Numpy

Latest version: v2.2.1

Safety actively analyzes 693883 Python packages for vulnerabilities to keep your Python projects secure.

Scan your dependencies

Page 10 of 23

1.22.0rc3

1.22.0rc2

1.22.0rc1

1.21.6

Not secure
- Backs out the mistaken backport of C++ code into 1.21.5.
- Provides a 32 bit Windows wheel for Python 3.10.

The provision of the 32 bit wheel is intended to make life easier for
oldest-supported-numpy.

Checksums

MD5

5a3e5d7298056bcfbc3246597af474d4 numpy-1.21.6-cp310-cp310-macosx_10_9_universal2.whl
d981d2859842e7b62dc93e24808c7bac numpy-1.21.6-cp310-cp310-macosx_10_9_x86_64.whl
171313893c26529404d09fadb3537ed3 numpy-1.21.6-cp310-cp310-macosx_11_0_arm64.whl
5a7a6dfdd43069f9b29d3fe6b7f3a2ce numpy-1.21.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
a9e25375a72725c5d74442eda53af405 numpy-1.21.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
6f9a782477380b2cdb7606f6f7634c00 numpy-1.21.6-cp310-cp310-win32.whl
32a73a348864700a3fa510d2fc4350b7 numpy-1.21.6-cp310-cp310-win_amd64.whl
0db8941ebeb0a02cd839d9cd3c5c20bb numpy-1.21.6-cp37-cp37m-macosx_10_9_x86_64.whl
67882155be9592850861f4ad8ba36623 numpy-1.21.6-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
c70e30e1ff9ab49f898c19e7a6492ae6 numpy-1.21.6-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
e32dbd291032c7554a742f1bb9b2f7a3 numpy-1.21.6-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
689bf804c2cd16cb241fd943e3833ffd numpy-1.21.6-cp37-cp37m-win32.whl
0062a7b0231a07cb5b9f3d7c495e6fe4 numpy-1.21.6-cp37-cp37m-win_amd64.whl
0d08809980ab497659e7aa0df9ce120e numpy-1.21.6-cp38-cp38-macosx_10_9_universal2.whl
3c67d14ea2009069844b27bfbf74304d numpy-1.21.6-cp38-cp38-macosx_10_9_x86_64.whl
5f0e773745cb817313232ac1bf4c7eee numpy-1.21.6-cp38-cp38-macosx_11_0_arm64.whl
fa8011e065f1964d3eb870bb3926fc99 numpy-1.21.6-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
486cf9d4daab59aad253aa5b84a5aa83 numpy-1.21.6-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
88509abab303c076dfb26f00e455180d numpy-1.21.6-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
f7234e2ef837f5f6ddbde8db246fd05b numpy-1.21.6-cp38-cp38-win32.whl
e1063e01fb44ea7a49adea0c33548217 numpy-1.21.6-cp38-cp38-win_amd64.whl
61c4caad729e3e0e688accbc1424ed45 numpy-1.21.6-cp39-cp39-macosx_10_9_universal2.whl
67488d8ccaeff798f2e314aae7c4c3d6 numpy-1.21.6-cp39-cp39-macosx_10_9_x86_64.whl
128c3713b5d1de45a0f522562bac5263 numpy-1.21.6-cp39-cp39-macosx_11_0_arm64.whl
50e79cd0610b4ed726b3bf08c3716dab numpy-1.21.6-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
bd0c9e3c0e488faac61daf3227fb95af numpy-1.21.6-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
aa5e9baf1dec16b15e481c23f8a23214 numpy-1.21.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
a2405b0e5d3f775ad30177296a997092 numpy-1.21.6-cp39-cp39-win32.whl
f0d20eda8c78f957ea70c5527954303e numpy-1.21.6-cp39-cp39-win_amd64.whl
9682abbcc38cccb7f56e48aacca7de23 numpy-1.21.6-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
6aa3c2e8ea2886bf593bd8e0a1425c64 numpy-1.21.6.tar.gz
04aea95dcb1d256d13a45df42173aa1e numpy-1.21.6.zip

