Numpy

Latest version: v2.2.1

Safety actively analyzes 693883 Python packages for vulnerabilities to keep your Python projects secure.

Scan your dependencies

Page 5 of 23

1.26.2

discovered after the 1.26.1 release. The 1.26.release series is the last
planned minor release series before NumPy 2.0. The Python versions
supported by this release are 3.9-3.12.

Contributors

A total of 13 people contributed to this release. People with a \"+\" by
their names contributed a patch for the first time.

- \stefan6419846
- \thalassemia +
- Andrew Nelson
- Charles Bousseau +
- Charles Harris
- Marcel Bargull +
- Mark Mentovai +
- Matti Picus
- Nathan Goldbaum
- Ralf Gommers
- Sayed Adel
- Sebastian Berg
- William Ayd +

Pull requests merged

A total of 25 pull requests were merged for this release.

- [24814](https://github.com/numpy/numpy/pull/24814): MAINT: align test_dispatcher s390x targets with \_umath_tests_mtargets
- [24929](https://github.com/numpy/numpy/pull/24929): MAINT: prepare 1.26.x for further development
- [24955](https://github.com/numpy/numpy/pull/24955): ENH: Add Cython enumeration for NPY_FR_GENERIC
- [24962](https://github.com/numpy/numpy/pull/24962): REL: Remove Python upper version from the release branch
- [24971](https://github.com/numpy/numpy/pull/24971): BLD: Use the correct Python interpreter when running tempita.py
- [24972](https://github.com/numpy/numpy/pull/24972): MAINT: Remove unhelpful error replacements from `import_array()`
- [24977](https://github.com/numpy/numpy/pull/24977): BLD: use classic linker on macOS, the new one in XCode 15 has\...
- [25003](https://github.com/numpy/numpy/pull/25003): BLD: musllinux_aarch64 \[wheel build\]
- [25043](https://github.com/numpy/numpy/pull/25043): MAINT: Update mailmap
- [25049](https://github.com/numpy/numpy/pull/25049): MAINT: Update meson build infrastructure.
- [25071](https://github.com/numpy/numpy/pull/25071): MAINT: Split up .github/workflows to match main
- [25083](https://github.com/numpy/numpy/pull/25083): BUG: Backport fix build on ppc64 when the baseline set to Power9\...
- [25093](https://github.com/numpy/numpy/pull/25093): BLD: Fix features.h detection for Meson builds \[1.26.x Backport\]
- [25095](https://github.com/numpy/numpy/pull/25095): BUG: Avoid intp conversion regression in Cython 3 (backport)
- [25107](https://github.com/numpy/numpy/pull/25107): CI: remove obsolete jobs, and move macOS and conda Azure jobs\...
- [25108](https://github.com/numpy/numpy/pull/25108): CI: Add linux_qemu action and remove travis testing.
- [25112](https://github.com/numpy/numpy/pull/25112): MAINT: Update .spin/cmds.py from main.
- [25113](https://github.com/numpy/numpy/pull/25113): DOC: Visually divide main license and bundled licenses in wheels
- [25115](https://github.com/numpy/numpy/pull/25115): MAINT: Add missing `noexcept` to shuffle helpers
- [25116](https://github.com/numpy/numpy/pull/25116): DOC: Fix license identifier for OpenBLAS
- [25117](https://github.com/numpy/numpy/pull/25117): BLD: improve detection of Netlib libblas/libcblas/liblapack
- [25118](https://github.com/numpy/numpy/pull/25118): MAINT: Make bitfield integers unsigned
- [25119](https://github.com/numpy/numpy/pull/25119): BUG: Make n a long int for np.random.multinomial
- [25120](https://github.com/numpy/numpy/pull/25120): BLD: change default of the `allow-noblas` option to true.
- [25121](https://github.com/numpy/numpy/pull/25121): BUG: ensure passing `np.dtype` to itself doesn\'t crash

Checksums

MD5

1a5dc6b5b3bf11ad40a59eedb3b69fa1 numpy-1.26.2-cp310-cp310-macosx_10_9_x86_64.whl
4b741c6dfe4e6e22e34e9c5c788d4f04 numpy-1.26.2-cp310-cp310-macosx_11_0_arm64.whl
2953687fb26e1dd8a2d1bb7109551fcd numpy-1.26.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
ea9127a3a03f27fd101c62425c661d8d numpy-1.26.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
7a6be7c6c1cc3e1ff73f64052fe30677 numpy-1.26.2-cp310-cp310-musllinux_1_1_aarch64.whl
4f45d3f69f54fd1638609fde34c33a5c numpy-1.26.2-cp310-cp310-musllinux_1_1_x86_64.whl
f22f5ea26c86eb126ff502fff75d6c21 numpy-1.26.2-cp310-cp310-win32.whl
49871452488e1a55d15ab54c6f3e546e numpy-1.26.2-cp310-cp310-win_amd64.whl
676740bf60fb1c8f5a6b31e00b9a4e9b numpy-1.26.2-cp311-cp311-macosx_10_9_x86_64.whl
7170545dcc2a38a1c2386a6081043b64 numpy-1.26.2-cp311-cp311-macosx_11_0_arm64.whl
feae1190c73d811e2e7ebcad4baf6edf numpy-1.26.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
03131896abade61b77e0f6e53abb988a numpy-1.26.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
f160632f128a3fd46787aa02d8731fbb numpy-1.26.2-cp311-cp311-musllinux_1_1_aarch64.whl
014250db593d589b5533ef7127839c46 numpy-1.26.2-cp311-cp311-musllinux_1_1_x86_64.whl
fb437346dac24d0cb23f5314db043c8b numpy-1.26.2-cp311-cp311-win32.whl
7359adc233874898ea768cd4aec28bb3 numpy-1.26.2-cp311-cp311-win_amd64.whl
207a678bea75227428e7fb84d4dc457a numpy-1.26.2-cp312-cp312-macosx_10_9_x86_64.whl
302ff6cc047a408cdf21981bd7b26056 numpy-1.26.2-cp312-cp312-macosx_11_0_arm64.whl
7526faaea58c76aed395c7128dd6e14d numpy-1.26.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
28d3b1943d3a8ad4bbb2ae9da0a77cb9 numpy-1.26.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
d91f5b2bb2c931e41ae7c80ec7509a31 numpy-1.26.2-cp312-cp312-musllinux_1_1_aarch64.whl
b2504d4239419f012c08fa1eab12f940 numpy-1.26.2-cp312-cp312-musllinux_1_1_x86_64.whl
57944ba30adc07f33e83a9b45f5c625a numpy-1.26.2-cp312-cp312-win32.whl
fe38cd95bbee405ce0cf51c8753a2676 numpy-1.26.2-cp312-cp312-win_amd64.whl
28e1bc3efaf89cf6f0a2b616c0e16401 numpy-1.26.2-cp39-cp39-macosx_10_9_x86_64.whl
9932ccff54855f12ee24f60528279bf1 numpy-1.26.2-cp39-cp39-macosx_11_0_arm64.whl
b52c1e987074dad100ad234122a397b9 numpy-1.26.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
1d1bd7e0d2a89ce795a9566a38ed9bb5 numpy-1.26.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
01d2abfe8e9b35415efb791ac6c5865e numpy-1.26.2-cp39-cp39-musllinux_1_1_aarch64.whl
5a6d6ac287ebd93a221e59590329e202 numpy-1.26.2-cp39-cp39-musllinux_1_1_x86_64.whl
4e4e4d8cf661a8d2838ee700fabae87e numpy-1.26.2-cp39-cp39-win32.whl
b8e52ecac110471502686abbdf774b78 numpy-1.26.2-cp39-cp39-win_amd64.whl
aed2d2914be293f60fedda360b64abf8 numpy-1.26.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
6bd88e0f33933445d0e18c1a850f60e0 numpy-1.26.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
010aeb2a50af0af1f7ef56f76f8cf463 numpy-1.26.2-pp39-pypy39_pp73-win_amd64.whl
8f6446a32e47953a03f8fe8533e21e98 numpy-1.26.2.tar.gz

