([gh-15867](https://github.com/numpy/numpy/pull/15867))

C API changes
-------------

Better support for `const` dimensions in API functions

The following functions now accept a constant array of `npy_intp`:

- `PyArray_BroadcastToShape`
- `PyArray_IntTupleFromIntp`
- `PyArray_OverflowMultiplyList`

Previously the caller would have to cast away the const-ness to call
these functions.

([gh-15251](https://github.com/numpy/numpy/pull/15251))

Const qualify UFunc inner loops

`UFuncGenericFunction` now expects pointers to const `dimension` and
`strides` as arguments. This means inner loops may no longer modify
either `dimension` or `strides`. This change leads to an
`incompatible-pointer-types` warning forcing users to either ignore the
compiler warnings or to const qualify their own loop signatures.

([gh-15355](https://github.com/numpy/numpy/pull/15355))

New Features
------------

`numpy.frompyfunc` now accepts an identity argument

This allows the `` `numpy.ufunc.identity ``{.interpreted-text
role="attr"}[ attribute to be set on the resulting ufunc, meaning it can
be used for empty and multi-dimensional calls to
:meth:]{.title-ref}[numpy.ufunc.reduce]{.title-ref}\`.

([gh-8255](https://github.com/numpy/numpy/pull/8255))

`np.str_` scalars now support the buffer protocol

`np.str_` arrays are always stored as UCS4, so the corresponding scalars
now expose this through the buffer interface, meaning
`memoryview(np.str_('test'))` now works.

([gh-15385](https://github.com/numpy/numpy/pull/15385))

`subok` option for `numpy.copy`

A new kwarg, `subok`, was added to `numpy.copy` to allow users to toggle
the behavior of `numpy.copy` with respect to array subclasses. The
default value is `False` which is consistent with the behavior of
`numpy.copy` for previous numpy versions. To create a copy that
preserves an array subclass with `numpy.copy`, call
`np.copy(arr, subok=True)`. This addition better documents that the
default behavior of `numpy.copy` differs from the `numpy.ndarray.copy`
method which respects array subclasses by default.

([gh-15685](https://github.com/numpy/numpy/pull/15685))

`numpy.linalg.multi_dot` now accepts an `out` argument

`out` can be used to avoid creating unnecessary copies of the final
product computed by `numpy.linalg.multidot`.

([gh-15715](https://github.com/numpy/numpy/pull/15715))

`keepdims` parameter for `numpy.count_nonzero`

The parameter `keepdims` was added to `numpy.count_nonzero`. The
parameter has the same meaning as it does in reduction functions such as
`numpy.sum` or `numpy.mean`.

([gh-15870](https://github.com/numpy/numpy/pull/15870))

`equal_nan` parameter for `numpy.array_equal`

The keyword argument `equal_nan` was added to `numpy.array_equal`.
`equal_nan` is a boolean value that toggles whether or not `nan` values
are considered equal in comparison (default is `False`). This matches
API used in related functions such as `numpy.isclose` and
`numpy.allclose`.

([gh-16128](https://github.com/numpy/numpy/pull/16128))

Improvements
------------

Improve detection of CPU features
---------------------------------

Replace `npy_cpu_supports` which was a gcc specific mechanism to test
support of AVX with more general functions `npy_cpu_init` and
`npy_cpu_have`, and expose the results via a `NPY_CPU_HAVE` c-macro as
well as a python-level `__cpu_features__` dictionary.

([gh-13421](https://github.com/numpy/numpy/pull/13421))

Use 64-bit integer size on 64-bit platforms in fallback lapack\_lite

Use 64-bit integer size on 64-bit platforms in the fallback LAPACK
library, which is used when the system has no LAPACK installed, allowing
it to deal with linear algebra for large arrays.

([gh-15218](https://github.com/numpy/numpy/pull/15218))

Use AVX512 intrinsic to implement `np.exp` when input is `np.float64`

Use AVX512 intrinsic to implement `np.exp` when input is `np.float64`,
which can improve the performance of `np.exp` with `np.float64` input
5-7x faster than before. The `_multiarray_umath.so` module has grown
about 63 KB on linux64.

