==========================
This release contains various bug/regression fixes.
The Python versions supported in this release are 3.5-3.8. Downstream
developers should use Cython \>= 0.29.15 for Python 3.8 support and
OpenBLAS \>= 3.7 to avoid errors on the Skylake architecture.
Highlights
----------
- Fix for the `method='eigh'` and `method='cholesky'` options in
`numpy.random.multivariate_normal`. Those were producing samples
from the wrong distribution.
Contributors
------------
A total of 6 people contributed to this release. People with a \"+\" by
their names contributed a patch for the first time.
- Charles Harris
- Max Balandat +
- \Mibu287 +
- Pan Jan +
- Sebastian Berg
- \panpiort8 +
Pull requests merged
--------------------
A total of 5 pull requests were merged for this release.
- [\15916](https://github.com/numpy/numpy/pull/15916): BUG: Fix eigh and cholesky methods of numpy.random.multivariate\_normal
- [\15929](https://github.com/numpy/numpy/pull/15929): BUG,MAINT: Remove incorrect special case in string to number\...
- [\15930](https://github.com/numpy/numpy/pull/15930): BUG: Guarantee array is in valid state after memory error occurs\...
- [\15954](https://github.com/numpy/numpy/pull/15954): BUG: Check that [pvals]{.title-ref} is 1D in `_generator.multinomial`.
- [\16017](https://github.com/numpy/numpy/pull/16017): BUG: Alpha parameter must be 1D in `_generator.dirichlet`
Checksums
---------
MD5
6582c9a045ba92cb11a7062cfabba898 numpy-1.18.3-cp35-cp35m-macosx_10_9_intel.whl
f70d5c8d4f598653ff66f640487481ce numpy-1.18.3-cp35-cp35m-manylinux1_i686.whl
5c0f1a8c94d095efd21ab4b8ffeed921 numpy-1.18.3-cp35-cp35m-manylinux1_x86_64.whl
92cab35405fe3042e7aa8504d8669cd0 numpy-1.18.3-cp35-cp35m-win32.whl
8769b5434fd08fe67d912077082b91d7 numpy-1.18.3-cp35-cp35m-win_amd64.whl
2f1f330199d95bd8e709d0e4a0eec65e numpy-1.18.3-cp36-cp36m-macosx_10_9_x86_64.whl
19892d1f036da55f8841ef121478d554 numpy-1.18.3-cp36-cp36m-manylinux1_i686.whl
676c3dd16e9d80271c31ee5f9c3b8f20 numpy-1.18.3-cp36-cp36m-manylinux1_x86_64.whl
6484099fdb78f732a758286d2eb87632 numpy-1.18.3-cp36-cp36m-win32.whl
7d99a2a4ba819b75347468c8ed5e5a9e numpy-1.18.3-cp36-cp36m-win_amd64.whl
a5672f35136ea83dfa7960859a38d6e9 numpy-1.18.3-cp37-cp37m-macosx_10_9_x86_64.whl
5b36aaaeb4203b3d26c5dc801dbc66bd numpy-1.18.3-cp37-cp37m-manylinux1_i686.whl
afc4b2445d447f1a7c338026778bd34e numpy-1.18.3-cp37-cp37m-manylinux1_x86_64.whl
2ebc3ba9945d108df75319c359190516 numpy-1.18.3-cp37-cp37m-win32.whl
a78f661b1c7bd153c8399db90fba652c numpy-1.18.3-cp37-cp37m-win_amd64.whl
8f16d580559468b7cf23a71dc9945f39 numpy-1.18.3-cp38-cp38-macosx_10_9_x86_64.whl