SHA256

3703fc9258a4a122d17043e57b35e5ef1c5a5837c3db8be396c82e04c1cf9b0f numpy-1.26.2-cp310-cp310-macosx_10_9_x86_64.whl
cc392fdcbd21d4be6ae1bb4475a03ce3b025cd49a9be5345d76d7585aea69440 numpy-1.26.2-cp310-cp310-macosx_11_0_arm64.whl
36340109af8da8805d8851ef1d74761b3b88e81a9bd80b290bbfed61bd2b4f75 numpy-1.26.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
bcc008217145b3d77abd3e4d5ef586e3bdfba8fe17940769f8aa09b99e856c00 numpy-1.26.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
3ced40d4e9e18242f70dd02d739e44698df3dcb010d31f495ff00a31ef6014fe numpy-1.26.2-cp310-cp310-musllinux_1_1_aarch64.whl
b272d4cecc32c9e19911891446b72e986157e6a1809b7b56518b4f3755267523 numpy-1.26.2-cp310-cp310-musllinux_1_1_x86_64.whl
22f8fc02fdbc829e7a8c578dd8d2e15a9074b630d4da29cda483337e300e3ee9 numpy-1.26.2-cp310-cp310-win32.whl
26c9d33f8e8b846d5a65dd068c14e04018d05533b348d9eaeef6c1bd787f9919 numpy-1.26.2-cp310-cp310-win_amd64.whl
b96e7b9c624ef3ae2ae0e04fa9b460f6b9f17ad8b4bec6d7756510f1f6c0c841 numpy-1.26.2-cp311-cp311-macosx_10_9_x86_64.whl
aa18428111fb9a591d7a9cc1b48150097ba6a7e8299fb56bdf574df650e7d1f1 numpy-1.26.2-cp311-cp311-macosx_11_0_arm64.whl
06fa1ed84aa60ea6ef9f91ba57b5ed963c3729534e6e54055fc151fad0423f0a numpy-1.26.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
96ca5482c3dbdd051bcd1fce8034603d6ebfc125a7bd59f55b40d8f5d246832b numpy-1.26.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
854ab91a2906ef29dc3925a064fcd365c7b4da743f84b123002f6139bcb3f8a7 numpy-1.26.2-cp311-cp311-musllinux_1_1_aarch64.whl
f43740ab089277d403aa07567be138fc2a89d4d9892d113b76153e0e412409f8 numpy-1.26.2-cp311-cp311-musllinux_1_1_x86_64.whl
a2bbc29fcb1771cd7b7425f98b05307776a6baf43035d3b80c4b0f29e9545186 numpy-1.26.2-cp311-cp311-win32.whl
2b3fca8a5b00184828d12b073af4d0fc5fdd94b1632c2477526f6bd7842d700d numpy-1.26.2-cp311-cp311-win_amd64.whl
a4cd6ed4a339c21f1d1b0fdf13426cb3b284555c27ac2f156dfdaaa7e16bfab0 numpy-1.26.2-cp312-cp312-macosx_10_9_x86_64.whl
5d5244aabd6ed7f312268b9247be47343a654ebea52a60f002dc70c769048e75 numpy-1.26.2-cp312-cp312-macosx_11_0_arm64.whl
6a3cdb4d9c70e6b8c0814239ead47da00934666f668426fc6e94cce869e13fd7 numpy-1.26.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
aa317b2325f7aa0a9471663e6093c210cb2ae9c0ad824732b307d2c51983d5b6 numpy-1.26.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
174a8880739c16c925799c018f3f55b8130c1f7c8e75ab0a6fa9d41cab092fd6 numpy-1.26.2-cp312-cp312-musllinux_1_1_aarch64.whl
f79b231bf5c16b1f39c7f4875e1ded36abee1591e98742b05d8a0fb55d8a3eec numpy-1.26.2-cp312-cp312-musllinux_1_1_x86_64.whl
4a06263321dfd3598cacb252f51e521a8cb4b6df471bb12a7ee5cbab20ea9167 numpy-1.26.2-cp312-cp312-win32.whl
b04f5dc6b3efdaab541f7857351aac359e6ae3c126e2edb376929bd3b7f92d7e numpy-1.26.2-cp312-cp312-win_amd64.whl
4eb8df4bf8d3d90d091e0146f6c28492b0be84da3e409ebef54349f71ed271ef numpy-1.26.2-cp39-cp39-macosx_10_9_x86_64.whl
1a13860fdcd95de7cf58bd6f8bc5a5ef81c0b0625eb2c9a783948847abbef2c2 numpy-1.26.2-cp39-cp39-macosx_11_0_arm64.whl
64308ebc366a8ed63fd0bf426b6a9468060962f1a4339ab1074c228fa6ade8e3 numpy-1.26.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
baf8aab04a2c0e859da118f0b38617e5ee65d75b83795055fb66c0d5e9e9b818 numpy-1.26.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
d73a3abcac238250091b11caef9ad12413dab01669511779bc9b29261dd50210 numpy-1.26.2-cp39-cp39-musllinux_1_1_aarch64.whl
b361d369fc7e5e1714cf827b731ca32bff8d411212fccd29ad98ad622449cc36 numpy-1.26.2-cp39-cp39-musllinux_1_1_x86_64.whl
bd3f0091e845164a20bd5a326860c840fe2af79fa12e0469a12768a3ec578d80 numpy-1.26.2-cp39-cp39-win32.whl
2beef57fb031dcc0dc8fa4fe297a742027b954949cabb52a2a376c144e5e6060 numpy-1.26.2-cp39-cp39-win_amd64.whl
1cc3d5029a30fb5f06704ad6b23b35e11309491c999838c31f124fee32107c79 numpy-1.26.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
94cc3c222bb9fb5a12e334d0479b97bb2df446fbe622b470928f5284ffca3f8d numpy-1.26.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
fe6b44fb8fcdf7eda4ef4461b97b3f63c466b27ab151bec2366db8b197387841 numpy-1.26.2-pp39-pypy39_pp73-win_amd64.whl
f65738447676ab5777f11e6bbbdb8ce11b785e105f690bc45966574816b6d3ea numpy-1.26.2.tar.gz