SHA256

8737609c3bbdd48e380d463134a35ffad3b22dc56295eff6f79fd85bd0eeeb25 numpy-1.21.6-cp310-cp310-macosx_10_9_universal2.whl
fdffbfb6832cd0b300995a2b08b8f6fa9f6e856d562800fea9182316d99c4e8e numpy-1.21.6-cp310-cp310-macosx_10_9_x86_64.whl
3820724272f9913b597ccd13a467cc492a0da6b05df26ea09e78b171a0bb9da6 numpy-1.21.6-cp310-cp310-macosx_11_0_arm64.whl
f17e562de9edf691a42ddb1eb4a5541c20dd3f9e65b09ded2beb0799c0cf29bb numpy-1.21.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
5f30427731561ce75d7048ac254dbe47a2ba576229250fb60f0fb74db96501a1 numpy-1.21.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
d4bf4d43077db55589ffc9009c0ba0a94fa4908b9586d6ccce2e0b164c86303c numpy-1.21.6-cp310-cp310-win32.whl
d136337ae3cc69aa5e447e78d8e1514be8c3ec9b54264e680cf0b4bd9011574f numpy-1.21.6-cp310-cp310-win_amd64.whl
6aaf96c7f8cebc220cdfc03f1d5a31952f027dda050e5a703a0d1c396075e3e7 numpy-1.21.6-cp37-cp37m-macosx_10_9_x86_64.whl
67c261d6c0a9981820c3a149d255a76918278a6b03b6a036800359aba1256d46 numpy-1.21.6-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
a6be4cb0ef3b8c9250c19cc122267263093eee7edd4e3fa75395dfda8c17a8e2 numpy-1.21.6-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
7c4068a8c44014b2d55f3c3f574c376b2494ca9cc73d2f1bd692382b6dffe3db numpy-1.21.6-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
7c7e5fa88d9ff656e067876e4736379cc962d185d5cd808014a8a928d529ef4e numpy-1.21.6-cp37-cp37m-win32.whl
bcb238c9c96c00d3085b264e5c1a1207672577b93fa666c3b14a45240b14123a numpy-1.21.6-cp37-cp37m-win_amd64.whl
82691fda7c3f77c90e62da69ae60b5ac08e87e775b09813559f8901a88266552 numpy-1.21.6-cp38-cp38-macosx_10_9_universal2.whl
643843bcc1c50526b3a71cd2ee561cf0d8773f062c8cbaf9ffac9fdf573f83ab numpy-1.21.6-cp38-cp38-macosx_10_9_x86_64.whl
357768c2e4451ac241465157a3e929b265dfac85d9214074985b1786244f2ef3 numpy-1.21.6-cp38-cp38-macosx_11_0_arm64.whl
9f411b2c3f3d76bba0865b35a425157c5dcf54937f82bbeb3d3c180789dd66a6 numpy-1.21.6-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
4aa48afdce4660b0076a00d80afa54e8a97cd49f457d68a4342d188a09451c1a numpy-1.21.6-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
d6a96eef20f639e6a97d23e57dd0c1b1069a7b4fd7027482a4c5c451cd7732f4 numpy-1.21.6-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
5c3c8def4230e1b959671eb959083661b4a0d2e9af93ee339c7dada6759a9470 numpy-1.21.6-cp38-cp38-win32.whl
bf2ec4b75d0e9356edea834d1de42b31fe11f726a81dfb2c2112bc1eaa508fcf numpy-1.21.6-cp38-cp38-win_amd64.whl
4391bd07606be175aafd267ef9bea87cf1b8210c787666ce82073b05f202add1 numpy-1.21.6-cp39-cp39-macosx_10_9_universal2.whl
67f21981ba2f9d7ba9ade60c9e8cbaa8cf8e9ae51673934480e45cf55e953673 numpy-1.21.6-cp39-cp39-macosx_10_9_x86_64.whl
ee5ec40fdd06d62fe5d4084bef4fd50fd4bb6bfd2bf519365f569dc470163ab0 numpy-1.21.6-cp39-cp39-macosx_11_0_arm64.whl
1dbe1c91269f880e364526649a52eff93ac30035507ae980d2fed33aaee633ac numpy-1.21.6-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
d9caa9d5e682102453d96a0ee10c7241b72859b01a941a397fd965f23b3e016b numpy-1.21.6-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
58459d3bad03343ac4b1b42ed14d571b8743dc80ccbf27444f266729df1d6f5b numpy-1.21.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
7f5ae4f304257569ef3b948810816bc87c9146e8c446053539947eedeaa32786 numpy-1.21.6-cp39-cp39-win32.whl
e31f0bb5928b793169b87e3d1e070f2342b22d5245c755e2b81caa29756246c3 numpy-1.21.6-cp39-cp39-win_amd64.whl
dd1c8f6bd65d07d3810b90d02eba7997e32abbdf1277a481d698969e921a3be0 numpy-1.21.6-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
d4efc6491a1cdc00f9eca9bf2c1aa13671776f6941c7321ddf75b45c862f0c2c numpy-1.21.6.tar.gz
ecb55251139706669fdec2ff073c98ef8e9a84473e51e716211b41aa0f18e656 numpy-1.21.6.zip

