Numpy

Latest version: v2.2.1

Safety actively analyzes 693883 Python packages for vulnerabilities to keep your Python projects secure.

Scan your dependencies

Page 15 of 23

1.18.3

Not secure
==========================

This release contains various bug/regression fixes.

The Python versions supported in this release are 3.5-3.8. Downstream
developers should use Cython \>= 0.29.15 for Python 3.8 support and
OpenBLAS \>= 3.7 to avoid errors on the Skylake architecture.

Highlights
----------

- Fix for the `method='eigh'` and `method='cholesky'` options in
`numpy.random.multivariate_normal`. Those were producing samples
from the wrong distribution.

Contributors
------------

A total of 6 people contributed to this release. People with a \"+\" by
their names contributed a patch for the first time.

- Charles Harris
- Max Balandat +
- \Mibu287 +
- Pan Jan +
- Sebastian Berg
- \panpiort8 +

Pull requests merged
--------------------

A total of 5 pull requests were merged for this release.

- [\15916](https://github.com/numpy/numpy/pull/15916): BUG: Fix eigh and cholesky methods of numpy.random.multivariate\_normal
- [\15929](https://github.com/numpy/numpy/pull/15929): BUG,MAINT: Remove incorrect special case in string to number\...
- [\15930](https://github.com/numpy/numpy/pull/15930): BUG: Guarantee array is in valid state after memory error occurs\...
- [\15954](https://github.com/numpy/numpy/pull/15954): BUG: Check that [pvals]{.title-ref} is 1D in `_generator.multinomial`.
- [\16017](https://github.com/numpy/numpy/pull/16017): BUG: Alpha parameter must be 1D in `_generator.dirichlet`

Checksums
---------

MD5

6582c9a045ba92cb11a7062cfabba898 numpy-1.18.3-cp35-cp35m-macosx_10_9_intel.whl
f70d5c8d4f598653ff66f640487481ce numpy-1.18.3-cp35-cp35m-manylinux1_i686.whl
5c0f1a8c94d095efd21ab4b8ffeed921 numpy-1.18.3-cp35-cp35m-manylinux1_x86_64.whl
92cab35405fe3042e7aa8504d8669cd0 numpy-1.18.3-cp35-cp35m-win32.whl
8769b5434fd08fe67d912077082b91d7 numpy-1.18.3-cp35-cp35m-win_amd64.whl
2f1f330199d95bd8e709d0e4a0eec65e numpy-1.18.3-cp36-cp36m-macosx_10_9_x86_64.whl
19892d1f036da55f8841ef121478d554 numpy-1.18.3-cp36-cp36m-manylinux1_i686.whl
676c3dd16e9d80271c31ee5f9c3b8f20 numpy-1.18.3-cp36-cp36m-manylinux1_x86_64.whl
6484099fdb78f732a758286d2eb87632 numpy-1.18.3-cp36-cp36m-win32.whl
7d99a2a4ba819b75347468c8ed5e5a9e numpy-1.18.3-cp36-cp36m-win_amd64.whl
a5672f35136ea83dfa7960859a38d6e9 numpy-1.18.3-cp37-cp37m-macosx_10_9_x86_64.whl
5b36aaaeb4203b3d26c5dc801dbc66bd numpy-1.18.3-cp37-cp37m-manylinux1_i686.whl
afc4b2445d447f1a7c338026778bd34e numpy-1.18.3-cp37-cp37m-manylinux1_x86_64.whl
2ebc3ba9945d108df75319c359190516 numpy-1.18.3-cp37-cp37m-win32.whl
a78f661b1c7bd153c8399db90fba652c numpy-1.18.3-cp37-cp37m-win_amd64.whl
8f16d580559468b7cf23a71dc9945f39 numpy-1.18.3-cp38-cp38-macosx_10_9_x86_64.whl
5ec887ba38cd99775666f3493d82ea7c numpy-1.18.3-cp38-cp38-manylinux1_i686.whl
88ce81bc31dec4c14bf835dc466308ed numpy-1.18.3-cp38-cp38-manylinux1_x86_64.whl
5afe9a5f3c21299da599210ff5b76834 numpy-1.18.3-cp38-cp38-win32.whl
205364093300906654debbe3beb13359 numpy-1.18.3-cp38-cp38-win_amd64.whl
cd631c761f141d382b4e1b31c8232fc0 numpy-1.18.3.tar.gz
91314710fe9d29d80b6ccc9629e4532b numpy-1.18.3.zip