([gh-15648](https://github.com/numpy/numpy/pull/15648))

Ability to disable madvise hugepages

On Linux NumPy has previously added support for madavise hugepages which
can improve performance for very large arrays. Unfortunately, on older
Kernel versions this led to peformance regressions, thus by default the
support has been disabled on kernels before version 4.6. To override the
default, you can use the environment variable:

NUMPY_MADVISE_HUGEPAGE=0

or set it to 1 to force enabling support. Note that this only makes a
difference if the operating system is set up to use madvise transparent
hugepage.

([gh-15769](https://github.com/numpy/numpy/pull/15769))

`numpy.einsum` accepts NumPy `int64` type in subscript list

There is no longer a type error thrown when `numpy.einsum` is passed a
NumPy `int64` array as its subscript list.

([gh-16080](https://github.com/numpy/numpy/pull/16080))

`np.logaddexp2.identity` changed to `-inf`

The ufunc `~numpy.logaddexp2` now has an identity of `-inf`, allowing it
to be called on empty sequences. This matches the identity of
`~numpy.logaddexp`.

([gh-16102](https://github.com/numpy/numpy/pull/16102))

Changes
-------

Remove handling of extra argument to `__array__`

A code path and test have been in the code since NumPy 0.4 for a
two-argument variant of `__array__(dtype=None, context=None)`. It was
activated when calling `ufunc(op)` or `ufunc.reduce(op)` if
`op.__array__` existed. However that variant is not documented, and it
is not clear what the intention was for its use. It has been removed.

([gh-15118](https://github.com/numpy/numpy/pull/15118))

`numpy.random._bit_generator` moved to `numpy.random.bit_generator`

In order to expose `numpy.random.BitGenerator` and
`numpy.random.SeedSequence` to Cython, the `_bitgenerator` module is now
public as `numpy.random.bit_generator`

Cython access to the random distributions is provided via a `pxd` file

`c_distributions.pxd` provides access to the c functions behind many of
the random distributions from Cython, making it convenient to use and
extend them.

([gh-15463](https://github.com/numpy/numpy/pull/15463))

Fixed `eigh` and `cholesky` methods in `numpy.random.multivariate_normal`

Previously, when passing `method='eigh'` or `method='cholesky'`,
`numpy.random.multivariate_normal` produced samples from the wrong
distribution. This is now fixed.

([gh-15872](https://github.com/numpy/numpy/pull/15872))

Fixed the jumping implementation in `MT19937.jumped`

This fix changes the stream produced from jumped MT19937 generators. It
does not affect the stream produced using `RandomState` or `MT19937`
that are directly seeded.

The translation of the jumping code for the MT19937 contained a reversed
loop ordering. `MT19937.jumped` matches the Makoto Matsumoto\'s original
implementation of the Horner and Sliding Window jump methods.

([gh-16153](https://github.com/numpy/numpy/pull/16153))