1.21.5

Not secure
after the 1.21.4 release and does some maintenance to extend the 1.21.x
lifetime. The Python versions supported in this release are 3.7-3.10. If
you want to compile your own version using gcc-11, you will need to use
gcc-11.2+ to avoid problems.

Contributors

A total of 7 people contributed to this release. People with a \"+\" by
their names contributed a patch for the first time.

- Bas van Beek
- Charles Harris
- Matti Picus
- Rohit Goswami
- Ross Barnowski
- Sayed Adel
- Sebastian Berg

Pull requests merged

A total of 11 pull requests were merged for this release.

- [20357](https://github.com/numpy/numpy/pull/20357): MAINT: Do not forward `__(deep)copy__` calls of `_GenericAlias`\...
- [20462](https://github.com/numpy/numpy/pull/20462): BUG: Fix float16 einsum fastpaths using wrong tempvar
- [20463](https://github.com/numpy/numpy/pull/20463): BUG, DIST: Print os error message when the executable not exist
- [20464](https://github.com/numpy/numpy/pull/20464): BLD: Verify the ability to compile C++ sources before initiating\...
- [20465](https://github.com/numpy/numpy/pull/20465): BUG: Force `npymath` to respect `npy_longdouble`
- [20466](https://github.com/numpy/numpy/pull/20466): BUG: Fix failure to create aligned, empty structured dtype
- [20467](https://github.com/numpy/numpy/pull/20467): ENH: provide a convenience function to replace `npy_load_module`
- [20495](https://github.com/numpy/numpy/pull/20495): MAINT: update wheel to version that supports python3.10
- [20497](https://github.com/numpy/numpy/pull/20497): BUG: Clear errors correctly in F2PY conversions
- [20613](https://github.com/numpy/numpy/pull/20613): DEV: add a warningfilter to fix pytest workflow.
- [20618](https://github.com/numpy/numpy/pull/20618): MAINT: Help boost::python libraries at least not crash

Checksums

MD5

e00a3c2e1461dd2920ab4af6b753d3da numpy-1.21.5-cp310-cp310-macosx_10_9_universal2.whl
50e0526fa29110fb6033fa8285fba4e1 numpy-1.21.5-cp310-cp310-macosx_10_9_x86_64.whl
bdbb19e7656d66250aa67bd1c7924764 numpy-1.21.5-cp310-cp310-macosx_11_0_arm64.whl
c5c982a07797c8963b8fec44aae6db09 numpy-1.21.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
8b27b622f58caeeb7f14472651d655e3 numpy-1.21.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e545f6f85f950f57606efcaeeac2e50a numpy-1.21.5-cp310-cp310-win_amd64.whl
5c36eefdcb039c0d4db8882fddbeb695 numpy-1.21.5-cp37-cp37m-macosx_10_9_x86_64.whl
b5d080e0fd8b658419b3636f1cf5dc3a numpy-1.21.5-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
ec1a9a1333a2bf61897f105ecd9f212a numpy-1.21.5-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
d5ab050300748f20cdc9c6e17ba8ffd4 numpy-1.21.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
b7498a1d0ea7273ef1af56d58e02a550 numpy-1.21.5-cp37-cp37m-win32.whl
f55c7ecfd35769fb3f6a408c0c123372 numpy-1.21.5-cp37-cp37m-win_amd64.whl
843e3431ba4b56d3fc36b7c4cb6fc10c numpy-1.21.5-cp38-cp38-macosx_10_9_universal2.whl
4721e71bdc5697d310cd3a6b6cd60741 numpy-1.21.5-cp38-cp38-macosx_10_9_x86_64.whl
2169fb8ed40046e1e33d187fc85b91bb numpy-1.21.5-cp38-cp38-macosx_11_0_arm64.whl
52de43977749109509ee708a142a7d97 numpy-1.21.5-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
703c0f54c5ede8cc0c648ef66cafac47 numpy-1.21.5-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
50432f9cf1d5b2278ceb7a96890353ed numpy-1.21.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
0c4c5336136e045d02c60ba8115eb6a2 numpy-1.21.5-cp38-cp38-win32.whl
c2e0744164f8255be70725ef42bc3f5b numpy-1.21.5-cp38-cp38-win_amd64.whl
b16dd7103117d051cb6c3b6c4434f7d2 numpy-1.21.5-cp39-cp39-macosx_10_9_universal2.whl
220dd07273aeb0b2ca8f0e4f543e43c3 numpy-1.21.5-cp39-cp39-macosx_10_9_x86_64.whl
1dd09ad75eff93b274f650871e0b9287 numpy-1.21.5-cp39-cp39-macosx_11_0_arm64.whl
6801263f51d3b13420b59ff84c716869 numpy-1.21.5-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
035bde3955ae2f62ada65084d71a7421 numpy-1.21.5-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
09f202576cbd0ed6121cff10cdea831a numpy-1.21.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
c6a44c90c2d5124fea6cedbbf575e252 numpy-1.21.5-cp39-cp39-win32.whl
bbc11e31406a9fc48c18a41259bc8866 numpy-1.21.5-cp39-cp39-win_amd64.whl
5be2b6f6cf6fb3a3d98231e891260624 numpy-1.21.5-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
8bc9ff24bac9bf4268372cefea8f0b6b numpy-1.21.5.tar.gz
88b5438ded7992fa2e6a810d43cd32a1 numpy-1.21.5.zip

