==========================
This is a bugfix release for bugs reported following the 1.14.3 release. The
most significant fixes are:
* fixes for compiler instruction reordering that resulted in NaN's not being
properly propagated in `np.max` and `np.min`,
* fixes for bus faults on SPARC and older ARM due to incorrect alignment
checks.
There are also improvements to printing of long doubles on PPC platforms. All
is not yet perfect on that platform, the whitespace padding is still incorrect
and is to be fixed in numpy 1.15, consequently NumPy still fails some
printing-related (and other) unit tests on ppc systems. However, the printed
values are now correct.
Note that NumPy will error on import if it detects incorrect float32 `dot`
results. This problem has been seen on the Mac when working in the Anaconda
enviroment and is due to a subtle interaction between MKL and PyQt5. It is not
strictly a NumPy problem, but it is best that users be aware of it. See the
gh-8577 NumPy issue for more information.
The Python versions supported in this release are 2.7 and 3.4 - 3.6. The Python
3.6 wheels available from PIP are built with Python 3.6.2 and should be
compatible with all previous versions of Python 3.6. The source releases were
cythonized with Cython 0.28.2 and should work for the upcoming Python 3.7.
Contributors
============
A total of 7 people contributed to this release. People with a "+" by their
names contributed a patch for the first time.
* Allan Haldane
* Charles Harris
* Marten van Kerkwijk
* Matti Picus
* Pauli Virtanen
* Ryan Soklaski +
* Sebastian Berg
Pull requests merged
====================
A total of 11 pull requests were merged for this release.
* 11104: BUG: str of DOUBLE_DOUBLE format wrong on ppc64
* 11170: TST: linalg: add regression test for gh-8577
* 11174: MAINT: add sanity-checks to be run at import time
* 11181: BUG: void dtype setup checked offset not actual pointer for alignment
* 11194: BUG: Python2 doubles don't print correctly in interactive shell.
* 11198: BUG: optimizing compilers can reorder call to npy_get_floatstatus
* 11199: BUG: reduce using SSE only warns if inside SSE loop
* 11203: BUG: Bytes delimiter/comments in genfromtxt should be decoded
* 11211: BUG: Fix reference count/memory leak exposed by better testing
* 11219: BUG: Fixes einsum broadcasting bug when optimize=True
* 11251: DOC: Document 1.14.4 release.
Checksums
=========
MD5
---
118e010f76fba91f05111e775d08b9d2 numpy-1.14.4-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
a08af11af72e8393d61f1724e2a42258 numpy-1.14.4-cp27-cp27m-manylinux1_i686.whl
bbf56f4de32bb2c4215e01ea4f1b9445 numpy-1.14.4-cp27-cp27m-manylinux1_x86_64.whl
b5e17dcc08205a278ffd33c6baeb7562 numpy-1.14.4-cp27-cp27mu-manylinux1_i686.whl
e6844d6134fed4f79b52cd89d66edb76 numpy-1.14.4-cp27-cp27mu-manylinux1_x86_64.whl
e9d4ab30ffee0f57da2292ed2c42bdcb numpy-1.14.4-cp27-none-win32.whl
ff04e3451a90fdf9ae8b6db8b3e8c2d6 numpy-1.14.4-cp27-none-win_amd64.whl
fbe6a5a9a0de9f85bcb729702a132769 numpy-1.14.4-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
33a177cf9d60fa26d30dc80b7163a374 numpy-1.14.4-cp34-cp34m-manylinux1_i686.whl
6335ee571648d8db7561a619328b69c7 numpy-1.14.4-cp34-cp34m-manylinux1_x86_64.whl
e53dd3796a0cdec43037b18c5c54d1a3 numpy-1.14.4-cp34-none-win32.whl
aab911c898c58073b47a2d1f28228a41 numpy-1.14.4-cp34-none-win_amd64.whl
a05e215d9443c838a531119eb5c1eadc numpy-1.14.4-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
