Numpy

Latest version: v2.2.4

Safety actively analyzes 726274 Python packages for vulnerabilities to keep your Python projects secure.

Scan your dependencies

Page 20 of 24

1.15.0

Not secure
of old functions, and improvements to many existing functions. Please read the
detailed descriptions below to see if you are affected.

For testing, we have switched to pytest as a replacement for the no longer
maintained nose framework. The old nose based interface remains for downstream
projects who may still be using it.

The Python versions supported by this release are 2.7, 3.4-3.6. The upcoming

1.15.0rc2

==========================

1.15.0rc1

==========================

1.14.6

Not secure
==========================

This is a bugfix release for bugs reported following the 1.14.5 release. The
most significant fixes are:

* Fix for behavior change in ``ma.masked_values(shrink=True)``
* Fix the new cached allocations machinery to be thread safe.

The Python versions supported in this release are 2.7 and 3.4 - 3.7. The Python
3.6 wheels on PyPI should be compatible with all Python 3.6 versions.

Contributors
============

A total of 4 people contributed to this release. People with a "+" by their
names contributed a patch for the first time.

* Charles Harris
* Eric Wieser
* Julian Taylor
* Matti Picus

Pull requests merged
====================

A total of 4 pull requests were merged for this release.

* 11985: BUG: fix cached allocations without the GIL
* 11986: BUG: Undo behavior change in ma.masked_values(shrink=True)
* 11987: BUG: fix refcount leak in PyArray_AdaptFlexibleDType
* 11995: TST: Add Python 3.7 testing to NumPy 1.14.

Checksums
=========

MD5
---

f67c12a012b32b44e39eb057d6c5e5a9 numpy-1.14.6-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
a9325f87cd57dca3164e8920bd93ed30 numpy-1.14.6-cp27-cp27m-manylinux1_i686.whl
a02a64177b422b6059242f01fc39eba9 numpy-1.14.6-cp27-cp27m-manylinux1_x86_64.whl
4d45b10bc3be5e2e87aaf530bbcd9e48 numpy-1.14.6-cp27-cp27mu-manylinux1_i686.whl
d9e0e8d2aa9a198bcebb9e6627669c7b numpy-1.14.6-cp27-cp27mu-manylinux1_x86_64.whl
cfe9797b5bb22896aae777a356e77eab numpy-1.14.6-cp27-none-win32.whl
7e2bb331cc8fc5939a362df46cf60081 numpy-1.14.6-cp27-none-win_amd64.whl
1ba6477836db55255943977535bf6821 numpy-1.14.6-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
e341e9d58654c8afd15728495a523473 numpy-1.14.6-cp34-cp34m-manylinux1_i686.whl
e326047645ebee9bfac01922663488c7 numpy-1.14.6-cp34-cp34m-manylinux1_x86_64.whl
29f8f49c0c3b3282fcd644d66bf15001 numpy-1.14.6-cp34-none-win32.whl
92ad00143740a54180bb6f2015004940 numpy-1.14.6-cp34-none-win_amd64.whl
0f25ad62a1f7627729296d47a72d5fe4 numpy-1.14.6-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
9027e902724fe6d0468f30f9fed878c9 numpy-1.14.6-cp35-cp35m-manylinux1_i686.whl
25cc365ada785dd26ed74eae5b90630d numpy-1.14.6-cp35-cp35m-manylinux1_x86_64.whl
b969c8694c91918927b74f82dcbd6e51 numpy-1.14.6-cp35-none-win32.whl
db451ea9b296b95644bbdb0dfe133d38 numpy-1.14.6-cp35-none-win_amd64.whl
afc5355fe367e833bf8b503e2be19e11 numpy-1.14.6-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
200cdb3ed59ced85a6fe4255b4e93c32 numpy-1.14.6-cp36-cp36m-manylinux1_i686.whl
b40851c94f1c7586a1f5b4e9602a748a numpy-1.14.6-cp36-cp36m-manylinux1_x86_64.whl
7ece416512eb587d237e0ea35a764387 numpy-1.14.6-cp36-none-win32.whl
fb0334939e7f0716415971c1566a3da5 numpy-1.14.6-cp36-none-win_amd64.whl
7cd2d7d164af228289e2a2dd7dc2f6b0 numpy-1.14.6-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
f816dd37be0320767994c18aaca1f530 numpy-1.14.6-cp37-cp37m-manylinux1_i686.whl
29539a787aa1c04c5026c7b9c4e611e4 numpy-1.14.6-cp37-cp37m-manylinux1_x86_64.whl
d957e060a892311bd19df11fd2efbce3 numpy-1.14.6-cp37-none-win32.whl
4660539e780b295ab849fe9cd6491994 numpy-1.14.6-cp37-none-win_amd64.whl
dd01e3e29e8f46f2be8f176d3649cab1 numpy-1.14.6.tar.gz
9118b06f0ff86f9545beee4a10a80717 numpy-1.14.6.zip