SHA256

a6bc9432c2640b008d5f29bad737714eb3e14bb8854878eacf3d7955c4e91c36 numpy-1.18.3-cp35-cp35m-macosx_10_9_intel.whl
48e15612a8357393d176638c8f68a19273676877caea983f8baf188bad430379 numpy-1.18.3-cp35-cp35m-manylinux1_i686.whl
eb2286249ebfe8fcb5b425e5ec77e4736d53ee56d3ad296f8947f67150f495e3 numpy-1.18.3-cp35-cp35m-manylinux1_x86_64.whl
1e37626bcb8895c4b3873fcfd54e9bfc5ffec8d0f525651d6985fcc5c6b6003c numpy-1.18.3-cp35-cp35m-win32.whl
163c78c04f47f26ca1b21068cea25ed7c5ecafe5f5ab2ea4895656a750582b56 numpy-1.18.3-cp35-cp35m-win_amd64.whl
3d9e1554cd9b5999070c467b18e5ae3ebd7369f02706a8850816f576a954295f numpy-1.18.3-cp36-cp36m-macosx_10_9_x86_64.whl
40c24960cd5cec55222963f255858a1c47c6fa50a65a5b03fd7de75e3700eaaa numpy-1.18.3-cp36-cp36m-manylinux1_i686.whl
a551d8cc267c634774830086da42e4ba157fa41dd3b93982bc9501b284b0c689 numpy-1.18.3-cp36-cp36m-manylinux1_x86_64.whl
0aa2b318cf81eb1693fcfcbb8007e95e231d7e1aa24288137f3b19905736c3ee numpy-1.18.3-cp36-cp36m-win32.whl
a41f303b3f9157a31ce7203e3ca757a0c40c96669e72d9b6ee1bce8507638970 numpy-1.18.3-cp36-cp36m-win_amd64.whl
e607b8cdc2ae5d5a63cd1bec30a15b5ed583ac6a39f04b7ba0f03fcfbf29c05b numpy-1.18.3-cp37-cp37m-macosx_10_9_x86_64.whl
fdee7540d12519865b423af411bd60ddb513d2eb2cd921149b732854995bbf8b numpy-1.18.3-cp37-cp37m-manylinux1_i686.whl
6725d2797c65598778409aba8cd67077bb089d5b7d3d87c2719b206dc84ec05e numpy-1.18.3-cp37-cp37m-manylinux1_x86_64.whl
4847f0c993298b82fad809ea2916d857d0073dc17b0510fbbced663b3265929d numpy-1.18.3-cp37-cp37m-win32.whl
46f404314dbec78cb342904f9596f25f9b16e7cf304030f1339e553c8e77f51c numpy-1.18.3-cp37-cp37m-win_amd64.whl
264fd15590b3f02a1fbc095e7e1f37cdac698ff3829e12ffdcffdce3772f9d44 numpy-1.18.3-cp38-cp38-macosx_10_9_x86_64.whl
e94a39d5c40fffe7696009dbd11bc14a349b377e03a384ed011e03d698787dd3 numpy-1.18.3-cp38-cp38-manylinux1_i686.whl
a4305564e93f5c4584f6758149fd446df39fd1e0a8c89ca0deb3cce56106a027 numpy-1.18.3-cp38-cp38-manylinux1_x86_64.whl
99f0ba97e369f02a21bb95faa3a0de55991fd5f0ece2e30a9e2eaebeac238921 numpy-1.18.3-cp38-cp38-win32.whl
c60175d011a2e551a2f74c84e21e7c982489b96b6a5e4b030ecdeacf2914da68 numpy-1.18.3-cp38-cp38-win_amd64.whl
93ee59ec38f3bf8f9a42d5f4301f60e6825a4a6385a145f70badcd2bf2a11134 numpy-1.18.3.tar.gz
e46e2384209c91996d5ec16744234d1c906ab79a701ce1a26155c9ec890b8dc8 numpy-1.18.3.zip

1.18.2

Not secure
==========================

This small elease contains a fix for a performance regression in
numpy/random and several bug/maintenance updates.

The Python versions supported in this release are 3.5-3.8. Downstream
developers should use Cython \>= 0.29.15 for Python 3.8 support and
OpenBLAS \>= 3.7 to avoid errors on the Skylake architecture.

Contributors
------------

A total of 5 people contributed to this release. People with a \"+\" by
their names contributed a patch for the first time.

- Charles Harris
- Ganesh Kathiresan +
- Matti Picus
- Sebastian Berg
- przemb +

Pull requests merged
--------------------

A total of 7 pull requests were merged for this release.