SHA256

301e408a052fdcda5cdcf03021ebafc3c6ea093021bf9d1aa47c54d48bdad166 numpy-1.21.5-cp310-cp310-macosx_10_9_universal2.whl
a7e8f6216f180f3fd4efb73de5d1eaefb5f5a1ee5b645c67333033e39440e63a numpy-1.21.5-cp310-cp310-macosx_10_9_x86_64.whl
fc7a7d7b0ed72589fd8b8486b9b42a564f10b8762be8bd4d9df94b807af4a089 numpy-1.21.5-cp310-cp310-macosx_11_0_arm64.whl
58ca1d7c8aef6e996112d0ce873ac9dfa1eaf4a1196b4ff7ff73880a09923ba7 numpy-1.21.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
dc4b2fb01f1b4ddbe2453468ea0719f4dbb1f5caa712c8b21bb3dd1480cd30d9 numpy-1.21.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
cc1b30205d138d1005adb52087ff45708febbef0e420386f58664f984ef56954 numpy-1.21.5-cp310-cp310-win_amd64.whl
08de8472d9f7571f9d51b27b75e827f5296295fa78817032e84464be8bb905bc numpy-1.21.5-cp37-cp37m-macosx_10_9_x86_64.whl
4fe6a006557b87b352c04596a6e3f12a57d6e5f401d804947bd3188e6b0e0e76 numpy-1.21.5-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
3d893b0871322eaa2f8c7072cdb552d8e2b27645b7875a70833c31e9274d4611 numpy-1.21.5-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
341dddcfe3b7b6427a28a27baa59af5ad51baa59bfec3264f1ab287aa3b30b13 numpy-1.21.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
ca9c23848292c6fe0a19d212790e62f398fd9609aaa838859be8459bfbe558aa numpy-1.21.5-cp37-cp37m-win32.whl
025b497014bc33fc23897859350f284323f32a2fff7654697f5a5fc2a19e9939 numpy-1.21.5-cp37-cp37m-win_amd64.whl
3a5098df115340fb17fc93867317a947e1dcd978c3888c5ddb118366095851f8 numpy-1.21.5-cp38-cp38-macosx_10_9_universal2.whl
311283acf880cfcc20369201bd75da907909afc4666966c7895cbed6f9d2c640 numpy-1.21.5-cp38-cp38-macosx_10_9_x86_64.whl
b545ebadaa2b878c8630e5bcdb97fc4096e779f335fc0f943547c1c91540c815 numpy-1.21.5-cp38-cp38-macosx_11_0_arm64.whl
c5562bcc1a9b61960fc8950ade44d00e3de28f891af0acc96307c73613d18f6e numpy-1.21.5-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
eed2afaa97ec33b4411995be12f8bdb95c87984eaa28d76cf628970c8a2d689a numpy-1.21.5-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
61bada43d494515d5b122f4532af226fdb5ee08fe5b5918b111279843dc6836a numpy-1.21.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
7b9d6b14fc9a4864b08d1ba57d732b248f0e482c7b2ff55c313137e3ed4d8449 numpy-1.21.5-cp38-cp38-win32.whl
dbce7adeb66b895c6aaa1fad796aaefc299ced597f6fbd9ceddb0dd735245354 numpy-1.21.5-cp38-cp38-win_amd64.whl
507c05c7a37b3683eb08a3ff993bd1ee1e6c752f77c2f275260533b265ecdb6c numpy-1.21.5-cp39-cp39-macosx_10_9_universal2.whl
00c9fa73a6989895b8815d98300a20ac993c49ac36c8277e8ffeaa3631c0dbbb numpy-1.21.5-cp39-cp39-macosx_10_9_x86_64.whl
69a5a8d71c308d7ef33ef72371c2388a90e3495dbb7993430e674006f94797d5 numpy-1.21.5-cp39-cp39-macosx_11_0_arm64.whl
2d8adfca843bc46ac199a4645233f13abf2011a0b2f4affc5c37cd552626f27b numpy-1.21.5-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
c293d3c0321996cd8ffe84215ffe5d269fd9d1d12c6f4ffe2b597a7c30d3e593 numpy-1.21.5-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
3c978544be9e04ed12016dd295a74283773149b48f507d69b36f91aa90a643e5 numpy-1.21.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
2a9add27d7fc0fdb572abc3b2486eb3b1395da71e0254c5552b2aad2a18b5441 numpy-1.21.5-cp39-cp39-win32.whl
1964db2d4a00348b7a60ee9d013c8cb0c566644a589eaa80995126eac3b99ced numpy-1.21.5-cp39-cp39-win_amd64.whl
a7c4b701ca418cd39e28ec3b496e6388fe06de83f5f0cb74794fa31cfa384c02 numpy-1.21.5-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
1a7ee0ffb35dc7489aebe5185a483f4c43b0d2cf784c3c9940f975a7dde56506 numpy-1.21.5.tar.gz
6a5928bc6241264dce5ed509e66f33676fc97f464e7a919edc672fb5532221ee numpy-1.21.5.zip