SHA256
------

bd6b3906a50f9ad755e2c21a78661eff1bbaab3c803c0fcf22927ec50372dba6 numpy-1.14.6-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
f1dd9a8ecbe9f8f13652afe04c470bb837578e402a3641649ddc41764d0e4326 numpy-1.14.6-cp27-cp27m-manylinux1_i686.whl
4c774c852cad87f692e6b3e374ba7074c7a9897cf4bafcc47ad48142d455f3ae numpy-1.14.6-cp27-cp27m-manylinux1_x86_64.whl
40f9c0ae71453e4d28d40e502e531e72810bf3b12b2d55cad939ab86a26ead42 numpy-1.14.6-cp27-cp27mu-manylinux1_i686.whl
964c2c6a9e0ecac54a368effa26a89a97b2e15266dc68dc78f2519f3040be623 numpy-1.14.6-cp27-cp27mu-manylinux1_x86_64.whl
4e2f4c7031507b23b14056a4bc2b4cbe865607f55b45bfc15cc745a268bc817e numpy-1.14.6-cp27-none-win32.whl
35be3f06ad20030bfba9ae199fa5d5474aebeabb3197d2ce9fcd8c417f7415e3 numpy-1.14.6-cp27-none-win_amd64.whl
e11e5eba43e0d8b077aafa11e43db7a77af4fa435557972dd3570898e0cbb736 numpy-1.14.6-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
1718e009ac6699868c82c4ed154e64945479f5c3d8826b2e10c470e9fad7bd18 numpy-1.14.6-cp34-cp34m-manylinux1_i686.whl
6eb031402a278a6fa5838e543cf36ed6d21a6ee90e9a2803570d47908ca5e9fd numpy-1.14.6-cp34-cp34m-manylinux1_x86_64.whl
1b07024c4d87bf7a0738c438aa7fb709f9d7c093513bb8ffb2ac849f4553658c numpy-1.14.6-cp34-none-win32.whl
e5daec856ea0e1111391179449b855aa29f1433ac507adc3d6c00a96abb438cb numpy-1.14.6-cp34-none-win_amd64.whl
0e7c5e5358be186e0d6c73a9b34e1b890602ac1db413adc61794e2e3e02ec65c numpy-1.14.6-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
6f2a52bb05c560fd6f29d7b49dfe8b4d7c5445c448e5587969446a0f10cf9164 numpy-1.14.6-cp35-cp35m-manylinux1_i686.whl
1454aca5a62fe18bb2828ea1b2f9d1534afed7216c13404a6657cda57937c54b numpy-1.14.6-cp35-cp35m-manylinux1_x86_64.whl
686869ff6adc49b3066fdb44198c0655603b33e2c4d852a04c6a84cd8b224786 numpy-1.14.6-cp35-none-win32.whl
057ca467673a4b0422a9365ea0b53572813764f60896d3d1423f5cc9d2dd0d02 numpy-1.14.6-cp35-none-win_amd64.whl
db10d3d10658a847f85fe9df0d5fe6df190a30d32423d670c3824580e373c0a8 numpy-1.14.6-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
7ce70ef6fd9bdfafd896c617761129fafaa06e4683d0bfbf3c56a87c89e02d61 numpy-1.14.6-cp36-cp36m-manylinux1_i686.whl
4ab59a69a627ee73a2723b60723abfe0404947c16acef7b0880d6bbec93ba7cd numpy-1.14.6-cp36-cp36m-manylinux1_x86_64.whl
33acfba9f453b0b6465c0aa5fe5cb0d32b8483850bc8cc776b4d3cc96595aa03 numpy-1.14.6-cp36-none-win32.whl
6d3e10394dada2cdf8ba354025ddf15a744b4e833c77347e31547c4b5c77deab numpy-1.14.6-cp36-none-win_amd64.whl
d37f058ea9a2fd2a9160b0cc65bbfb302dfcea8d5fe178299938d95d7bfa2b83 numpy-1.14.6-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
a1cafe27328c1f01127297f11e2be25d5d3821d2654a7459e017cfce98258995 numpy-1.14.6-cp37-cp37m-manylinux1_i686.whl
df2937c62d8d3059c1396c7cacfc12577c0923e2a37557592759358848b1544c numpy-1.14.6-cp37-cp37m-manylinux1_x86_64.whl
d3f22c0781ad5fe51d7210f36a91f01620355520996fc332a1d0cf24e0cab794 numpy-1.14.6-cp37-none-win32.whl
fe909f8d14b2f16ea5d9ec2234fc0ffbfccccaef1ba6bc27d9d21acfe8cc72e1 numpy-1.14.6-cp37-none-win_amd64.whl
61b01b87d1e76df9a1e43fff727c1e0289c4cd2bc7be9f806e97b45aed3682cc numpy-1.14.6.tar.gz
1250edf6f6c43e1d7823f0967416bc18258bb271dc536298eb0ea00a9e45b80a numpy-1.14.6.zip