Checksums
---------

MD5

dac784fdc5f86f6b4daabb8a3edb59ef numpy-1.19.0rc1-cp36-cp36m-macosx_10_9_x86_64.whl
40df9787a18b84fbb7ab06de9e557abd numpy-1.19.0rc1-cp36-cp36m-manylinux1_i686.whl
f54d2c826b31469e1bddf271e8ebbbfa numpy-1.19.0rc1-cp36-cp36m-manylinux1_x86_64.whl
11da401f740d8fed948ab84f92b52490 numpy-1.19.0rc1-cp36-cp36m-manylinux2010_i686.whl
3a49ddd9cc062896b352d9914213d6c8 numpy-1.19.0rc1-cp36-cp36m-manylinux2010_x86_64.whl
426c0c9859f7384781be7fbfa1fbca28 numpy-1.19.0rc1-cp36-cp36m-manylinux2014_aarch64.whl
5e7c8d718b3e867a8c063bd18addde3f numpy-1.19.0rc1-cp36-cp36m-win32.whl
5dfdf8b5dea6ac218a93038dc1eb5b8b numpy-1.19.0rc1-cp36-cp36m-win_amd64.whl
10575aa075e31e1f190a802e8c784bd5 numpy-1.19.0rc1-cp37-cp37m-macosx_10_9_x86_64.whl
1cf8fa399117e8d95ef9ca8847451362 numpy-1.19.0rc1-cp37-cp37m-manylinux1_i686.whl
c832ede9b1272d32cb282ca7f951b084 numpy-1.19.0rc1-cp37-cp37m-manylinux1_x86_64.whl
3798e81e08e02c9683b03245ef181fe0 numpy-1.19.0rc1-cp37-cp37m-manylinux2010_i686.whl
fea16821dabc6563ff1475eadf18ecbb numpy-1.19.0rc1-cp37-cp37m-manylinux2010_x86_64.whl
040b481a6ba7c613f246dac8ebc5c44c numpy-1.19.0rc1-cp37-cp37m-manylinux2014_aarch64.whl
96698d2aa93adcc16296fa40f094bbc1 numpy-1.19.0rc1-cp37-cp37m-win32.whl
f930010f054f835d3818a2929ba66746 numpy-1.19.0rc1-cp37-cp37m-win_amd64.whl
1dc7545c2c53a95ea2523d98e6b7047e numpy-1.19.0rc1-cp38-cp38-macosx_10_9_x86_64.whl
d9f9d3653f4a5f58c0b4fa391bbeabbe numpy-1.19.0rc1-cp38-cp38-manylinux1_i686.whl
a89277714025de276a6c2916df470372 numpy-1.19.0rc1-cp38-cp38-manylinux1_x86_64.whl
894196d9ce2e1620a8fbc5ed95543580 numpy-1.19.0rc1-cp38-cp38-manylinux2010_i686.whl
071173ca8afca1b3fbcfc926a56ffd7f numpy-1.19.0rc1-cp38-cp38-manylinux2010_x86_64.whl
4180d5cda1e44242e8ed5b3c8b379d88 numpy-1.19.0rc1-cp38-cp38-manylinux2014_aarch64.whl
17c1867c83b2f07621d064145a255fc1 numpy-1.19.0rc1-cp38-cp38-win32.whl
b32c7bfc056895eb78b6129045f49523 numpy-1.19.0rc1-cp38-cp38-win_amd64.whl
704bc03983673b18017e6b461d55a8c8 numpy-1.19.0rc1-pp36-pypy36_pp73-manylinux2010_x86_64.whl
fd6765ceb2074658eb40641de9ad596f numpy-1.19.0rc1.tar.gz
cc786052918361cb08f885e3e8c257fe numpy-1.19.0rc1.zip