5ec887ba38cd99775666f3493d82ea7c numpy-1.18.3-cp38-cp38-manylinux1_i686.whl
88ce81bc31dec4c14bf835dc466308ed numpy-1.18.3-cp38-cp38-manylinux1_x86_64.whl
5afe9a5f3c21299da599210ff5b76834 numpy-1.18.3-cp38-cp38-win32.whl
205364093300906654debbe3beb13359 numpy-1.18.3-cp38-cp38-win_amd64.whl
cd631c761f141d382b4e1b31c8232fc0 numpy-1.18.3.tar.gz
91314710fe9d29d80b6ccc9629e4532b numpy-1.18.3.zip
SHA256
a6bc9432c2640b008d5f29bad737714eb3e14bb8854878eacf3d7955c4e91c36 numpy-1.18.3-cp35-cp35m-macosx_10_9_intel.whl
48e15612a8357393d176638c8f68a19273676877caea983f8baf188bad430379 numpy-1.18.3-cp35-cp35m-manylinux1_i686.whl
eb2286249ebfe8fcb5b425e5ec77e4736d53ee56d3ad296f8947f67150f495e3 numpy-1.18.3-cp35-cp35m-manylinux1_x86_64.whl
1e37626bcb8895c4b3873fcfd54e9bfc5ffec8d0f525651d6985fcc5c6b6003c numpy-1.18.3-cp35-cp35m-win32.whl
163c78c04f47f26ca1b21068cea25ed7c5ecafe5f5ab2ea4895656a750582b56 numpy-1.18.3-cp35-cp35m-win_amd64.whl
3d9e1554cd9b5999070c467b18e5ae3ebd7369f02706a8850816f576a954295f numpy-1.18.3-cp36-cp36m-macosx_10_9_x86_64.whl
40c24960cd5cec55222963f255858a1c47c6fa50a65a5b03fd7de75e3700eaaa numpy-1.18.3-cp36-cp36m-manylinux1_i686.whl
a551d8cc267c634774830086da42e4ba157fa41dd3b93982bc9501b284b0c689 numpy-1.18.3-cp36-cp36m-manylinux1_x86_64.whl
0aa2b318cf81eb1693fcfcbb8007e95e231d7e1aa24288137f3b19905736c3ee numpy-1.18.3-cp36-cp36m-win32.whl
a41f303b3f9157a31ce7203e3ca757a0c40c96669e72d9b6ee1bce8507638970 numpy-1.18.3-cp36-cp36m-win_amd64.whl
e607b8cdc2ae5d5a63cd1bec30a15b5ed583ac6a39f04b7ba0f03fcfbf29c05b numpy-1.18.3-cp37-cp37m-macosx_10_9_x86_64.whl
fdee7540d12519865b423af411bd60ddb513d2eb2cd921149b732854995bbf8b numpy-1.18.3-cp37-cp37m-manylinux1_i686.whl
6725d2797c65598778409aba8cd67077bb089d5b7d3d87c2719b206dc84ec05e numpy-1.18.3-cp37-cp37m-manylinux1_x86_64.whl
4847f0c993298b82fad809ea2916d857d0073dc17b0510fbbced663b3265929d numpy-1.18.3-cp37-cp37m-win32.whl
46f404314dbec78cb342904f9596f25f9b16e7cf304030f1339e553c8e77f51c numpy-1.18.3-cp37-cp37m-win_amd64.whl
264fd15590b3f02a1fbc095e7e1f37cdac698ff3829e12ffdcffdce3772f9d44 numpy-1.18.3-cp38-cp38-macosx_10_9_x86_64.whl
e94a39d5c40fffe7696009dbd11bc14a349b377e03a384ed011e03d698787dd3 numpy-1.18.3-cp38-cp38-manylinux1_i686.whl
a4305564e93f5c4584f6758149fd446df39fd1e0a8c89ca0deb3cce56106a027 numpy-1.18.3-cp38-cp38-manylinux1_x86_64.whl
99f0ba97e369f02a21bb95faa3a0de55991fd5f0ece2e30a9e2eaebeac238921 numpy-1.18.3-cp38-cp38-win32.whl
c60175d011a2e551a2f74c84e21e7c982489b96b6a5e4b030ecdeacf2914da68 numpy-1.18.3-cp38-cp38-win_amd64.whl
93ee59ec38f3bf8f9a42d5f4301f60e6825a4a6385a145f70badcd2bf2a11134 numpy-1.18.3.tar.gz
e46e2384209c91996d5ec16744234d1c906ab79a701ce1a26155c9ec890b8dc8 numpy-1.18.3.zip