7c5f7ff2cccb13c22b87f768ac1cc6e2 numpy-1.14.4-cp35-cp35m-manylinux1_i686.whl
d22105d03a15c9fd6ec4ecffa4b1f764 numpy-1.14.4-cp35-cp35m-manylinux1_x86_64.whl
7a5d4c66c7f6e430eb73b5683d99cacb numpy-1.14.4-cp35-none-win32.whl
cf0c074d9243f8bf6eff8291ac12a003 numpy-1.14.4-cp35-none-win_amd64.whl
79233bdad30a65beb515c86a4612102d numpy-1.14.4-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
135139bd2ec26e2b52bdd2d36be94c44 numpy-1.14.4-cp36-cp36m-manylinux1_i686.whl
9c56d525cf6da2b8489e723d72ccc9a2 numpy-1.14.4-cp36-cp36m-manylinux1_x86_64.whl
ec9af9e19aac597e1a245ada9c333e2d numpy-1.14.4-cp36-none-win32.whl
f8ec9c6167f2b0d08066ec78c3a01a4c numpy-1.14.4-cp36-none-win_amd64.whl
7de00fc3be91a3ab913d4efe206b3928 numpy-1.14.4.tar.gz
a8a23723342a561e579757553e9db73a numpy-1.14.4.zip
SHA256
------
c0c4bdcb771a147cb14286e3aeb72267e1664652d4150b0df255f0c210166a62 numpy-1.14.4-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
939376b3b8d9bd42529a2713534c9bae7f11c774614d4d2f7f2a38cae96101f1 numpy-1.14.4-cp27-cp27m-manylinux1_i686.whl
6105d909e56c4f3f173a7294154eee5da80853104e9c3ebcf9e523fb3bb6cf70 numpy-1.14.4-cp27-cp27m-manylinux1_x86_64.whl
3ed68b8ef0635e12b06c216d3ed33572d9c15b05a5a5d6ab870d073190c3eef3 numpy-1.14.4-cp27-cp27mu-manylinux1_i686.whl
1dc831683f18c11e6b5b7ad3610b9f00417b8d3fc63a8adcdbe68844d9dd6f62 numpy-1.14.4-cp27-cp27mu-manylinux1_x86_64.whl
8d87ac65d830ee3087e6bd02b0201e68aed4c715ff2e227e3640e7ded38d8a2e numpy-1.14.4-cp27-none-win32.whl
7fbceea93b6877419d84516705a265dfc4626939a29107a4d04db599bf6cdf8d numpy-1.14.4-cp27-none-win_amd64.whl
a1b4a80d59658fc438716095deb1971c6315482b461d976f760d920b6509fd5d numpy-1.14.4-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
ef7a07f6a77658a1038e6d22e53458129c04a95b5770f080b5741320d9491e32 numpy-1.14.4-cp34-cp34m-manylinux1_i686.whl
c5065b3aec37cd1b7ec2882b3ab86e200d15219a0fb96fea65a16c6b59d3c0f0 numpy-1.14.4-cp34-cp34m-manylinux1_x86_64.whl
b2b2741da83b1e016094b2fef2cadec1abd3ccd3d97428634ec6afe1dcb699b8 numpy-1.14.4-cp34-none-win32.whl
419dfe9bcb09d2e87ecf296c5ebf2b047c568419c89588acc9dbce6d2d761bea numpy-1.14.4-cp34-none-win_amd64.whl
be4664fe153ca6dbd961fb06f99b9b88b114ab44649376253b540aafbf42e469 numpy-1.14.4-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
0d6d7bbcb54babaf39fe658bcc6f79641c9c62813c6d477802d783c7ba1a437c numpy-1.14.4-cp35-cp35m-manylinux1_i686.whl
f54114395aabe13c7c4e4b425145cfd998eaf0781e87a9e9b2e77426f1ec8a82 numpy-1.14.4-cp35-cp35m-manylinux1_x86_64.whl
eb6ccd2b47d43199ec9a7c39bd45e399ccb5756e7367aaf92ced3c46fa67b16b numpy-1.14.4-cp35-none-win32.whl
f6a4ae8d5e1126bf4d8520a9aa6a82d067ab3ce7d21f58f0d50ead2aebda7bfb numpy-1.14.4-cp35-none-win_amd64.whl
b037993dfb1175a68b6a2bfc6b1c2af57c09031d1332fea3ab25a539b43bd475 numpy-1.14.4-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
e6c24c83ca64d447a18f041bd53cbe96c74405f59939b6006755105583b62629 numpy-1.14.4-cp36-cp36m-manylinux1_i686.whl
f29a9c5607b0fded7a9f0871dbd06918a88cb0a465acfac5c67f92d1a4115d48 numpy-1.14.4-cp36-cp36m-manylinux1_x86_64.whl
d9ceb6c680ffbe55ef6cf9d93558e0ddb72d616b885d77c536920f3da2112703 numpy-1.14.4-cp36-none-win32.whl
9e6694912f13afd8b1e15aa8002e9c951a377c94080c5442de154d743a69b3ff numpy-1.14.4-cp36-none-win_amd64.whl
c9a83644685edf8b5383b7632daa37df115b41aa20ca6ec3139e707d88f7c903 numpy-1.14.4.tar.gz
2185a0f31ecaa0792264fa968c8e0ba6d96acf144b26e2e1d1cd5b77fc11a691 numpy-1.14.4.zip