SHA256

361c84cdf8e10a27d1ce7bb0404284eed2f704fb10ebbdb714fe5a51ef4f2765 numpy-1.19.0rc1-cp36-cp36m-macosx_10_9_x86_64.whl
de874f2537e4e604c1db5905c4728b6b715c66a85bc71b5bc1b236973dc7610a numpy-1.19.0rc1-cp36-cp36m-manylinux1_i686.whl
8c4be83b9f253701ff865b6a9de26bbb67a3104486123347a3629101d3268a43 numpy-1.19.0rc1-cp36-cp36m-manylinux1_x86_64.whl
f6fe5dd6526fa6c0083fb5218a903dc9d9ea02df66996cd3be8c44c3b97894d5 numpy-1.19.0rc1-cp36-cp36m-manylinux2010_i686.whl
96578b9000e8ca35b83e96237d617345c4ac7bf8816cb950ddf76235b3b7306c numpy-1.19.0rc1-cp36-cp36m-manylinux2010_x86_64.whl
8ac99d78e3ebc41b0dccf024a8dd36057abfa4dfcf3875259abf09da28e89fd2 numpy-1.19.0rc1-cp36-cp36m-manylinux2014_aarch64.whl
fbd9dbb96fa22ee2f2cfad5311563a9df4528d3ac70f7635a9da0c7424ba4459 numpy-1.19.0rc1-cp36-cp36m-win32.whl
c995c832ddf4ce88b6383ce8c9160e86d614141412c0c874b6df87f680783528 numpy-1.19.0rc1-cp36-cp36m-win_amd64.whl
1ae709f648755ce757ef896fb110c52cbc76bc787a1243ad9b1262be3cc01e64 numpy-1.19.0rc1-cp37-cp37m-macosx_10_9_x86_64.whl
0028da01578ddb0d7372ccd168d7e7e3b04f25881db7f520bff6c50456aa7b02 numpy-1.19.0rc1-cp37-cp37m-manylinux1_i686.whl
82a905f8d920aa1dc2d642a1e76ed54f2baa3eb23e2216bc6cd41ae2b274dded numpy-1.19.0rc1-cp37-cp37m-manylinux1_x86_64.whl
09e0e60d6ed6417516a08f9767665ae459507dd1df63942e0c0bb69d93f05c0e numpy-1.19.0rc1-cp37-cp37m-manylinux2010_i686.whl
164d8d2a0de07c3aba089e7db0873930ac05252d985c8825f247bd79ddf3bd9d numpy-1.19.0rc1-cp37-cp37m-manylinux2010_x86_64.whl
1041dd124664263f1b9cde98028dd2d0f164a94b13a06183f27a7b7dd14767ad numpy-1.19.0rc1-cp37-cp37m-manylinux2014_aarch64.whl
d5833cb9cce627e960c87b75eb1878498cdf430155062f9423cee5617032284f numpy-1.19.0rc1-cp37-cp37m-win32.whl
59b4ace51c26d6f6698ebaee442a37d2f34415ad2d9c683e18bb462f50768697 numpy-1.19.0rc1-cp37-cp37m-win_amd64.whl
1d84d42be12fc7d3e9afc2e381136e6a4a0aa509183166b99079fd87afb8a6a6 numpy-1.19.0rc1-cp38-cp38-macosx_10_9_x86_64.whl
f45938abfa864e342f6719f05150f6458e018e22793a6fdf60e0ea4d4d15f53c numpy-1.19.0rc1-cp38-cp38-manylinux1_i686.whl
876a0d72f16e60c34678ff52535d0ccdfb5718ed0ebac4ed50187bd6e06c1bac numpy-1.19.0rc1-cp38-cp38-manylinux1_x86_64.whl
0bffe7f20aa96e3b16a99c5a38a6e3ebeeff9203c8000723f040c72746808c5b numpy-1.19.0rc1-cp38-cp38-manylinux2010_i686.whl
c39e84169f93899a15dbb7cbd3e68bd6bb31f56800658d966f89a2186eb4f929 numpy-1.19.0rc1-cp38-cp38-manylinux2010_x86_64.whl
5c1db3b05428c6c8397c2457063b16a03688f1d0531dac96afa46a0362a5f237 numpy-1.19.0rc1-cp38-cp38-manylinux2014_aarch64.whl
c58eedde4999735da1d95a4af266a43ba1c32fbc2021941bb5149ad58da1312d numpy-1.19.0rc1-cp38-cp38-win32.whl
705551bb2fb68a3ee1c5868a24d9e57670324a2c25530e3846b58f111ca3bada numpy-1.19.0rc1-cp38-cp38-win_amd64.whl
72a8744aa28d2f85629810aa13fe45b13992ca9566eade5fecb0e916d7df6c80 numpy-1.19.0rc1-pp36-pypy36_pp73-manylinux2010_x86_64.whl
c42b898277e1c2fdefa4361c6435e57311ad547f584039cbd935625701572d8e numpy-1.19.0rc1.tar.gz
1ae657a2390cbc1553df60cb2a5f69742761d0ad5957b0113c9c00bb06276a78 numpy-1.19.0rc1.zip

1.19.0rc2

1.19.0rc1

1.18.5

Not secure
==========================

This is a short release to allow pickle `protocol=5` to be used in
Python3.5. It is motivated by the recent backport of pickle5 to
Python3.5.