- [\15675](https://github.com/numpy/numpy/pull/15675): TST: move \_no\_tracing to testing.\_private
- [\15676](https://github.com/numpy/numpy/pull/15676): MAINT: Large overhead in some random functions
- [\15677](https://github.com/numpy/numpy/pull/15677): TST: Do not create gfortran link in azure Mac testing.
- [\15679](https://github.com/numpy/numpy/pull/15679): BUG: Added missing error check in ndarray.\_\_contains\_\_
- [\15722](https://github.com/numpy/numpy/pull/15722): MAINT: use list-based APIs to call subprocesses
- [\15729](https://github.com/numpy/numpy/pull/15729): REL: Prepare for 1.18.2 release.
- [\15734](https://github.com/numpy/numpy/pull/15734): BUG: fix logic error when nm fails on 32-bit

Checksums
---------

MD5

b9efe544f2bfbbd4e226c5639f22b1d2 numpy-1.18.2-cp35-cp35m-macosx_10_9_x86_64.whl
59c0bc09053c0029e829685dcb3dafa5 numpy-1.18.2-cp35-cp35m-manylinux1_i686.whl
1783f9194ceeabb236bd46ed6cb6ed60 numpy-1.18.2-cp35-cp35m-manylinux1_x86_64.whl
8a6fa57b509e6d9e194fb43b0ac5bbc7 numpy-1.18.2-cp35-cp35m-win32.whl
3167feeb5e30445ca7beed1d55b6d73a numpy-1.18.2-cp35-cp35m-win_amd64.whl
c193d593d3b8a46c610511a69c86f879 numpy-1.18.2-cp36-cp36m-macosx_10_9_x86_64.whl
f31c65b4699b12e73b36eb268931dbdc numpy-1.18.2-cp36-cp36m-manylinux1_i686.whl
f5b0613cacaaf2179528a36b75712d65 numpy-1.18.2-cp36-cp36m-manylinux1_x86_64.whl
77e40c0481f2c1608d344032038fa969 numpy-1.18.2-cp36-cp36m-win32.whl
2c402211d77a10025b047042d191839b numpy-1.18.2-cp36-cp36m-win_amd64.whl
3adec0f3cd5946ae7a0ab67790b2d8f1 numpy-1.18.2-cp37-cp37m-macosx_10_9_x86_64.whl
baea3b06dac41d5f6f1fbb7a62114656 numpy-1.18.2-cp37-cp37m-manylinux1_i686.whl
99b3c14bfc303c662b899d1a5ca4df6a numpy-1.18.2-cp37-cp37m-manylinux1_x86_64.whl
293066cca2b3772fa3ae204f6ff98ce7 numpy-1.18.2-cp37-cp37m-win32.whl
21f3cda116631da8823a621e90c30bbb numpy-1.18.2-cp37-cp37m-win_amd64.whl
47978cedd45ded509073025c1aa60506 numpy-1.18.2-cp38-cp38-macosx_10_9_x86_64.whl
4864078352c7faa69a8f9e98e48f7d8a numpy-1.18.2-cp38-cp38-manylinux1_i686.whl
c0111a5fce4aa57004366e9d5edc5644 numpy-1.18.2-cp38-cp38-manylinux1_x86_64.whl
7f8ca4e685e607f80ad002495b603436 numpy-1.18.2-cp38-cp38-win32.whl
e8e192005a0b8045928f0ac712762a6f numpy-1.18.2-cp38-cp38-win_amd64.whl
52601ac4cfbd513218bc088b74715098 numpy-1.18.2.tar.gz
511010c9fbd2516fe5a24aabcb76a56d numpy-1.18.2.zip