1.21.4

Not secure
==========================

The NumPy 1.21.4 is a maintenance release that fixes a few bugs
discovered after 1.21.3. The most important fix here is a fix for the
NumPy header files to make them work for both x86\_64 and M1 hardware
when included in the Mac universal2 wheels. Previously, the header files
only worked for M1 and this caused problems for folks building x86\_64
extensions. This problem was not seen before Python 3.10 because there
were thin wheels for x86\_64 that had precedence. This release also
provides thin x86\_64 Mac wheels for Python 3.10.

The Python versions supported in this release are 3.7-3.10. If you want
to compile your own version using gcc-11, you will need to use gcc-11.2+
to avoid problems.

Contributors
------------

A total of 7 people contributed to this release. People with a \"+\" by
their names contributed a patch for the first time.

- Bas van Beek
- Charles Harris
- Isuru Fernando
- Matthew Brett
- Sayed Adel
- Sebastian Berg
- 傅立业(Chris Fu) +

Pull requests merged
--------------------

A total of 9 pull requests were merged for this release.

- [\20278](https://github.com/numpy/numpy/pull/20278): BUG: Fix shadowed reference of `dtype` in type stub
- [\20293](https://github.com/numpy/numpy/pull/20293): BUG: Fix headers for universal2 builds
- [\20294](https://github.com/numpy/numpy/pull/20294): BUG: `VOID_nonzero` could sometimes mutate alignment flag
- [\20295](https://github.com/numpy/numpy/pull/20295): BUG: Do not use nonzero fastpath on unaligned arrays
- [\20296](https://github.com/numpy/numpy/pull/20296): BUG: Distutils patch to allow for 2 as a minor version (!)
- [\20297](https://github.com/numpy/numpy/pull/20297): BUG, SIMD: Fix 64-bit/8-bit integer division by a scalar
- [\20298](https://github.com/numpy/numpy/pull/20298): BUG, SIMD: Workaround broadcasting SIMD 64-bit integers on MSVC\...
- [\20300](https://github.com/numpy/numpy/pull/20300): REL: Prepare for the NumPy 1.21.4 release.
- [\20302](https://github.com/numpy/numpy/pull/20302): TST: Fix a `Arrayterator` typing test failure