1.14.5

Not secure
==========================

This is a bugfix release for bugs reported following the 1.14.4 release. The
most significant fixes are:

* fixes for compilation errors on alpine and NetBSD

The Python versions supported in this release are 2.7 and 3.4 - 3.6. The Python
3.6 wheels available from PIP are built with Python 3.6.2 and should be
compatible with all previous versions of Python 3.6. The source releases were
cythonized with Cython 0.28.2 and should work for the upcoming Python 3.7.

Contributors
============

A total of 1 person contributed to this release. People with a "+" by their
names contributed a patch for the first time.

* Charles Harris

Pull requests merged
====================

A total of 2 pull requests were merged for this release.

* `11274 <https://github.com/numpy/numpy/pull/11274>`__: BUG: Correct use of NPY_UNUSED.
* `11294 <https://github.com/numpy/numpy/pull/11294>`__: BUG: Remove extra trailing parentheses.


Checksums
=========

MD5
- ---

429afa5c8720016214a79779f774d3a4 numpy-1.14.5-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
de8f5c6c0e46eedf8d92c1a7ba3fccf7 numpy-1.14.5-cp27-cp27m-manylinux1_i686.whl
6315999b5142d22ce7bd9e74b1b4e3ab numpy-1.14.5-cp27-cp27m-manylinux1_x86_64.whl
397a64608b5809983ff07842ebe0d353 numpy-1.14.5-cp27-cp27mu-manylinux1_i686.whl
6759e2f4bd57727f1ab9d6c9611b3f9d numpy-1.14.5-cp27-cp27mu-manylinux1_x86_64.whl
2d5609f384fccf9fe4e6172dd4fed3d0 numpy-1.14.5-cp27-none-win32.whl
c0d5fc38ab45f19cbd12200ff4ea45dd numpy-1.14.5-cp27-none-win_amd64.whl
0a77f36af749e5c3546c3d310f571256 numpy-1.14.5-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
ae15c8254a4a3ebfc45894617ce030a2 numpy-1.14.5-cp34-cp34m-manylinux1_i686.whl
78c67b4b4f8f3f8bd9c2f897f9d40f60 numpy-1.14.5-cp34-cp34m-manylinux1_x86_64.whl
5263ec59028d508992c15263993698d0 numpy-1.14.5-cp34-none-win32.whl
193365c9f1bb2086b47afe9c797ff415 numpy-1.14.5-cp34-none-win_amd64.whl
90caeba061eec5dbebadad5c8bad3a0c numpy-1.14.5-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
129848206c41b68071fe9cb469a66846 numpy-1.14.5-cp35-cp35m-manylinux1_i686.whl
395c0058b7ec0ae0cad1e052362e9aeb numpy-1.14.5-cp35-cp35m-manylinux1_x86_64.whl
a542ea0d9047df0da8ab69e90d60dbdc numpy-1.14.5-cp35-none-win32.whl
c5c86e11b5071c0ca0bb11f6a84f20e6 numpy-1.14.5-cp35-none-win_amd64.whl
350120bd20a0a45857b4c39e901af41b numpy-1.14.5-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
5a0682a984fcf6f87a9f10760d896b70 numpy-1.14.5-cp36-cp36m-manylinux1_i686.whl
c5596c3d232345d0f0176cd02e6efe92 numpy-1.14.5-cp36-cp36m-manylinux1_x86_64.whl
c0306cbad68f8084e977121ba104b634 numpy-1.14.5-cp36-none-win32.whl
01b5bd7897e1306660c7ea6a30391cc4 numpy-1.14.5-cp36-none-win_amd64.whl
e3189ee851c3a0e2e6e4c6e80a711ec8 numpy-1.14.5.tar.gz
02d940a6931703de2c41fa5590ac7e98 numpy-1.14.5.zip