SHA256

a1baa1dc8ecd88fb2d2a651671a84b9938461e8a8eed13e2f0a812a94084d1fa numpy-1.18.2-cp35-cp35m-macosx_10_9_x86_64.whl
a244f7af80dacf21054386539699ce29bcc64796ed9850c99a34b41305630286 numpy-1.18.2-cp35-cp35m-manylinux1_i686.whl
6fcc5a3990e269f86d388f165a089259893851437b904f422d301cdce4ff25c8 numpy-1.18.2-cp35-cp35m-manylinux1_x86_64.whl
b5ad0adb51b2dee7d0ee75a69e9871e2ddfb061c73ea8bc439376298141f77f5 numpy-1.18.2-cp35-cp35m-win32.whl
87902e5c03355335fc5992a74ba0247a70d937f326d852fc613b7f53516c0963 numpy-1.18.2-cp35-cp35m-win_amd64.whl
9ab21d1cb156a620d3999dd92f7d1c86824c622873841d6b080ca5495fa10fef numpy-1.18.2-cp36-cp36m-macosx_10_9_x86_64.whl
cdb3a70285e8220875e4d2bc394e49b4988bdb1298ffa4e0bd81b2f613be397c numpy-1.18.2-cp36-cp36m-manylinux1_i686.whl
6d205249a0293e62bbb3898c4c2e1ff8a22f98375a34775a259a0523111a8f6c numpy-1.18.2-cp36-cp36m-manylinux1_x86_64.whl
a35af656a7ba1d3decdd4fae5322b87277de8ac98b7d9da657d9e212ece76a61 numpy-1.18.2-cp36-cp36m-win32.whl
1598a6de323508cfeed6b7cd6c4efb43324f4692e20d1f76e1feec7f59013448 numpy-1.18.2-cp36-cp36m-win_amd64.whl
deb529c40c3f1e38d53d5ae6cd077c21f1d49e13afc7936f7f868455e16b64a0 numpy-1.18.2-cp37-cp37m-macosx_10_9_x86_64.whl
cd77d58fb2acf57c1d1ee2835567cd70e6f1835e32090538f17f8a3a99e5e34b numpy-1.18.2-cp37-cp37m-manylinux1_i686.whl
b1fe1a6f3a6f355f6c29789b5927f8bd4f134a4bd9a781099a7c4f66af8850f5 numpy-1.18.2-cp37-cp37m-manylinux1_x86_64.whl
2e40be731ad618cb4974d5ba60d373cdf4f1b8dcbf1dcf4d9dff5e212baf69c5 numpy-1.18.2-cp37-cp37m-win32.whl
4ba59db1fcc27ea31368af524dcf874d9277f21fd2e1f7f1e2e0c75ee61419ed numpy-1.18.2-cp37-cp37m-win_amd64.whl
59ca9c6592da581a03d42cc4e270732552243dc45e87248aa8d636d53812f6a5 numpy-1.18.2-cp38-cp38-macosx_10_9_x86_64.whl
1b0ece94018ae21163d1f651b527156e1f03943b986188dd81bc7e066eae9d1c numpy-1.18.2-cp38-cp38-manylinux1_i686.whl
82847f2765835c8e5308f136bc34018d09b49037ec23ecc42b246424c767056b numpy-1.18.2-cp38-cp38-manylinux1_x86_64.whl
5e0feb76849ca3e83dd396254e47c7dba65b3fa9ed3df67c2556293ae3e16de3 numpy-1.18.2-cp38-cp38-win32.whl
ba3c7a2814ec8a176bb71f91478293d633c08582119e713a0c5351c0f77698da numpy-1.18.2-cp38-cp38-win_amd64.whl
da204ce460aa4247e595b7c7189d2fb2ed5f796bc03197055de01dac61d0125e numpy-1.18.2.tar.gz
e7894793e6e8540dbeac77c87b489e331947813511108ae097f1715c018b8f3d numpy-1.18.2.zip

1.18.1

Not secure
==========================

This release contains fixes for bugs reported against NumPy 1.18.0. Two
bugs in particular that caused widespread problems downstream were:

- The cython random extension test was not using a temporary directory
for building, resulting in a permission violation. Fixed.
- Numpy distutils was appending [-std=c99]{.title-ref} to all C
compiler runs, leading to changed behavior and compile problems
downstream. That flag is now only applied when building numpy C
code.

The Python versions supported in this release are 3.5-3.8. Downstream
developers should use Cython \>= 0.29.14 for Python 3.8 support and
OpenBLAS \>= 3.7 to avoid errors on the Skylake architecture.

Contributors
------------

A total of 7 people contributed to this release. People with a \"+\" by
their names contributed a patch for the first time.

- Charles Harris
- Matti Picus
- Maxwell Aladago
- Pauli Virtanen
- Ralf Gommers
- Tyler Reddy
- Warren Weckesser

Pull requests merged
--------------------

A total of 13 pull requests were merged for this release.

- [\15158](https://github.com/numpy/numpy/pull/15158): MAINT: Update pavement.py for towncrier.
- [\15159](https://github.com/numpy/numpy/pull/15159): DOC: add moved modules to 1.18 release note
- [\15161](https://github.com/numpy/numpy/pull/15161): MAINT, DOC: Minor backports and updates for 1.18.x
- [\15176](https://github.com/numpy/numpy/pull/15176): TST: Add assert\_array\_equal test for big integer arrays
- [\15184](https://github.com/numpy/numpy/pull/15184): BUG: use tmp dir and check version for cython test (\#15170)
- [\15220](https://github.com/numpy/numpy/pull/15220): BUG: distutils: fix msvc+gfortran openblas handling corner case
- [\15221](https://github.com/numpy/numpy/pull/15221): BUG: remove -std=c99 for c++ compilation (\#15194)
- [\15222](https://github.com/numpy/numpy/pull/15222): MAINT: unskip test on win32
- [\15223](https://github.com/numpy/numpy/pull/15223): TST: add BLAS ILP64 run in Travis & Azure
- [\15245](https://github.com/numpy/numpy/pull/15245): MAINT: only add \--std=c99 where needed
- [\15246](https://github.com/numpy/numpy/pull/15246): BUG: lib: Fix handling of integer arrays by gradient.
- [\15247](https://github.com/numpy/numpy/pull/15247): MAINT: Do not use private Python function in testing
- [\15250](https://github.com/numpy/numpy/pull/15250): REL: Prepare for the NumPy 1.18.1 release.