1.26.1

discovered after the 1.26.0 release. In addition, it adds new
functionality for detecting BLAS and LAPACK when building from source.
Highlights are:

- Improved detection of BLAS and LAPACK libraries for meson builds
- Pickle compatibility with the upcoming NumPy 2.0.

The 1.26.release series is the last planned minor release series before
NumPy 2.0. The Python versions supported by this release are 3.9-3.12.

Build system changes

Improved BLAS/LAPACK detection and control

Auto-detection for a number of BLAS and LAPACK is now implemented for
Meson. By default, the build system will try to detect MKL, Accelerate
(on macOS \>=13.3), OpenBLAS, FlexiBLAS, BLIS and reference BLAS/LAPACK.
Support for MKL was significantly improved, and support for FlexiBLAS
was added.

New command-line flags are available to further control the selection of
the BLAS and LAPACK libraries to build against.

To select a specific library, use the config-settings interface via
`pip` or `pypa/build`. E.g., to select `libblas`/`liblapack`, use:

$ pip install numpy -Csetup-args=-Dblas=blas -Csetup-args=-Dlapack=lapack
$ OR
$ python -m build . -Csetup-args=-Dblas=blas -Csetup-args=-Dlapack=lapack

This works not only for the libraries named above, but for any library
that Meson is able to detect with the given name through `pkg-config` or
CMake.

Besides `-Dblas` and `-Dlapack`, a number of other new flags are
available to control BLAS/LAPACK selection and behavior:

- `-Dblas-order` and `-Dlapack-order`: a list of library names to
search for in order, overriding the default search order.
- `-Duse-ilp64`: if set to `true`, use ILP64 (64-bit integer) BLAS and
LAPACK. Note that with this release, ILP64 support has been extended
to include MKL and FlexiBLAS. OpenBLAS and Accelerate were supported
in previous releases.
- `-Dallow-noblas`: if set to `true`, allow NumPy to build with its
internal (very slow) fallback routines instead of linking against an
external BLAS/LAPACK library. *The default for this flag may be
changed to \`\`true\`\` in a future 1.26.x release, however for
1.26.1 we\'d prefer to keep it as \`\`false\`\` because if failures
to detect an installed library are happening, we\'d like a bug
report for that, so we can quickly assess whether the new
auto-detection machinery needs further improvements.*
- `-Dmkl-threading`: to select the threading layer for MKL. There are
four options: `seq`, `iomp`, `gomp` and `tbb`. The default is
`auto`, which selects from those four as appropriate given the
version of MKL selected.
- `-Dblas-symbol-suffix`: manually select the symbol suffix to use for
the library - should only be needed for linking against libraries
built in a non-standard way.

New features

`numpy._core` submodule stubs

`numpy._core` submodule stubs were added to provide compatibility with
pickled arrays created using NumPy 2.0 when running Numpy 1.26.

Contributors

A total of 13 people contributed to this release. People with a \"+\" by
their names contributed a patch for the first time.

- Andrew Nelson
- Anton Prosekin +
- Charles Harris
- Chongyun Lee +
- Ivan A. Melnikov +
- Jake Lishman +
- Mahder Gebremedhin +
- Mateusz Sokół
- Matti Picus
- Munira Alduraibi +
- Ralf Gommers
- Rohit Goswami
- Sayed Adel

Pull requests merged

A total of 20 pull requests were merged for this release.

- [24742](https://github.com/numpy/numpy/pull/24742): MAINT: Update cibuildwheel version
- [24748](https://github.com/numpy/numpy/pull/24748): MAINT: fix version string in wheels built with setup.py
- [24771](https://github.com/numpy/numpy/pull/24771): BLD, BUG: Fix build failure for host flags e.g. `-march=native`\...
- [24773](https://github.com/numpy/numpy/pull/24773): DOC: Updated the f2py docs to remove a note on -fimplicit-none
- [24776](https://github.com/numpy/numpy/pull/24776): BUG: Fix SIMD f32 trunc test on s390x when baseline is none
- [24785](https://github.com/numpy/numpy/pull/24785): BLD: add libquadmath to licences and other tweaks (#24753)
- [24786](https://github.com/numpy/numpy/pull/24786): MAINT: Activate `use-compute-credits` for Cirrus.
- [24803](https://github.com/numpy/numpy/pull/24803): BLD: updated vendored-meson/meson for mips64 fix
- [24804](https://github.com/numpy/numpy/pull/24804): MAINT: fix licence path win
- [24813](https://github.com/numpy/numpy/pull/24813): BUG: Fix order of Windows OS detection macros.
- [24831](https://github.com/numpy/numpy/pull/24831): BUG, SIMD: use scalar cmul on bad Apple clang x86_64 (#24828)
- [24840](https://github.com/numpy/numpy/pull/24840): BUG: Fix DATA statements for f2py
- [24870](https://github.com/numpy/numpy/pull/24870): API: Add `NumpyUnpickler` for backporting
- [24872](https://github.com/numpy/numpy/pull/24872): MAINT: Xfail test failing on PyPy.
- [24879](https://github.com/numpy/numpy/pull/24879): BLD: fix math func feature checks, fix FreeBSD build, add CI\...
- [24899](https://github.com/numpy/numpy/pull/24899): ENH: meson: implement BLAS/LAPACK auto-detection and many CI\...
- [24902](https://github.com/numpy/numpy/pull/24902): DOC: add a 1.26.1 release notes section for BLAS/LAPACK build\...
- [24906](https://github.com/numpy/numpy/pull/24906): MAINT: Backport `numpy._core` stubs. Remove `NumpyUnpickler`
- [24911](https://github.com/numpy/numpy/pull/24911): MAINT: Bump pypa/cibuildwheel from 2.16.1 to 2.16.2
- [24912](https://github.com/numpy/numpy/pull/24912): BUG: loongarch doesn\'t use REAL(10)