SHA256
- ------

e1864a4e9f93ddb2dc6b62ccc2ec1f8250ff4ac0d3d7a15c8985dd4e1fbd6418 numpy-1.14.5-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
085afac75bbc97a096744fcfc97a4b321c5a87220286811e85089ae04885acdd numpy-1.14.5-cp27-cp27m-manylinux1_i686.whl
6c57f973218b776195d0356e556ec932698f3a563e2f640cfca7020086383f50 numpy-1.14.5-cp27-cp27m-manylinux1_x86_64.whl
589336ba5199c8061239cf446ee2f2f1fcc0c68e8531ee1382b6fc0c66b2d388 numpy-1.14.5-cp27-cp27mu-manylinux1_i686.whl
5edf1acc827ed139086af95ce4449b7b664f57a8c29eb755411a634be280d9f2 numpy-1.14.5-cp27-cp27mu-manylinux1_x86_64.whl
6b82b81c6b3b70ed40bc6d0b71222ebfcd6b6c04a6e7945a936e514b9113d5a3 numpy-1.14.5-cp27-none-win32.whl
385f1ce46e08676505b692bfde918c1e0b350963a15ef52d77691c2cf0f5dbf6 numpy-1.14.5-cp27-none-win_amd64.whl
758d1091a501fd2d75034e55e7e98bfd1370dc089160845c242db1c760d944d9 numpy-1.14.5-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
c725d11990a9243e6ceffe0ab25a07c46c1cc2c5dc55e305717b5afe856c9608 numpy-1.14.5-cp34-cp34m-manylinux1_i686.whl
07379fe0b450f6fd6e5934a9bc015025bb4ce1c8fbed3ca8bef29328b1bc9570 numpy-1.14.5-cp34-cp34m-manylinux1_x86_64.whl
9e1f53afae865cc32459ad211493cf9e2a3651a7295b7a38654ef3d123808996 numpy-1.14.5-cp34-none-win32.whl
4d278c2261be6423c5e63d8f0ceb1b0c6db3ff83f2906f4b860db6ae99ca1bb5 numpy-1.14.5-cp34-none-win_amd64.whl
d696a8c87315a83983fc59dd27efe034292b9e8ad667aeae51a68b4be14690d9 numpy-1.14.5-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
2df854df882d322d5c23087a4959e145b953dfff2abe1774fec4f639ac2f3160 numpy-1.14.5-cp35-cp35m-manylinux1_i686.whl
baadc5f770917ada556afb7651a68176559f4dca5f4b2d0947cd15b9fb84fb51 numpy-1.14.5-cp35-cp35m-manylinux1_x86_64.whl
2d6481c6bdab1c75affc0fc71eb1bd4b3ecef620d06f2f60c3f00521d54be04f numpy-1.14.5-cp35-none-win32.whl
51c5dcb51cf88b34b7d04c15f600b07c6ccbb73a089a38af2ab83c02862318da numpy-1.14.5-cp35-none-win_amd64.whl
8b8dcfcd630f1981f0f1e3846fae883376762a0c1b472baa35b145b911683b7b numpy-1.14.5-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
9d69967673ab7b028c2df09cae05ba56bf4e39e3cb04ebe452b6035c3b49848e numpy-1.14.5-cp36-cp36m-manylinux1_i686.whl