The Python versions supported in this release are 3.5-3.8. Downstream
developers should use Cython \>= 0.29.15 for Python 3.8 support and
OpenBLAS \>= 3.7 to avoid errors on the Skylake architecture.

Contributors
------------

A total of 3 people contributed to this release. People with a \"+\" by
their names contributed a patch for the first time.

- Charles Harris
- Matti Picus
- Siyuan Zhuang +

Pull requests merged
--------------------

A total of 2 pull requests were merged for this release.

- [\16439](https://github.com/numpy/numpy/pull/16439): ENH: enable pickle protocol 5 support for python3.5
- [\16441](https://github.com/numpy/numpy/pull/16441): BUG: relpath fails for different drives on windows

Checksums
---------

MD5

f923519347ba9f6bca59dce0583bdbd5 numpy-1.18.5-cp35-cp35m-macosx_10_9_intel.whl
79990253bda9ffa2db75152e77c318e9 numpy-1.18.5-cp35-cp35m-manylinux1_i686.whl
d5bf77d6caf4f83ed871ab9e4f9d1f72 numpy-1.18.5-cp35-cp35m-manylinux1_x86_64.whl
2cc7cc1b1640d6b50c50d96a35624698 numpy-1.18.5-cp35-cp35m-win32.whl
5a93e72e30c56462492a29315e19c0cc numpy-1.18.5-cp35-cp35m-win_amd64.whl
caef5b4785e5deb6891f118a49d48ccc numpy-1.18.5-cp36-cp36m-macosx_10_9_x86_64.whl
402be8c771c2541c7ee936ef63c9ebc0 numpy-1.18.5-cp36-cp36m-manylinux1_i686.whl
259dbb8694209921d56ffb091ae42b5b numpy-1.18.5-cp36-cp36m-manylinux1_x86_64.whl
9188a301a9640836322f2dc926640515 numpy-1.18.5-cp36-cp36m-win32.whl
acfa82d4e66601386dad19ad3a3983a5 numpy-1.18.5-cp36-cp36m-win_amd64.whl
bc1ebaa1ecf20f22b72cbb824c9cbc21 numpy-1.18.5-cp37-cp37m-macosx_10_9_x86_64.whl
97f27a6e2e6951cf8107132e7c628004 numpy-1.18.5-cp37-cp37m-manylinux1_i686.whl
f261237ab3d47b9b6e859bf240014a48 numpy-1.18.5-cp37-cp37m-manylinux1_x86_64.whl
08bdf2289600c5c728a2668b585fdd02 numpy-1.18.5-cp37-cp37m-win32.whl
8b793d97dae258d06e63c452a2684b16 numpy-1.18.5-cp37-cp37m-win_amd64.whl
2b9153362bf0e53574abc2df048a1578 numpy-1.18.5-cp38-cp38-macosx_10_9_x86_64.whl
1715c674b3070ccd90f56fa2cd48cce1 numpy-1.18.5-cp38-cp38-manylinux1_i686.whl
2347f759a1b8bc27423bb5ece6ae1c79 numpy-1.18.5-cp38-cp38-manylinux1_x86_64.whl
b66c03695208dd843b78acb32557a765 numpy-1.18.5-cp38-cp38-win32.whl
81c9e86442602529b3c52d4af7a515b7 numpy-1.18.5-cp38-cp38-win_amd64.whl
ca23173650ded5585f7030fee91005bf numpy-1.18.5.tar.gz
0d426af04e17cd480ecf3cd70743eaf4 numpy-1.18.5.zip