Checksums
---------

MD5

f41ef9a855aa0baeb900827e2f99ab7b numpy-1.18.1-cp35-cp35m-macosx_10_6_intel.whl
5239118baa2f0db334e70aac6cf26927 numpy-1.18.1-cp35-cp35m-manylinux1_i686.whl
78d95d2f1814b517e7cc887e559c7cd4 numpy-1.18.1-cp35-cp35m-manylinux1_x86_64.whl
c58a268ad42c31883b5756ad20cebe87 numpy-1.18.1-cp35-cp35m-win32.whl
2ffc13917b6813a85b8e1032402ca5f5 numpy-1.18.1-cp35-cp35m-win_amd64.whl
c3ac9936c6b21fef95a2304505fdb594 numpy-1.18.1-cp36-cp36m-macosx_10_9_x86_64.whl
e0a26cc2d04a7f115489b9ccc9678d3f numpy-1.18.1-cp36-cp36m-manylinux1_i686.whl
d79f59200a821f90acf73f97c5252902 numpy-1.18.1-cp36-cp36m-manylinux1_x86_64.whl
8ba2338c677f238a84264633e3b96d9d numpy-1.18.1-cp36-cp36m-win32.whl
2a2ab91e19bd2703eaa1506b06036958 numpy-1.18.1-cp36-cp36m-win_amd64.whl
6cc9c5767ffc0de03685f928e4e97f0f numpy-1.18.1-cp37-cp37m-macosx_10_9_x86_64.whl
486a5ab59cbdfc2861be08701702e251 numpy-1.18.1-cp37-cp37m-manylinux1_i686.whl
08123450dfbb9f53c812caa65895afcb numpy-1.18.1-cp37-cp37m-manylinux1_x86_64.whl
3e4e223ba7b784cd90f891e8867d0cf8 numpy-1.18.1-cp37-cp37m-win32.whl
4a51b085685511e95be3077a7360785f numpy-1.18.1-cp37-cp37m-win_amd64.whl
d1f034f563252a57b9235bc9ea2c1aef numpy-1.18.1-cp38-cp38-macosx_10_9_x86_64.whl
2252dcd00034da6f99c98584875dcb9d numpy-1.18.1-cp38-cp38-manylinux1_i686.whl
6e93a3c8618e87aee2b0cd648b1730f0 numpy-1.18.1-cp38-cp38-manylinux1_x86_64.whl
10f1d9a6faf6a2fdb0693347cb2348b0 numpy-1.18.1-cp38-cp38-win32.whl
b9d0e0840e3e6e37f384a794d48c4ae8 numpy-1.18.1-cp38-cp38-win_amd64.whl
9ab88e85f5b1fc70506287317b58f71d numpy-1.18.1.tar.gz
18787d6482681c85a66629a781fb84c3 numpy-1.18.1.zip