Checksums

MD5

bda38de1a047dd9fdddae16c0d9fb358 numpy-1.26.1-cp310-cp310-macosx_10_9_x86_64.whl
196d2e39047da64ab28e177760c95461 numpy-1.26.1-cp310-cp310-macosx_11_0_arm64.whl
9d25010a7bf50e624d2fed742790afbd numpy-1.26.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
9b22fa3d030807f0708007d9c0659f65 numpy-1.26.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
eea626b8b930acb4b32302a9e95714f5 numpy-1.26.1-cp310-cp310-musllinux_1_1_x86_64.whl
3c40ef068f50d2ac2913c5b9fa1233fa numpy-1.26.1-cp310-cp310-win32.whl
315c251d2f284af25761a37ce6dd4d10 numpy-1.26.1-cp310-cp310-win_amd64.whl
ebdd5046937df50e9f54a6d38c5775dd numpy-1.26.1-cp311-cp311-macosx_10_9_x86_64.whl
682f9beebe8547f205d6cdc8ff96a984 numpy-1.26.1-cp311-cp311-macosx_11_0_arm64.whl
e86da9b6040ea88b3835c4d8f8578658 numpy-1.26.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
ebcb6cf7f64454215e29d8a89829c8e1 numpy-1.26.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
a8c89e13dc9a63712104e2fb06fb63a6 numpy-1.26.1-cp311-cp311-musllinux_1_1_x86_64.whl
339795930404988dbc664ff4cc72b399 numpy-1.26.1-cp311-cp311-win32.whl
4ef5e1bdd7726c19615843f5ac72e618 numpy-1.26.1-cp311-cp311-win_amd64.whl
3aad6bc72db50e9cc88aa5813e8f35bd numpy-1.26.1-cp312-cp312-macosx_10_9_x86_64.whl
fd62f65ae7798dbda9a3f7af7aa5c8db numpy-1.26.1-cp312-cp312-macosx_11_0_arm64.whl
104d939e080f1baf0a56aed1de0e79e3 numpy-1.26.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
c44b56c96097f910bbec1420abcf3db5 numpy-1.26.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
1dce230368ae5fc47dd0fe8de8ff771d numpy-1.26.1-cp312-cp312-musllinux_1_1_x86_64.whl
d93338e7d60e1d294ca326450e99806b numpy-1.26.1-cp312-cp312-win32.whl
a1832f46521335c1ee4c56dbf12e600b numpy-1.26.1-cp312-cp312-win_amd64.whl
946fbb0b6caca9258985495532d3f9ab numpy-1.26.1-cp39-cp39-macosx_10_9_x86_64.whl
78c2ab13d395d67d90bcd6583a6f61a8 numpy-1.26.1-cp39-cp39-macosx_11_0_arm64.whl
0a9d80d8b646abf4ffe51fff3e075d10 numpy-1.26.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
0229ba8145d4f58500873b540a55d60e numpy-1.26.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
9179fc57c03260374c86e18867c24463 numpy-1.26.1-cp39-cp39-musllinux_1_1_x86_64.whl
246a3103fdbe5d891d7a8aee28875a26 numpy-1.26.1-cp39-cp39-win32.whl
4589dcb7f754fade6ea3946416bee638 numpy-1.26.1-cp39-cp39-win_amd64.whl
3af340d5487a6c045f00fe5eb889957c numpy-1.26.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
28aece4f1ceb92ec463aa353d4a91c8b numpy-1.26.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
bbd0461a1e31017b05509e9971b3478e numpy-1.26.1-pp39-pypy39_pp73-win_amd64.whl
2d770f4c281d405b690c4bcb3dbe99e2 numpy-1.26.1.tar.gz