SHA256

e91d31b34fc7c2c8f756b4e902f901f856ae53a93399368d9a0dc7be17ed2ca0 numpy-1.18.5-cp35-cp35m-macosx_10_9_intel.whl
7d42ab8cedd175b5ebcb39b5208b25ba104842489ed59fbb29356f671ac93583 numpy-1.18.5-cp35-cp35m-manylinux1_i686.whl
a78e438db8ec26d5d9d0e584b27ef25c7afa5a182d1bf4d05e313d2d6d515271 numpy-1.18.5-cp35-cp35m-manylinux1_x86_64.whl
a87f59508c2b7ceb8631c20630118cc546f1f815e034193dc72390db038a5cb3 numpy-1.18.5-cp35-cp35m-win32.whl
965df25449305092b23d5145b9bdaeb0149b6e41a77a7d728b1644b3c99277c1 numpy-1.18.5-cp35-cp35m-win_amd64.whl
ac792b385d81151bae2a5a8adb2b88261ceb4976dbfaaad9ce3a200e036753dc numpy-1.18.5-cp36-cp36m-macosx_10_9_x86_64.whl
ef627986941b5edd1ed74ba89ca43196ed197f1a206a3f18cc9faf2fb84fd675 numpy-1.18.5-cp36-cp36m-manylinux1_i686.whl
f718a7949d1c4f622ff548c572e0c03440b49b9531ff00e4ed5738b459f011e8 numpy-1.18.5-cp36-cp36m-manylinux1_x86_64.whl
4064f53d4cce69e9ac613256dc2162e56f20a4e2d2086b1956dd2fcf77b7fac5 numpy-1.18.5-cp36-cp36m-win32.whl
b03b2c0badeb606d1232e5f78852c102c0a7989d3a534b3129e7856a52f3d161 numpy-1.18.5-cp36-cp36m-win_amd64.whl
a7acefddf994af1aeba05bbbafe4ba983a187079f125146dc5859e6d817df824 numpy-1.18.5-cp37-cp37m-macosx_10_9_x86_64.whl
cd49930af1d1e49a812d987c2620ee63965b619257bd76eaaa95870ca08837cf numpy-1.18.5-cp37-cp37m-manylinux1_i686.whl
b39321f1a74d1f9183bf1638a745b4fd6fe80efbb1f6b32b932a588b4bc7695f numpy-1.18.5-cp37-cp37m-manylinux1_x86_64.whl
cae14a01a159b1ed91a324722d746523ec757357260c6804d11d6147a9e53e3f numpy-1.18.5-cp37-cp37m-win32.whl
0172304e7d8d40e9e49553901903dc5f5a49a703363ed756796f5808a06fc233 numpy-1.18.5-cp37-cp37m-win_amd64.whl
e15b382603c58f24265c9c931c9a45eebf44fe2e6b4eaedbb0d025ab3255228b numpy-1.18.5-cp38-cp38-macosx_10_9_x86_64.whl
3676abe3d621fc467c4c1469ee11e395c82b2d6b5463a9454e37fe9da07cd0d7 numpy-1.18.5-cp38-cp38-manylinux1_i686.whl
4674f7d27a6c1c52a4d1aa5f0881f1eff840d2206989bae6acb1c7668c02ebfb numpy-1.18.5-cp38-cp38-manylinux1_x86_64.whl
9c9d6531bc1886454f44aa8f809268bc481295cf9740827254f53c30104f074a numpy-1.18.5-cp38-cp38-win32.whl
3dd6823d3e04b5f223e3e265b4a1eae15f104f4366edd409e5a5e413a98f911f numpy-1.18.5-cp38-cp38-win_amd64.whl
2c095bd1c5290966cceee8b6ef5cd66f13cd0e9d6d0e8d6fc8961abd64a8e51f numpy-1.18.5.tar.gz
34e96e9dae65c4839bd80012023aadd6ee2ccb73ce7fdf3074c62f301e63120b numpy-1.18.5.zip

1.18.4

Not secure
---
title: 'NumPy 1.18.4 Release Notes'
---

This is that last planned release in the 1.18.x series. It reverts the
`bool("0")` behavior introduced in 1.18.3 and fixes a bug in
`Generator.integers`. There is also improved help in the error message
emitted when numpy import fails due to a link to a new troubleshooting
section in the documentation that is now included.