SHA256

20b26aaa5b3da029942cdcce719b363dbe58696ad182aff0e5dcb1687ec946dc numpy-1.18.1-cp35-cp35m-macosx_10_6_intel.whl
70a840a26f4e61defa7bdf811d7498a284ced303dfbc35acb7be12a39b2aa121 numpy-1.18.1-cp35-cp35m-manylinux1_i686.whl
17aa7a81fe7599a10f2b7d95856dc5cf84a4eefa45bc96123cbbc3ebc568994e numpy-1.18.1-cp35-cp35m-manylinux1_x86_64.whl
f3d0a94ad151870978fb93538e95411c83899c9dc63e6fb65542f769568ecfa5 numpy-1.18.1-cp35-cp35m-win32.whl
1786a08236f2c92ae0e70423c45e1e62788ed33028f94ca99c4df03f5be6b3c6 numpy-1.18.1-cp35-cp35m-win_amd64.whl
ae0975f42ab1f28364dcda3dde3cf6c1ddab3e1d4b2909da0cb0191fa9ca0480 numpy-1.18.1-cp36-cp36m-macosx_10_9_x86_64.whl
cf7eb6b1025d3e169989416b1adcd676624c2dbed9e3bcb7137f51bfc8cc2572 numpy-1.18.1-cp36-cp36m-manylinux1_i686.whl
b765ed3930b92812aa698a455847141869ef755a87e099fddd4ccf9d81fffb57 numpy-1.18.1-cp36-cp36m-manylinux1_x86_64.whl
2d75908ab3ced4223ccba595b48e538afa5ecc37405923d1fea6906d7c3a50bc numpy-1.18.1-cp36-cp36m-win32.whl
9acdf933c1fd263c513a2df3dceecea6f3ff4419d80bf238510976bf9bcb26cd numpy-1.18.1-cp36-cp36m-win_amd64.whl
56bc8ded6fcd9adea90f65377438f9fea8c05fcf7c5ba766bef258d0da1554aa numpy-1.18.1-cp37-cp37m-macosx_10_9_x86_64.whl
e422c3152921cece8b6a2fb6b0b4d73b6579bd20ae075e7d15143e711f3ca2ca numpy-1.18.1-cp37-cp37m-manylinux1_i686.whl
b3af02ecc999c8003e538e60c89a2b37646b39b688d4e44d7373e11c2debabec numpy-1.18.1-cp37-cp37m-manylinux1_x86_64.whl
d92350c22b150c1cae7ebb0ee8b5670cc84848f6359cf6b5d8f86617098a9b73 numpy-1.18.1-cp37-cp37m-win32.whl
77c3bfe65d8560487052ad55c6998a04b654c2fbc36d546aef2b2e511e760971 numpy-1.18.1-cp37-cp37m-win_amd64.whl
c98c5ffd7d41611407a1103ae11c8b634ad6a43606eca3e2a5a269e5d6e8eb07 numpy-1.18.1-cp38-cp38-macosx_10_9_x86_64.whl
9537eecf179f566fd1c160a2e912ca0b8e02d773af0a7a1120ad4f7507cd0d26 numpy-1.18.1-cp38-cp38-manylinux1_i686.whl
e840f552a509e3380b0f0ec977e8124d0dc34dc0e68289ca28f4d7c1d0d79474 numpy-1.18.1-cp38-cp38-manylinux1_x86_64.whl
590355aeade1a2eaba17617c19edccb7db8d78760175256e3cf94590a1a964f3 numpy-1.18.1-cp38-cp38-win32.whl
39d2c685af15d3ce682c99ce5925cc66efc824652e10990d2462dfe9b8918c6a numpy-1.18.1-cp38-cp38-win_amd64.whl
e37802868ba5f389bf4e3f4c40c16e1b031814f0585ac122637de219de6279cb numpy-1.18.1.tar.gz
b6ff59cee96b454516e47e7721098e6ceebef435e3e21ac2d6c3b8b02628eb77 numpy-1.18.1.zip

1.18.0

Not secure
================================

In addition to the usual bug fixes, this NumPy release cleans up and
documents the new random C-API, expires a large number of old
deprecations, and improves the appearance of the documentation. The
Python versions supported are 3.5-3.8. This is the last NumPy release
series that will support Python 3.5.

Downstream developers should use Cython \>= 0.29.14 for Python 3.8
support and OpenBLAS \>= 3.7 to avoid problems on the Skylake
architecture.

Highlights
==========

- The C-API for `numpy.random` has been defined and documented.
- Basic infrastructure for linking with 64 bit BLAS and LAPACK
libraries.
- Many documentation improvements.

New functions
=============

Multivariate hypergeometric distribution added to `numpy.random`
----------------------------------------------------------------

The method `multivariate_hypergeometric` has been added to the class
`numpy.random.Generator`. This method generates random variates from the
multivariate hypergeometric probability distribution.
(`gh-13794 <https://github.com/numpy/numpy/pull/13794>`\_\_)

Deprecations
============

`np.fromfile` and `np.fromstring` will error on bad data
--------------------------------------------------------

In future numpy releases, the functions `np.fromfile` and
`np.fromstring` will throw an error when parsing bad data. This will now
give a `DeprecationWarning` where previously partial or even invalid
data was silently returned. This deprecation also affects the C defined
functions `PyArray_FromString` and `PyArray_FromFile`
(`gh-13605 <https://github.com/numpy/numpy/pull/13605>`\_\_)

Deprecate non-scalar arrays as fill values in `ma.fill_value`
-------------------------------------------------------------

Setting a `MaskedArray.fill_value` to a non-scalar array is deprecated
since the logic to broadcast the fill value to the array is fragile,
especially when slicing.
(`gh-13698 <https://github.com/numpy/numpy/pull/13698>`\_\_)

Deprecate `PyArray_As1D`, `PyArray_As2D`
----------------------------------------

`PyArray_As1D`, `PyArray_As2D` are deprecated, use `PyArray_AsCArray`
instead (`gh-14036 <https://github.com/numpy/numpy/pull/14036>`\_\_)

Deprecate `np.alen`
-------------------

`np.alen` was deprecated. Use `len` instead.
(`gh-14181 <https://github.com/numpy/numpy/pull/14181>`\_\_)

Deprecate the financial functions
---------------------------------

In accordance with
`NEP-32 <https://numpy.org/neps/nep-0032-remove-financial-functions.html>`,
the financial functions `fv`, `ipmt`, `irr`, `mirr`, `nper`, `npv`,
`pmt`, `ppmt`, `pv` and `rate` are deprecated, and will be removed from
NumPy 1.20.The replacement for these functions is the Python package
`numpy-financial <https://pypi.org/project/numpy-financial>`*.
(`gh-14720 <https://github.com/numpy/numpy/pull/14720>`\_\_)