SHA256

82e871307a6331b5f09efda3c22e03c095d957f04bf6bc1804f30048d0e5e7af numpy-1.26.1-cp310-cp310-macosx_10_9_x86_64.whl
cdd9ec98f0063d93baeb01aad472a1a0840dee302842a2746a7a8e92968f9575 numpy-1.26.1-cp310-cp310-macosx_11_0_arm64.whl
d78f269e0c4fd365fc2992c00353e4530d274ba68f15e968d8bc3c69ce5f5244 numpy-1.26.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
8ab9163ca8aeb7fd32fe93866490654d2f7dda4e61bc6297bf72ce07fdc02f67 numpy-1.26.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
78ca54b2f9daffa5f323f34cdf21e1d9779a54073f0018a3094ab907938331a2 numpy-1.26.1-cp310-cp310-musllinux_1_1_x86_64.whl
d1cfc92db6af1fd37a7bb58e55c8383b4aa1ba23d012bdbba26b4bcca45ac297 numpy-1.26.1-cp310-cp310-win32.whl
d2984cb6caaf05294b8466966627e80bf6c7afd273279077679cb010acb0e5ab numpy-1.26.1-cp310-cp310-win_amd64.whl
cd7837b2b734ca72959a1caf3309457a318c934abef7a43a14bb984e574bbb9a numpy-1.26.1-cp311-cp311-macosx_10_9_x86_64.whl
1c59c046c31a43310ad0199d6299e59f57a289e22f0f36951ced1c9eac3665b9 numpy-1.26.1-cp311-cp311-macosx_11_0_arm64.whl
d58e8c51a7cf43090d124d5073bc29ab2755822181fcad978b12e144e5e5a4b3 numpy-1.26.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
6081aed64714a18c72b168a9276095ef9155dd7888b9e74b5987808f0dd0a974 numpy-1.26.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
97e5d6a9f0702c2863aaabf19f0d1b6c2628fbe476438ce0b5ce06e83085064c numpy-1.26.1-cp311-cp311-musllinux_1_1_x86_64.whl
b9d45d1dbb9de84894cc50efece5b09939752a2d75aab3a8b0cef6f3a35ecd6b numpy-1.26.1-cp311-cp311-win32.whl
3649d566e2fc067597125428db15d60eb42a4e0897fc48d28cb75dc2e0454e53 numpy-1.26.1-cp311-cp311-win_amd64.whl
1d1bd82d539607951cac963388534da3b7ea0e18b149a53cf883d8f699178c0f numpy-1.26.1-cp312-cp312-macosx_10_9_x86_64.whl
afd5ced4e5a96dac6725daeb5242a35494243f2239244fad10a90ce58b071d24 numpy-1.26.1-cp312-cp312-macosx_11_0_arm64.whl
a03fb25610ef560a6201ff06df4f8105292ba56e7cdd196ea350d123fc32e24e numpy-1.26.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
dcfaf015b79d1f9f9c9fd0731a907407dc3e45769262d657d754c3a028586124 numpy-1.26.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e509cbc488c735b43b5ffea175235cec24bbc57b227ef1acc691725beb230d1c numpy-1.26.1-cp312-cp312-musllinux_1_1_x86_64.whl
af22f3d8e228d84d1c0c44c1fbdeb80f97a15a0abe4f080960393a00db733b66 numpy-1.26.1-cp312-cp312-win32.whl
9f42284ebf91bdf32fafac29d29d4c07e5e9d1af862ea73686581773ef9e73a7 numpy-1.26.1-cp312-cp312-win_amd64.whl
bb894accfd16b867d8643fc2ba6c8617c78ba2828051e9a69511644ce86ce83e numpy-1.26.1-cp39-cp39-macosx_10_9_x86_64.whl
e44ccb93f30c75dfc0c3aa3ce38f33486a75ec9abadabd4e59f114994a9c4617 numpy-1.26.1-cp39-cp39-macosx_11_0_arm64.whl
9696aa2e35cc41e398a6d42d147cf326f8f9d81befcb399bc1ed7ffea339b64e numpy-1.26.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
a5b411040beead47a228bde3b2241100454a6abde9df139ed087bd73fc0a4908 numpy-1.26.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
1e11668d6f756ca5ef534b5be8653d16c5352cbb210a5c2a79ff288e937010d5 numpy-1.26.1-cp39-cp39-musllinux_1_1_x86_64.whl
d1d2c6b7dd618c41e202c59c1413ef9b2c8e8a15f5039e344af64195459e3104 numpy-1.26.1-cp39-cp39-win32.whl
59227c981d43425ca5e5c01094d59eb14e8772ce6975d4b2fc1e106a833d5ae2 numpy-1.26.1-cp39-cp39-win_amd64.whl
06934e1a22c54636a059215d6da99e23286424f316fddd979f5071093b648668 numpy-1.26.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
76ff661a867d9272cd2a99eed002470f46dbe0943a5ffd140f49be84f68ffc42 numpy-1.26.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
6965888d65d2848e8768824ca8288db0a81263c1efccec881cb35a0d805fcd2f numpy-1.26.1-pp39-pypy39_pp73-win_amd64.whl
c8c6c72d4a9f831f328efb1312642a1cafafaa88981d9ab76368d50d07d93cbe numpy-1.26.1.tar.gz

1.26.0

The NumPy 1.26.0 release is a continuation of the 1.25.x release cycle
with the addition of Python 3.12.0 support. Python 3.12 dropped
distutils, consequently supporting it required finding a replacement for
the setup.py/distutils based build system NumPy was using. We have
chosen to use the Meson build system instead, and this is the first
NumPy release supporting it. This is also the first release that
supports Cython 3.0 in addition to retaining 0.29.X compatibility.
Supporting those two upgrades was a large project, over 100 files have
been touched in this release. The changelog doesn\'t capture the full
extent of the work, special thanks to Ralf Gommers, Sayed Adel, Stéfan
van der Walt, and Matti Picus who did much of the work in the main
development branch.

The highlights of this release are:

- Python 3.12.0 support.
- Cython 3.0.0 compatibility.
- Use of the Meson build system
- Updated SIMD support

The Python versions supported in this release are 3.9-3.12.

Build system changes

In this release, NumPy has switched to Meson as the build system and
meson-python as the build backend. Installing NumPy or building a wheel
can be done with standard tools like `pip` and `pypa/build`. The
following are supported:

- Regular installs: `pip install numpy` or (in a cloned repo)
`pip install .`
- Building a wheel: `python -m build` (preferred), or `pip wheel .`
- Editable installs: `pip install -e . --no-build-isolation`
- Development builds through the custom CLI implemented with
[spin](https://github.com/scientific-python/spin): `spin build`.

All the regular `pip` and `pypa/build` flags (e.g.,
`--no-build-isolation`) should work as expected.

NumPy-specific build customization

Many of the NumPy-specific ways of customizing builds have changed. The
`NPY_*` environment variables which control BLAS/LAPACK, SIMD,
threading, and other such options are no longer supported, nor is a
`site.cfg` file to select BLAS and LAPACK. Instead, there are
command-line flags that can be passed to the build via `pip`/`build`\'s
config-settings interface. These flags are all listed in the
`meson_options.txt` file in the root of the repo. Detailed documented
will be available before the final 1.26.0 release; for now please see
[the SciPy \"building from source\"docs](http://scipy.github.io/devdocs/building/index.html) since most
build customization works in an almost identical way in SciPy as it does
in NumPy.

Build dependencies

While the runtime dependencies of NumPy have not changed, the build
dependencies have. Because we temporarily vendor Meson and meson-python,
there are several new dependencies - please see the `[build-system]`
section of `pyproject.toml` for details.

Troubleshooting

This build system change is quite large. In case of unexpected issues,
it is still possible to use a `setup.py`-based build as a temporary
workaround (on Python 3.9-3.11, not 3.12), by copying
`pyproject.toml.setuppy` to `pyproject.toml`. However, please open an
issue with details on the NumPy issue tracker. We aim to phase out
`setup.py` builds as soon as possible, and therefore would like to see
all potential blockers surfaced early on in the 1.26.0 release cycle.

Contributors

A total of 11 people contributed to this release. People with a \"+\" by
their names contributed a patch for the first time.

- Bas van Beek
- Charles Harris
- Matti Picus
- Melissa Weber Mendonça
- Ralf Gommers
- Sayed Adel
- Sebastian Berg
- Stefan van der Walt
- Tyler Reddy
- Warren Weckesser

Pull requests merged

A total of 18 pull requests were merged for this release.