The Python versions supported in this release are 3.5-3.8. Downstream
developers should use Cython \>= 0.29.15 for Python 3.8 support and
OpenBLAS \>= 3.7 to avoid errors on the Skylake architecture.

Contributors
============

A total of 4 people contributed to this release. People with a \"+\" by
their names contributed a patch for the first time.

- Charles Harris
- Matti Picus
- Sebastian Berg
- Warren Weckesser

Pull requests merged
====================

A total of 6 pull requests were merged for this release.

- 16055 BLD: add i686 for 1.18 builds
- 16090 BUG: random: `Generator.integers(2**32)` always returned 0.
- 16091 BLD: fix path to libgfortran on macOS
- 16109 REV: Reverts side-effect changes to casting
- 16114 BLD: put openblas library in local directory on windows
- 16132 DOC: Change import error \"howto\" to link to new troubleshooting\...

Checksums
=========

MD5
---

1fe09153c9e6da5c9e73f3ed466da50c numpy-1.18.4-cp35-cp35m-macosx_10_9_intel.whl
707b0270ece3e9a16905e756884daa48 numpy-1.18.4-cp35-cp35m-manylinux1_i686.whl
47f90c71c3df80ace2b32d011ed1c240 numpy-1.18.4-cp35-cp35m-manylinux1_x86_64.whl
e0e7d9fd9f4c8cf077ba5cda69833d38 numpy-1.18.4-cp35-cp35m-win32.whl
06e844091463932a0d4da103951ffc2c numpy-1.18.4-cp35-cp35m-win_amd64.whl
32ce3d6d266f1fbfef4a2ff917053718 numpy-1.18.4-cp36-cp36m-macosx_10_9_x86_64.whl
f5d27cca8bf9dc8f603cad5255674bb8 numpy-1.18.4-cp36-cp36m-manylinux1_i686.whl
460bd10297e582f0e061194356990afb numpy-1.18.4-cp36-cp36m-manylinux1_x86_64.whl
160c62c881a5109f3e47813dd0079ab1 numpy-1.18.4-cp36-cp36m-win32.whl
03e2d39bfaaf27993b353b98c75f27cc numpy-1.18.4-cp36-cp36m-win_amd64.whl
672cb3889e7c9285ca260f8d15c2bc9f numpy-1.18.4-cp37-cp37m-macosx_10_9_x86_64.whl
eaebca109ce5346ec1626af476e88edb numpy-1.18.4-cp37-cp37m-manylinux1_i686.whl
bdf6d9bd169e5552284dd366c12e3759 numpy-1.18.4-cp37-cp37m-manylinux1_x86_64.whl
408f8eedcfb8bee6c0d8cb13f4665edd numpy-1.18.4-cp37-cp37m-win32.whl
2d2cc2ccd5c276bde6696856609dee9f numpy-1.18.4-cp37-cp37m-win_amd64.whl
5bdfaa2daf5afd8e6db8c202f58d5ef0 numpy-1.18.4-cp38-cp38-macosx_10_9_x86_64.whl
1aad5b0c4545e206aae7848853633885 numpy-1.18.4-cp38-cp38-manylinux1_i686.whl
f7e78dcee83fb851c97804d7fb987fdb numpy-1.18.4-cp38-cp38-manylinux1_x86_64.whl
91678301ec0d6e6c20bf7c71bc8665a5 numpy-1.18.4-cp38-cp38-win32.whl
916b27fca6fb780907033067cad175fe numpy-1.18.4-cp38-cp38-win_amd64.whl
70e6c294f8dffa8d630eda1b0d42ae4d numpy-1.18.4.tar.gz
37277c5cbe5a850513fbff5ffdad1caf numpy-1.18.4.zip