The `axis` argument to `numpy.ma.mask_cols` and `numpy.ma.mask_row` is deprecated
---------------------------------------------------------------------------------

This argument was always ignored.
(`gh-14996 <https://github.com/numpy/numpy/pull/14996>`\_\_)

Expired deprecations
====================

- `PyArray_As1D` and `PyArray_As2D` have been removed in favor of
`PyArray_AsCArray`
(`gh-14036 <https://github.com/numpy/numpy/pull/14036>`\_\_)

- `np.rank` has been removed. This was deprecated in NumPy 1.10 and
has been replaced by `np.ndim`.
(`gh-14039 <https://github.com/numpy/numpy/pull/14039>`\_\_)

- The deprecation of `expand_dims` out-of-range axes in 1.13.0 has
expired.
(`gh-14051 <https://github.com/numpy/numpy/pull/14051>`\_\_)

- `PyArray_FromDimsAndDataAndDescr` and `PyArray_FromDims` have been
removed (they will always raise an error). Use
`PyArray_NewFromDescr` and `PyArray_SimpleNew` instead.
(`gh-14100 <https://github.com/numpy/numpy/pull/14100>`\_\_)

- `numeric.loads`, `numeric.load`, `np.ma.dump`, `np.ma.dumps`,
`np.ma.load`, `np.ma.loads` are removed, use `pickle` methods
instead (`gh-14256 <https://github.com/numpy/numpy/pull/14256>`\_\_)

- `arrayprint.FloatFormat`, `arrayprint.LongFloatFormat` has been
removed, use `FloatingFormat` instead

- `arrayprint.ComplexFormat`, `arrayprint.LongComplexFormat` has been
removed, use `ComplexFloatingFormat` instead

- `arrayprint.StructureFormat` has been removed, use
`StructureVoidFormat` instead
(`gh-14259 <https://github.com/numpy/numpy/pull/14259>`\_\_)

- `np.testing.rand` has been removed. This was deprecated in NumPy
1.11 and has been replaced by `np.random.rand`.
(`gh-14325 <https://github.com/numpy/numpy/pull/14325>`\_\_)

- Class `SafeEval` in `numpy/lib/utils.py` has been removed. This was
deprecated in NumPy 1.10. Use `np.safe_eval` instead.
(`gh-14335 <https://github.com/numpy/numpy/pull/14335>`\_\_)

- Remove deprecated support for boolean and empty condition lists in
`np.select`
(`gh-14583 <https://github.com/numpy/numpy/pull/14583>`\_\_)

- Array order only accepts 'C', 'F', 'A', and 'K'. More permissive
options were deprecated in NumPy 1.11.
(`gh-14596 <https://github.com/numpy/numpy/pull/14596>`\_\_)

- np.linspace parameter `num` must be an integer. Deprecated in NumPy
1.12. (`gh-14620 <https://github.com/numpy/numpy/pull/14620>`\_\_)

- UFuncs with multiple outputs must use a tuple for the `out` kwarg.
This finishes a deprecation started in NumPy 1.10.
(`gh-14682 <https://github.com/numpy/numpy/pull/14682>`\_\_)

The files `numpy/testing/decorators.py`, `numpy/testing/noseclasses.py`
and `numpy/testing/nosetester.py` have been removed. They were never
meant to be public (all relevant objects are present in the
`numpy.testing` namespace), and importing them has given a deprecation

1.18.0rc1

1.17.5

Not secure
==========================

This release contains fixes for bugs reported against NumPy 1.17.4 along
with some build improvements. The Python versions supported in this
release are 3.5-3.8.

Downstream developers should use Cython \>= 0.29.14 for Python 3.8
support and OpenBLAS \>= 3.7 to avoid errors on the Skylake
architecture.

It is recommended that developers interested in the new random bit
generators upgrade to the NumPy 1.18.x series, as it has updated
documentation and many small improvements.

Contributors
------------

A total of 6 people contributed to this release. People with a \"+\" by
their names contributed a patch for the first time.

- Charles Harris
- Eric Wieser
- Ilhan Polat
- Matti Picus
- Michael Hudson-Doyle
- Ralf Gommers

Pull requests merged
--------------------

A total of 8 pull requests were merged for this release.