8622db292b766719810e0cb0f62ef6141e15fe32b04e4eb2959888319e59336b numpy-1.14.5-cp36-cp36m-manylinux1_x86_64.whl
97fa8f1dceffab782069b291e38c4c2227f255cdac5f1e3346666931df87373e numpy-1.14.5-cp36-none-win32.whl
381ad13c30cd1d0b2f3da8a0c1a4aa697487e8bb0e9e0cbeb7439776bcb645f8 numpy-1.14.5-cp36-none-win_amd64.whl
1b4a02758fb68a65ea986d808867f1d6383219c234aef553a8741818e795b529 numpy-1.14.5.tar.gz
a4a433b3a264dbc9aa9c7c241e87c0358a503ea6394f8737df1683c7c9a102ac numpy-1.14.5.zip

1.14.4

Not secure
==========================

This is a bugfix release for bugs reported following the 1.14.3 release. The
most significant fixes are:

* fixes for compiler instruction reordering that resulted in NaN's not being
properly propagated in `np.max` and `np.min`,

* fixes for bus faults on SPARC and older ARM due to incorrect alignment
checks.

There are also improvements to printing of long doubles on PPC platforms. All
is not yet perfect on that platform, the whitespace padding is still incorrect
and is to be fixed in numpy 1.15, consequently NumPy still fails some
printing-related (and other) unit tests on ppc systems. However, the printed
values are now correct.

Note that NumPy will error on import if it detects incorrect float32 `dot`
results. This problem has been seen on the Mac when working in the Anaconda
enviroment and is due to a subtle interaction between MKL and PyQt5. It is not
strictly a NumPy problem, but it is best that users be aware of it. See the
gh-8577 NumPy issue for more information.

The Python versions supported in this release are 2.7 and 3.4 - 3.6. The Python
3.6 wheels available from PIP are built with Python 3.6.2 and should be
compatible with all previous versions of Python 3.6. The source releases were
cythonized with Cython 0.28.2 and should work for the upcoming Python 3.7.

Contributors
============

A total of 7 people contributed to this release. People with a "+" by their
names contributed a patch for the first time.

* Allan Haldane
* Charles Harris
* Marten van Kerkwijk
* Matti Picus
* Pauli Virtanen
* Ryan Soklaski +
* Sebastian Berg

Pull requests merged
====================

A total of 11 pull requests were merged for this release.