Checksums
---------

MD5

95486a3ed027c926fb3fc279db6d843e numpy-1.21.4-cp310-cp310-macosx_10_9_universal2.whl
9f57fad74762f7665669af33583a3dc9 numpy-1.21.4-cp310-cp310-macosx_10_9_x86_64.whl
719a9053aef01a067ce44ede2281eef9 numpy-1.21.4-cp310-cp310-macosx_11_0_arm64.whl
72035d101774fd03beff391927f59aa9 numpy-1.21.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
5813e7a378a6e3f5c269c23f61eff4d9 numpy-1.21.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
b88a1bc4f08dfb154d5a07d15e387af6 numpy-1.21.4-cp310-cp310-win_amd64.whl
f0cc946d2f4ab4df7cc7e0cc8cfd429e numpy-1.21.4-cp37-cp37m-macosx_10_9_x86_64.whl
1234643306ce481f0e5f801ddf3f1099 numpy-1.21.4-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
b9208ce1695ba61ab2932c7ce7285d1d numpy-1.21.4-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
9804fe2011618bf2d7b8d92f6860b2e3 numpy-1.21.4-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
2ad3a06f974acd61326fd66c098df5bc numpy-1.21.4-cp37-cp37m-win32.whl
172301389f1532b2d9130362580e1e22 numpy-1.21.4-cp37-cp37m-win_amd64.whl
a037bf88979ae0d4699a0cdce92bbab3 numpy-1.21.4-cp38-cp38-macosx_10_9_universal2.whl
ba94609688f575cc8dce84f1512db116 numpy-1.21.4-cp38-cp38-macosx_10_9_x86_64.whl
c78edc0ae8c9a5d8d0f9e3eb6dabd0b3 numpy-1.21.4-cp38-cp38-macosx_11_0_arm64.whl
d683b6f6af46806391579d528a040451 numpy-1.21.4-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
df631f776716aeb3fd705f3659599b9e numpy-1.21.4-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
b1cbca49d24c7ba43d377feb425afdce numpy-1.21.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
8b5c214bc0f060dbb0287c15dde4673d numpy-1.21.4-cp38-cp38-win32.whl
2307cf9f3c02f6cdad448a681c272974 numpy-1.21.4-cp38-cp38-win_amd64.whl
fc02b5a068e29b2dd2de19c7ddd69926 numpy-1.21.4-cp39-cp39-macosx_10_9_universal2.whl
f16068540001de8a3d8f096830c97ea2 numpy-1.21.4-cp39-cp39-macosx_10_9_x86_64.whl
80562c39cfbdf1af9bb43b2ea5e45b6d numpy-1.21.4-cp39-cp39-macosx_11_0_arm64.whl
6c103bec3085e5a6ea92cf7f6e4189ab numpy-1.21.4-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
9d715ba5f7596a39eb631f2dae85d203 numpy-1.21.4-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
8b8cf8c7b093419ff75ed1dd2eaa18ae numpy-1.21.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
404200b858b7addd03f6cdd5a484d30a numpy-1.21.4-cp39-cp39-win32.whl
cdab6a1bf1b86021526d08a60219a6ad numpy-1.21.4-cp39-cp39-win_amd64.whl
70ca6b591e844fdcb8c22175f094d3b4 numpy-1.21.4-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
06019c1116b3e2791bd507f898257e7f numpy-1.21.4.tar.gz
b3c4477a027d5b6fba5e1065064fd076 numpy-1.21.4.zip