- [24305](https://github.com/numpy/numpy/pull/24305): MAINT: Prepare 1.26.x branch for development
- [24308](https://github.com/numpy/numpy/pull/24308): MAINT: Massive update of files from main for numpy 1.26
- [24322](https://github.com/numpy/numpy/pull/24322): CI: fix wheel builds on the 1.26.x branch
- [24326](https://github.com/numpy/numpy/pull/24326): BLD: update openblas to newer version
- [24327](https://github.com/numpy/numpy/pull/24327): TYP: Trim down the `_NestedSequence.__getitem__` signature
- [24328](https://github.com/numpy/numpy/pull/24328): BUG: fix choose refcount leak
- [24337](https://github.com/numpy/numpy/pull/24337): TST: fix running the test suite in builds without BLAS/LAPACK
- [24338](https://github.com/numpy/numpy/pull/24338): BUG: random: Fix generation of nan by dirichlet.
- [24340](https://github.com/numpy/numpy/pull/24340): MAINT: Dependabot updates from main
- [24342](https://github.com/numpy/numpy/pull/24342): MAINT: Add back NPY_RUN_MYPY_IN_TESTSUITE=1
- [24353](https://github.com/numpy/numpy/pull/24353): MAINT: Update `extbuild.py` from main.
- [24356](https://github.com/numpy/numpy/pull/24356): TST: fix distutils tests for deprecations in recent setuptools\...
- [24375](https://github.com/numpy/numpy/pull/24375): MAINT: Update cibuildwheel to version 2.15.0
- [24381](https://github.com/numpy/numpy/pull/24381): MAINT: Fix codespaces setup.sh script
- [24403](https://github.com/numpy/numpy/pull/24403): ENH: Vendor meson for multi-target build support
- [24404](https://github.com/numpy/numpy/pull/24404): BLD: vendor meson-python to make the Windows builds with SIMD\...
- [24405](https://github.com/numpy/numpy/pull/24405): BLD, SIMD: The meson CPU dispatcher implementation
- [24406](https://github.com/numpy/numpy/pull/24406): MAINT: Remove versioneer

Checksums

MD5

875d02016f215f8ce2513453393f0089 numpy-1.26.0b1-cp310-cp310-macosx_10_9_x86_64.whl
7df1856729096fbbbbb82b58c1695810 numpy-1.26.0b1-cp310-cp310-macosx_11_0_arm64.whl
928037510906572ecadb154b8089853f numpy-1.26.0b1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
93fb7c8a0e7af169c9bf42d8bfa17c2c numpy-1.26.0b1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
a865069d224bf3830671de8e1f374344 numpy-1.26.0b1-cp310-cp310-musllinux_1_1_x86_64.whl
c53d1d8cb653fc08bd3f931e4c965430 numpy-1.26.0b1-cp310-cp310-win_amd64.whl
c7e212fbb7e64231747c6c8aac0f8678 numpy-1.26.0b1-cp311-cp311-macosx_10_9_x86_64.whl
f2df03cdaee283c1f7486d2f66e497dd numpy-1.26.0b1-cp311-cp311-macosx_11_0_arm64.whl
8af359b78166474b7a621a482f3073fd numpy-1.26.0b1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
4eec2761b87ccd43028697410ed8909d numpy-1.26.0b1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
d9f0b03e455e9e99bdbe69e2e729c197 numpy-1.26.0b1-cp311-cp311-musllinux_1_1_x86_64.whl
dd1c5e4492988e2b3641602b295e7de3 numpy-1.26.0b1-cp311-cp311-win_amd64.whl
88e35ab901c8315ccdb172abc0d2350c numpy-1.26.0b1-cp312-cp312-macosx_10_9_x86_64.whl
ad426a4203844eaa8de6b519e94dc2c0 numpy-1.26.0b1-cp312-cp312-macosx_11_0_arm64.whl
2e0e7a297de88cfe930c205b1ab8fdb0 numpy-1.26.0b1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
5d4ea12ab53e506a9887ab8a587f68f6 numpy-1.26.0b1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
1b3c3a80d2fb928b753545ded60312f3 numpy-1.26.0b1-cp312-cp312-musllinux_1_1_x86_64.whl
e27356122ee42d84f6965ac802792bc3 numpy-1.26.0b1-cp312-cp312-win_amd64.whl
1cc0d71476548fa30c27a542e3c3f9bf numpy-1.26.0b1-cp39-cp39-macosx_10_9_x86_64.whl
ec4882af449c1754cc7af84a82305aed numpy-1.26.0b1-cp39-cp39-macosx_11_0_arm64.whl
142493180019de1ec22c4510bf650366 numpy-1.26.0b1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
4a0c76b75fa36c54c0d2a9107c838910 numpy-1.26.0b1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
cb4d1c3b95e3a2662f94475b4b525da0 numpy-1.26.0b1-cp39-cp39-musllinux_1_1_x86_64.whl
afa3f60467530e022eb1a584a8c48f84 numpy-1.26.0b1-cp39-cp39-win_amd64.whl
35c77e2f2b25225ae62354f91c26a693 numpy-1.26.0b1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
1986181def7286ae37ced5df7c0ca312 numpy-1.26.0b1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e013942d0d71cb6a680afa89c9aa5259 numpy-1.26.0b1-pp39-pypy39_pp73-win_amd64.whl
3268568cee06327fa34175aa3805829d numpy-1.26.0b1.tar.gz