* 11104: BUG: str of DOUBLE_DOUBLE format wrong on ppc64
* 11170: TST: linalg: add regression test for gh-8577
* 11174: MAINT: add sanity-checks to be run at import time
* 11181: BUG: void dtype setup checked offset not actual pointer for alignment
* 11194: BUG: Python2 doubles don't print correctly in interactive shell.
* 11198: BUG: optimizing compilers can reorder call to npy_get_floatstatus
* 11199: BUG: reduce using SSE only warns if inside SSE loop
* 11203: BUG: Bytes delimiter/comments in genfromtxt should be decoded
* 11211: BUG: Fix reference count/memory leak exposed by better testing
* 11219: BUG: Fixes einsum broadcasting bug when optimize=True
* 11251: DOC: Document 1.14.4 release.

Checksums
=========

MD5
---

118e010f76fba91f05111e775d08b9d2 numpy-1.14.4-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
a08af11af72e8393d61f1724e2a42258 numpy-1.14.4-cp27-cp27m-manylinux1_i686.whl
bbf56f4de32bb2c4215e01ea4f1b9445 numpy-1.14.4-cp27-cp27m-manylinux1_x86_64.whl
b5e17dcc08205a278ffd33c6baeb7562 numpy-1.14.4-cp27-cp27mu-manylinux1_i686.whl
e6844d6134fed4f79b52cd89d66edb76 numpy-1.14.4-cp27-cp27mu-manylinux1_x86_64.whl
e9d4ab30ffee0f57da2292ed2c42bdcb numpy-1.14.4-cp27-none-win32.whl
ff04e3451a90fdf9ae8b6db8b3e8c2d6 numpy-1.14.4-cp27-none-win_amd64.whl
fbe6a5a9a0de9f85bcb729702a132769 numpy-1.14.4-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
33a177cf9d60fa26d30dc80b7163a374 numpy-1.14.4-cp34-cp34m-manylinux1_i686.whl
6335ee571648d8db7561a619328b69c7 numpy-1.14.4-cp34-cp34m-manylinux1_x86_64.whl
e53dd3796a0cdec43037b18c5c54d1a3 numpy-1.14.4-cp34-none-win32.whl
aab911c898c58073b47a2d1f28228a41 numpy-1.14.4-cp34-none-win_amd64.whl
a05e215d9443c838a531119eb5c1eadc numpy-1.14.4-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
7c5f7ff2cccb13c22b87f768ac1cc6e2 numpy-1.14.4-cp35-cp35m-manylinux1_i686.whl
d22105d03a15c9fd6ec4ecffa4b1f764 numpy-1.14.4-cp35-cp35m-manylinux1_x86_64.whl
7a5d4c66c7f6e430eb73b5683d99cacb numpy-1.14.4-cp35-none-win32.whl
cf0c074d9243f8bf6eff8291ac12a003 numpy-1.14.4-cp35-none-win_amd64.whl
79233bdad30a65beb515c86a4612102d numpy-1.14.4-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
135139bd2ec26e2b52bdd2d36be94c44 numpy-1.14.4-cp36-cp36m-manylinux1_i686.whl
9c56d525cf6da2b8489e723d72ccc9a2 numpy-1.14.4-cp36-cp36m-manylinux1_x86_64.whl
ec9af9e19aac597e1a245ada9c333e2d numpy-1.14.4-cp36-none-win32.whl
f8ec9c6167f2b0d08066ec78c3a01a4c numpy-1.14.4-cp36-none-win_amd64.whl
7de00fc3be91a3ab913d4efe206b3928 numpy-1.14.4.tar.gz
a8a23723342a561e579757553e9db73a numpy-1.14.4.zip