SHA256

8890b3360f345e8360133bc078d2dacc2843b6ee6059b568781b15b97acbe39f numpy-1.21.4-cp310-cp310-macosx_10_9_universal2.whl
69077388c5a4b997442b843dbdc3a85b420fb693ec8e33020bb24d647c164fa5 numpy-1.21.4-cp310-cp310-macosx_10_9_x86_64.whl
e89717274b41ebd568cd7943fc9418eeb49b1785b66031bc8a7f6300463c5898 numpy-1.21.4-cp310-cp310-macosx_11_0_arm64.whl
0b78ecfa070460104934e2caf51694ccd00f37d5e5dbe76f021b1b0b0d221823 numpy-1.21.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
615d4e328af7204c13ae3d4df7615a13ff60a49cb0d9106fde07f541207883ca numpy-1.21.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
1403b4e2181fc72664737d848b60e65150f272fe5a1c1cbc16145ed43884065a numpy-1.21.4-cp310-cp310-win_amd64.whl
74b85a17528ca60cf98381a5e779fc0264b4a88b46025e6bcbe9621f46bb3e63 numpy-1.21.4-cp37-cp37m-macosx_10_9_x86_64.whl
92aafa03da8658609f59f18722b88f0a73a249101169e28415b4fa148caf7e41 numpy-1.21.4-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
5d95668e727c75b3f5088ec7700e260f90ec83f488e4c0aaccb941148b2cd377 numpy-1.21.4-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
f5162ec777ba7138906c9c274353ece5603646c6965570d82905546579573f73 numpy-1.21.4-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
81225e58ef5fce7f1d80399575576fc5febec79a8a2742e8ef86d7b03beef49f numpy-1.21.4-cp37-cp37m-win32.whl
32fe5b12061f6446adcbb32cf4060a14741f9c21e15aaee59a207b6ce6423469 numpy-1.21.4-cp37-cp37m-win_amd64.whl
c449eb870616a7b62e097982c622d2577b3dbc800aaf8689254ec6e0197cbf1e numpy-1.21.4-cp38-cp38-macosx_10_9_universal2.whl
2e4ed57f45f0aa38beca2a03b6532e70e548faf2debbeb3291cfc9b315d9be8f numpy-1.21.4-cp38-cp38-macosx_10_9_x86_64.whl
1247ef28387b7bb7f21caf2dbe4767f4f4175df44d30604d42ad9bd701ebb31f numpy-1.21.4-cp38-cp38-macosx_11_0_arm64.whl
34f3456f530ae8b44231c63082c8899fe9c983fd9b108c997c4b1c8c2d435333 numpy-1.21.4-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
4c9c23158b87ed0e70d9a50c67e5c0b3f75bcf2581a8e34668d4e9d7474d76c6 numpy-1.21.4-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
e4799be6a2d7d3c33699a6f77201836ac975b2e1b98c2a07f66a38f499cb50ce numpy-1.21.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
bc988afcea53e6156546e5b2885b7efab089570783d9d82caf1cfd323b0bb3dd numpy-1.21.4-cp38-cp38-win32.whl
170b2a0805c6891ca78c1d96ee72e4c3ed1ae0a992c75444b6ab20ff038ba2cd numpy-1.21.4-cp38-cp38-win_amd64.whl
fde96af889262e85aa033f8ee1d3241e32bf36228318a61f1ace579df4e8170d numpy-1.21.4-cp39-cp39-macosx_10_9_universal2.whl
c885bfc07f77e8fee3dc879152ba993732601f1f11de248d4f357f0ffea6a6d4 numpy-1.21.4-cp39-cp39-macosx_10_9_x86_64.whl
9e6f5f50d1eff2f2f752b3089a118aee1ea0da63d56c44f3865681009b0af162 numpy-1.21.4-cp39-cp39-macosx_11_0_arm64.whl
ad010846cdffe7ec27e3f933397f8a8d6c801a48634f419e3d075db27acf5880 numpy-1.21.4-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
c74c699b122918a6c4611285cc2cad4a3aafdb135c22a16ec483340ef97d573c numpy-1.21.4-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
9864424631775b0c052f3bd98bc2712d131b3e2cd95d1c0c68b91709170890b0 numpy-1.21.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
b1e2312f5b8843a3e4e8224b2b48fe16119617b8fc0a54df8f50098721b5bed2 numpy-1.21.4-cp39-cp39-win32.whl
e3c3e990274444031482a31280bf48674441e0a5b55ddb168f3a6db3e0c38ec8 numpy-1.21.4-cp39-cp39-win_amd64.whl
a3deb31bc84f2b42584b8c4001c85d1934dbfb4030827110bc36bfd11509b7bf numpy-1.21.4-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
5d412381aa489b8be82ac5c6a9e99c3eb3f754245ad3f90ab5c339d92f25fb47 numpy-1.21.4.tar.gz
e6c76a87633aa3fa16614b61ccedfae45b91df2767cf097aa9c933932a7ed1e0 numpy-1.21.4.zip

Page 10 of 23

© 2025 Safety CLI Cybersecurity Inc. All Rights Reserved.