SHA256

9a74361204dc604ba53916ed55aef0ca73e7aa3d0b7e47e1c28aece8c2ad4f59 numpy-1.26.0b1-cp310-cp310-macosx_10_9_x86_64.whl
ab9e86bb7c9d3e009945b24a92318ff5d8c245e0e0aaaa765825c4561c292d53 numpy-1.26.0b1-cp310-cp310-macosx_11_0_arm64.whl
b0b73599c80b29dfa7f812cb2e8738ce3f058b413e9f2f478e3cc4e038bb8f8e numpy-1.26.0b1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
4a6d4c99396c57e02b0181f01ba42b482f327774057e51fb7fb390a130c95cff numpy-1.26.0b1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
02af7482f34aeb9658ece615c922942f1a3908c449a9a6cd9f33fa233ce486d4 numpy-1.26.0b1-cp310-cp310-musllinux_1_1_x86_64.whl
5a8f04e957259ef93a1e4a29da0b64d49ee842af456257bbb7253925cfe2f7bd numpy-1.26.0b1-cp310-cp310-win_amd64.whl
f71e10402e705aaa5908464e489d38e6583c48e40a4721f83195772178c7da9f numpy-1.26.0b1-cp311-cp311-macosx_10_9_x86_64.whl
94d5572fea8dca0fa929da9d17fa49e525ceee1e59b04372dfa5bd8a5f688f5f numpy-1.26.0b1-cp311-cp311-macosx_11_0_arm64.whl
1f88e6fe42b0d6418e53332e525b299762dbd9e33055d2e0398e6298da5b0cc9 numpy-1.26.0b1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
c466707e5ce5a44caadb85fd672a5ce0bfc060012df465771e7b10506e1e5dad numpy-1.26.0b1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
16313a28cf703ae722b3ac139809360ffef81a45e758f196e538be3bcbee85c9 numpy-1.26.0b1-cp311-cp311-musllinux_1_1_x86_64.whl
ea85e8e297af49d30830177ecb0c54d1cbca051e4306161f3ceabfa66560b17c numpy-1.26.0b1-cp311-cp311-win_amd64.whl
321a063fabc302931029f831f284cf43c301fdeead1b15df2f8aa87673294d4d numpy-1.26.0b1-cp312-cp312-macosx_10_9_x86_64.whl
dc36a9e8df48b72dad668d6f4036ed477d8bc2cb1f7a23b688e8e8057afdfee3 numpy-1.26.0b1-cp312-cp312-macosx_11_0_arm64.whl
3c6c5804671fa1697e3d0cbc608a65c55794fb6682f4e04e9f6d65d0ddfc47c7 numpy-1.26.0b1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
3aa806da215e9c10ba89e9037a69c7a56367e059615679ef1a5cf937eedfbf61 numpy-1.26.0b1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
b66135c02ee55f9113dce3c8c5130b5feaead8767cd2c7ad36547a3d5e264230 numpy-1.26.0b1-cp312-cp312-musllinux_1_1_x86_64.whl
87f2799f475e9e7aee69254dfe357975b163d409550d4641a0bca4cb4f64b725 numpy-1.26.0b1-cp312-cp312-win_amd64.whl
2b258f67ca4a8245c74470da66a87684ddb3f06dde98760efc7ca792a44ee254 numpy-1.26.0b1-cp39-cp39-macosx_10_9_x86_64.whl
a31d9109ffed9fc5566e73346a076fffbc7db00e626579ae4d5dfec933b29bfc numpy-1.26.0b1-cp39-cp39-macosx_11_0_arm64.whl
18e29ab806ec5e0b05df900d44b3b257a5901c32fc3ddaeb818c520cd9279b4e numpy-1.26.0b1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
216b47882877ea5272f279c08bf7e42935728f35c6db2e4843b37db7b29ce016 numpy-1.26.0b1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
eea337d6d5ab2b6eb657b3f18e8b57a280f16fb5f94df484d9c1a8d3450d9ae9 numpy-1.26.0b1-cp39-cp39-musllinux_1_1_x86_64.whl
db698c9008217c54a8005ea58bd5836241d7b519c8bb16a698a1b4ec4ca296a8 numpy-1.26.0b1-cp39-cp39-win_amd64.whl
f250b3099649137f1021f8f95a9404273bcb7539f0bef6d6cf2c91260285edc4 numpy-1.26.0b1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
22584a41b1be30543dd8c030affc90d8cb7ec19a56fda7f27fc33f64f8b0fbaa numpy-1.26.0b1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
8aefe8ab1228e00146e5ae88290c7fdb8221aef45b357aed7f3dff6ac3b3b25a numpy-1.26.0b1-pp39-pypy39_pp73-win_amd64.whl
c67eea90827e1e9aa220a3fc380ce8776428deba8ac9e7c931ce7b69e8dce115 numpy-1.26.0b1.tar.gz

1.26.0rc1

1.26.0b1

1.25.2

discovered after the 1.25.1 release. This is the last planned release in
the 1.25.x series, the next release will be 1.26.0, which will use the
meson build system and support Python 3.12. The Python versions
supported by this release are 3.9-3.11.

Contributors

A total of 13 people contributed to this release. People with a \"+\" by
their names contributed a patch for the first time.

- Aaron Meurer
- Andrew Nelson
- Charles Harris
- Kevin Sheppard
- Matti Picus
- Nathan Goldbaum
- Peter Hawkins
- Ralf Gommers
- Randy Eckenrode +
- Sam James +
- Sebastian Berg
- Tyler Reddy
- dependabot\[bot\]

Pull requests merged

A total of 19 pull requests were merged for this release.

- [24148](https://github.com/numpy/numpy/pull/24148): MAINT: prepare 1.25.x for further development
- [24174](https://github.com/numpy/numpy/pull/24174): ENH: Improve clang-cl compliance
- [24179](https://github.com/numpy/numpy/pull/24179): MAINT: Upgrade various build dependencies.
- [24182](https://github.com/numpy/numpy/pull/24182): BLD: use `-ftrapping-math` with Clang on macOS
- [24183](https://github.com/numpy/numpy/pull/24183): BUG: properly handle negative indexes in ufunc_at fast path
- [24184](https://github.com/numpy/numpy/pull/24184): BUG: PyObject_IsTrue and PyObject_Not error handling in setflags
- [24185](https://github.com/numpy/numpy/pull/24185): BUG: histogram small range robust
- [24186](https://github.com/numpy/numpy/pull/24186): MAINT: Update meson.build files from main branch
- [24234](https://github.com/numpy/numpy/pull/24234): MAINT: exclude min, max and round from `np.__all__`
- [24241](https://github.com/numpy/numpy/pull/24241): MAINT: Dependabot updates
- [24242](https://github.com/numpy/numpy/pull/24242): BUG: Fix the signature for np.array_api.take
- [24243](https://github.com/numpy/numpy/pull/24243): BLD: update OpenBLAS to an intermeidate commit
- [24244](https://github.com/numpy/numpy/pull/24244): BUG: Fix reference count leak in str(scalar).
- [24245](https://github.com/numpy/numpy/pull/24245): BUG: fix invalid function pointer conversion error
- [24255](https://github.com/numpy/numpy/pull/24255): BUG: Factor out slow `getenv` call used for memory policy warning
- [24292](https://github.com/numpy/numpy/pull/24292): CI: correct URL in cirrus.star
- [24293](https://github.com/numpy/numpy/pull/24293): BUG: Fix C types in scalartypes
- [24294](https://github.com/numpy/numpy/pull/24294): BUG: do not modify the input to ufunc_at
- [24295](https://github.com/numpy/numpy/pull/24295): BUG: Further fixes to indexing loop and added tests