SHA256
------

c0c4bdcb771a147cb14286e3aeb72267e1664652d4150b0df255f0c210166a62 numpy-1.14.4-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
939376b3b8d9bd42529a2713534c9bae7f11c774614d4d2f7f2a38cae96101f1 numpy-1.14.4-cp27-cp27m-manylinux1_i686.whl
6105d909e56c4f3f173a7294154eee5da80853104e9c3ebcf9e523fb3bb6cf70 numpy-1.14.4-cp27-cp27m-manylinux1_x86_64.whl
3ed68b8ef0635e12b06c216d3ed33572d9c15b05a5a5d6ab870d073190c3eef3 numpy-1.14.4-cp27-cp27mu-manylinux1_i686.whl
1dc831683f18c11e6b5b7ad3610b9f00417b8d3fc63a8adcdbe68844d9dd6f62 numpy-1.14.4-cp27-cp27mu-manylinux1_x86_64.whl
8d87ac65d830ee3087e6bd02b0201e68aed4c715ff2e227e3640e7ded38d8a2e numpy-1.14.4-cp27-none-win32.whl
7fbceea93b6877419d84516705a265dfc4626939a29107a4d04db599bf6cdf8d numpy-1.14.4-cp27-none-win_amd64.whl
a1b4a80d59658fc438716095deb1971c6315482b461d976f760d920b6509fd5d numpy-1.14.4-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
ef7a07f6a77658a1038e6d22e53458129c04a95b5770f080b5741320d9491e32 numpy-1.14.4-cp34-cp34m-manylinux1_i686.whl
c5065b3aec37cd1b7ec2882b3ab86e200d15219a0fb96fea65a16c6b59d3c0f0 numpy-1.14.4-cp34-cp34m-manylinux1_x86_64.whl
b2b2741da83b1e016094b2fef2cadec1abd3ccd3d97428634ec6afe1dcb699b8 numpy-1.14.4-cp34-none-win32.whl
419dfe9bcb09d2e87ecf296c5ebf2b047c568419c89588acc9dbce6d2d761bea numpy-1.14.4-cp34-none-win_amd64.whl
be4664fe153ca6dbd961fb06f99b9b88b114ab44649376253b540aafbf42e469 numpy-1.14.4-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
0d6d7bbcb54babaf39fe658bcc6f79641c9c62813c6d477802d783c7ba1a437c numpy-1.14.4-cp35-cp35m-manylinux1_i686.whl
f54114395aabe13c7c4e4b425145cfd998eaf0781e87a9e9b2e77426f1ec8a82 numpy-1.14.4-cp35-cp35m-manylinux1_x86_64.whl
eb6ccd2b47d43199ec9a7c39bd45e399ccb5756e7367aaf92ced3c46fa67b16b numpy-1.14.4-cp35-none-win32.whl
f6a4ae8d5e1126bf4d8520a9aa6a82d067ab3ce7d21f58f0d50ead2aebda7bfb numpy-1.14.4-cp35-none-win_amd64.whl
b037993dfb1175a68b6a2bfc6b1c2af57c09031d1332fea3ab25a539b43bd475 numpy-1.14.4-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
e6c24c83ca64d447a18f041bd53cbe96c74405f59939b6006755105583b62629 numpy-1.14.4-cp36-cp36m-manylinux1_i686.whl
f29a9c5607b0fded7a9f0871dbd06918a88cb0a465acfac5c67f92d1a4115d48 numpy-1.14.4-cp36-cp36m-manylinux1_x86_64.whl
d9ceb6c680ffbe55ef6cf9d93558e0ddb72d616b885d77c536920f3da2112703 numpy-1.14.4-cp36-none-win32.whl
9e6694912f13afd8b1e15aa8002e9c951a377c94080c5442de154d743a69b3ff numpy-1.14.4-cp36-none-win_amd64.whl
c9a83644685edf8b5383b7632daa37df115b41aa20ca6ec3139e707d88f7c903 numpy-1.14.4.tar.gz
2185a0f31ecaa0792264fa968c8e0ba6d96acf144b26e2e1d1cd5b77fc11a691 numpy-1.14.4.zip

Page 20 of 24

© 2025 Safety CLI Cybersecurity Inc. All Rights Reserved.