SHA256
------

efdba339fffb0e80fcc19524e4fdbda2e2b5772ea46720c44eaac28096d60720 numpy-1.18.4-cp35-cp35m-macosx_10_9_intel.whl
2b573fcf6f9863ce746e4ad00ac18a948978bb3781cffa4305134d31801f3e26 numpy-1.18.4-cp35-cp35m-manylinux1_i686.whl
3f0dae97e1126f529ebb66f3c63514a0f72a177b90d56e4bce8a0b5def34627a numpy-1.18.4-cp35-cp35m-manylinux1_x86_64.whl
dccd380d8e025c867ddcb2f84b439722cf1f23f3a319381eac45fd077dee7170 numpy-1.18.4-cp35-cp35m-win32.whl
02ec9582808c4e48be4e93cd629c855e644882faf704bc2bd6bbf58c08a2a897 numpy-1.18.4-cp35-cp35m-win_amd64.whl
904b513ab8fbcbdb062bed1ce2f794ab20208a1b01ce9bd90776c6c7e7257032 numpy-1.18.4-cp36-cp36m-macosx_10_9_x86_64.whl
e22cd0f72fc931d6abc69dc7764484ee20c6a60b0d0fee9ce0426029b1c1bdae numpy-1.18.4-cp36-cp36m-manylinux1_i686.whl
2466fbcf23711ebc5daa61d28ced319a6159b260a18839993d871096d66b93f7 numpy-1.18.4-cp36-cp36m-manylinux1_x86_64.whl
00d7b54c025601e28f468953d065b9b121ddca7fff30bed7be082d3656dd798d numpy-1.18.4-cp36-cp36m-win32.whl
7d59f21e43bbfd9a10953a7e26b35b6849d888fc5a331fa84a2d9c37bd9fe2a2 numpy-1.18.4-cp36-cp36m-win_amd64.whl
efb7ac5572c9a57159cf92c508aad9f856f1cb8e8302d7fdb99061dbe52d712c numpy-1.18.4-cp37-cp37m-macosx_10_9_x86_64.whl
0e6f72f7bb08f2f350ed4408bb7acdc0daba637e73bce9f5ea2b207039f3af88 numpy-1.18.4-cp37-cp37m-manylinux1_i686.whl
9933b81fecbe935e6a7dc89cbd2b99fea1bf362f2790daf9422a7bb1dc3c3085 numpy-1.18.4-cp37-cp37m-manylinux1_x86_64.whl
96dd36f5cdde152fd6977d1bbc0f0561bccffecfde63cd397c8e6033eb66baba numpy-1.18.4-cp37-cp37m-win32.whl
57aea170fb23b1fd54fa537359d90d383d9bf5937ee54ae8045a723caa5e0961 numpy-1.18.4-cp37-cp37m-win_amd64.whl
ed722aefb0ebffd10b32e67f48e8ac4c5c4cf5d3a785024fdf0e9eb17529cd9d numpy-1.18.4-cp38-cp38-macosx_10_9_x86_64.whl
50fb72bcbc2cf11e066579cb53c4ca8ac0227abb512b6cbc1faa02d1595a2a5d numpy-1.18.4-cp38-cp38-manylinux1_i686.whl
709c2999b6bd36cdaf85cf888d8512da7433529f14a3689d6e37ab5242e7add5 numpy-1.18.4-cp38-cp38-manylinux1_x86_64.whl
f22273dd6a403ed870207b853a856ff6327d5cbce7a835dfa0645b3fc00273ec numpy-1.18.4-cp38-cp38-win32.whl
1be2e96314a66f5f1ce7764274327fd4fb9da58584eaff00b5a5221edefee7d6 numpy-1.18.4-cp38-cp38-win_amd64.whl
e0781ec6627e85f2a618478ee278893343fb8b40577b4c74b2ec15c7a5b8f698 numpy-1.18.4.tar.gz
bbcc85aaf4cd84ba057decaead058f43191cc0e30d6bc5d44fe336dc3d3f4509 numpy-1.18.4.zip

Page 14 of 23

© 2025 Safety CLI Cybersecurity Inc. All Rights Reserved.