Checksums

MD5

33518ccb4da8ee11f1dee4b9fef1e468 numpy-1.25.2-cp310-cp310-macosx_10_9_x86_64.whl
b5cb0c3b33ef6d93ec2888f25b065636 numpy-1.25.2-cp310-cp310-macosx_11_0_arm64.whl
ae027dd38bd73f09c07220b2f516f148 numpy-1.25.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
88cf69dc3c0d293492c4c7e75dccf3d8 numpy-1.25.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
3e4e3ad02375ba71ae2cd05ccd97aba4 numpy-1.25.2-cp310-cp310-musllinux_1_1_x86_64.whl
f52bb644682deb26c35ddec77198b65c numpy-1.25.2-cp310-cp310-win32.whl
4944cf36652be7560a6bcd0d5d56e8ea numpy-1.25.2-cp310-cp310-win_amd64.whl
5a56e639defebb7b871c8c5613960ca3 numpy-1.25.2-cp311-cp311-macosx_10_9_x86_64.whl
3988b96944e7218e629255214f2598bd numpy-1.25.2-cp311-cp311-macosx_11_0_arm64.whl
302d65015ddd908a862fb3761a2a0363 numpy-1.25.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
e54a2e23272d1c5e5b278bd7e304c948 numpy-1.25.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
961d390e8ccaf11b1b0d6200d2c8b1c0 numpy-1.25.2-cp311-cp311-musllinux_1_1_x86_64.whl
e113865b90f97079d344100c41226fbe numpy-1.25.2-cp311-cp311-win32.whl
834a147aa1adaec97655018b882232bd numpy-1.25.2-cp311-cp311-win_amd64.whl
fb55f93a8033bde854c8a2b994045686 numpy-1.25.2-cp39-cp39-macosx_10_9_x86_64.whl
d96e754217d29bf045e082b695667e62 numpy-1.25.2-cp39-cp39-macosx_11_0_arm64.whl
beab540edebecbb257e482dd9e498b44 numpy-1.25.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
e0d608c9e09cd8feba48567586cfefc0 numpy-1.25.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
fe1fc32c8bb005ca04b8f10ebdcff6dd numpy-1.25.2-cp39-cp39-musllinux_1_1_x86_64.whl
41df58a9935c8ed869c92307c95f02eb numpy-1.25.2-cp39-cp39-win32.whl
a4371272c64493beb8b04ac46c4c1521 numpy-1.25.2-cp39-cp39-win_amd64.whl
bbe051cbd5f8661dd054277f0b0f0c3d numpy-1.25.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
3f68e6b4af6922989dc0133e37db34ee numpy-1.25.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
fc89421b79e8800240999d3a1d06a4d2 numpy-1.25.2-pp39-pypy39_pp73-win_amd64.whl
cee1996a80032d47bdf1d9d17249c34e numpy-1.25.2.tar.gz

SHA256

db3ccc4e37a6873045580d413fe79b68e47a681af8db2e046f1dacfa11f86eb3 numpy-1.25.2-cp310-cp310-macosx_10_9_x86_64.whl
90319e4f002795ccfc9050110bbbaa16c944b1c37c0baeea43c5fb881693ae1f numpy-1.25.2-cp310-cp310-macosx_11_0_arm64.whl
dfe4a913e29b418d096e696ddd422d8a5d13ffba4ea91f9f60440a3b759b0187 numpy-1.25.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
f08f2e037bba04e707eebf4bc934f1972a315c883a9e0ebfa8a7756eabf9e357 numpy-1.25.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
bec1e7213c7cb00d67093247f8c4db156fd03075f49876957dca4711306d39c9 numpy-1.25.2-cp310-cp310-musllinux_1_1_x86_64.whl
7dc869c0c75988e1c693d0e2d5b26034644399dd929bc049db55395b1379e044 numpy-1.25.2-cp310-cp310-win32.whl
834b386f2b8210dca38c71a6e0f4fd6922f7d3fcff935dbe3a570945acb1b545 numpy-1.25.2-cp310-cp310-win_amd64.whl
c5462d19336db4560041517dbb7759c21d181a67cb01b36ca109b2ae37d32418 numpy-1.25.2-cp311-cp311-macosx_10_9_x86_64.whl
c5652ea24d33585ea39eb6a6a15dac87a1206a692719ff45d53c5282e66d4a8f numpy-1.25.2-cp311-cp311-macosx_11_0_arm64.whl
0d60fbae8e0019865fc4784745814cff1c421df5afee233db6d88ab4f14655a2 numpy-1.25.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
60e7f0f7f6d0eee8364b9a6304c2845b9c491ac706048c7e8cf47b83123b8dbf numpy-1.25.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
bb33d5a1cf360304754913a350edda36d5b8c5331a8237268c48f91253c3a364 numpy-1.25.2-cp311-cp311-musllinux_1_1_x86_64.whl
5883c06bb92f2e6c8181df7b39971a5fb436288db58b5a1c3967702d4278691d numpy-1.25.2-cp311-cp311-win32.whl
5c97325a0ba6f9d041feb9390924614b60b99209a71a69c876f71052521d42a4 numpy-1.25.2-cp311-cp311-win_amd64.whl
b79e513d7aac42ae918db3ad1341a015488530d0bb2a6abcbdd10a3a829ccfd3 numpy-1.25.2-cp39-cp39-macosx_10_9_x86_64.whl
eb942bfb6f84df5ce05dbf4b46673ffed0d3da59f13635ea9b926af3deb76926 numpy-1.25.2-cp39-cp39-macosx_11_0_arm64.whl
3e0746410e73384e70d286f93abf2520035250aad8c5714240b0492a7302fdca numpy-1.25.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
d7806500e4f5bdd04095e849265e55de20d8cc4b661b038957354327f6d9b295 numpy-1.25.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
8b77775f4b7df768967a7c8b3567e309f617dd5e99aeb886fa14dc1a0791141f numpy-1.25.2-cp39-cp39-musllinux_1_1_x86_64.whl
2792d23d62ec51e50ce4d4b7d73de8f67a2fd3ea710dcbc8563a51a03fb07b01 numpy-1.25.2-cp39-cp39-win32.whl
76b4115d42a7dfc5d485d358728cdd8719be33cc5ec6ec08632a5d6fca2ed380 numpy-1.25.2-cp39-cp39-win_amd64.whl
1a1329e26f46230bf77b02cc19e900db9b52f398d6722ca853349a782d4cff55 numpy-1.25.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
4c3abc71e8b6edba80a01a52e66d83c5d14433cbcd26a40c329ec7ed09f37901 numpy-1.25.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
1b9735c27cea5d995496f46a8b1cd7b408b3f34b6d50459d9ac8fe3a20cc17bf numpy-1.25.2-pp39-pypy39_pp73-win_amd64.whl
fd608e19c8d7c55021dffd43bfe5492fab8cc105cc8986f813f8c3c048b38760 numpy-1.25.2.tar.gz

Page 5 of 23

© 2025 Safety CLI Cybersecurity Inc. All Rights Reserved.