- [\14593](https://github.com/numpy/numpy/pull/14593): MAINT:
backport Cython API cleanup to 1.17.x, remove docs
- [\14937](https://github.com/numpy/numpy/pull/14937): BUG: fix
integer size confusion in handling array\'s ndmin argument
- [\14939](https://github.com/numpy/numpy/pull/14939): BUILD: remove
SSE2 flag from numpy.random builds
- [\14993](https://github.com/numpy/numpy/pull/14993): MAINT: Added
Python3.8 branch to dll lib discovery
- [\15038](https://github.com/numpy/numpy/pull/15038): BUG: Fix
refcounting in ufunc object loops
- [\15067](https://github.com/numpy/numpy/pull/15067): BUG:
Exceptions tracebacks are dropped
- [\15175](https://github.com/numpy/numpy/pull/15175): ENH: Backport
improvements to testing functions.
- [\15213](https://github.com/numpy/numpy/pull/15213): REL: Prepare
for the NumPy 1.17.5 release.

Checksums
---------

MD5

e1d378317e20e340ea46937cbaf45094 numpy-1.17.5-cp35-cp35m-macosx_10_9_intel.whl
49b263605ab32a0880fa68b29c2586b0 numpy-1.17.5-cp35-cp35m-manylinux1_i686.whl
41b4800ea0b8410919500e264994fb6f numpy-1.17.5-cp35-cp35m-manylinux1_x86_64.whl
7ac18d112a745aabf5059da85de91c57 numpy-1.17.5-cp35-cp35m-win32.whl
98dfbe821c010b34771f789dff36ca76 numpy-1.17.5-cp35-cp35m-win_amd64.whl
3a14d2a58b72db3020b2d1760aefed5c numpy-1.17.5-cp36-cp36m-macosx_10_9_x86_64.whl
47810aa1c34d9d46581f0b8dee0d1acc numpy-1.17.5-cp36-cp36m-manylinux1_i686.whl
e0f2d037ecd1ecbfa5f3d282bf69fad2 numpy-1.17.5-cp36-cp36m-manylinux1_x86_64.whl
addda5c691eaca7b8aa2f8413c936f54 numpy-1.17.5-cp36-cp36m-win32.whl
ee5c057451e77ad2aeb1a7ed2df3754d numpy-1.17.5-cp36-cp36m-win_amd64.whl
8be28f068e0b2e9c5202debd6e2bcf6c numpy-1.17.5-cp37-cp37m-macosx_10_9_x86_64.whl
8400685497628c48b292ff8bb8b7286e numpy-1.17.5-cp37-cp37m-manylinux1_i686.whl
a399036176dd2e23e07b866b460b6f20 numpy-1.17.5-cp37-cp37m-manylinux1_x86_64.whl
f9497454c4d3a8fdcc62788420f365c7 numpy-1.17.5-cp37-cp37m-win32.whl
930a172f90ea6658adf2d25700a98757 numpy-1.17.5-cp37-cp37m-win_amd64.whl
1fddb7a3de3aba553614919411e70698 numpy-1.17.5-cp38-cp38-macosx_10_9_x86_64.whl
003e1514a5ed31cebb10a8055f7b63e6 numpy-1.17.5-cp38-cp38-manylinux1_i686.whl
de8f5f3f602f889fb0ed42cfd5da40bc numpy-1.17.5-cp38-cp38-manylinux1_x86_64.whl
91a89b84875f30f6b8166d4791212aa3 numpy-1.17.5-cp38-cp38-win32.whl
ba5eb1d2705e4a169df105ce7a95abc0 numpy-1.17.5-cp38-cp38-win_amd64.whl
59d27965e42caedf8913ebe03cf36f87 numpy-1.17.5.tar.gz
763a5646fa6eef7a22f4895bca0524f2 numpy-1.17.5.zip

SHA256

d977a91f7b02b14843562d2e8740acfdfb46996e64985b69b2d404bfa43bc07d numpy-1.17.5-cp35-cp35m-macosx_10_9_intel.whl
6c6cab8089ad39554d7fed04d338e7bd7ea6ac48235a542ea0b37214c8d0a9bc numpy-1.17.5-cp35-cp35m-manylinux1_i686.whl
4760bcc6adaf0d853379d01ce60f320e5ab6d0d719662aef3c460dad3cf79989 numpy-1.17.5-cp35-cp35m-manylinux1_x86_64.whl
c3fb7eb84cd455ea2294980e557cc40b0042f7fc7ebab28c74ccae85c8b0c2c4 numpy-1.17.5-cp35-cp35m-win32.whl
6167d214a842610d4168311d803f2a6f2c1a9a866b6b370f7408ba508d265add numpy-1.17.5-cp35-cp35m-win_amd64.whl
ca43581440ce2585f83c8d524c3435569b212bf281b7c67395e78260fcffb341 numpy-1.17.5-cp36-cp36m-macosx_10_9_x86_64.whl
5347fc1258ebe501d352363da06229fc97785d67423b56a9fd032a8389355781 numpy-1.17.5-cp36-cp36m-manylinux1_i686.whl
1739f079e2fcc985cc187aa3ce489d127a02ff12bcc5178269bb7ce5dc860e8f numpy-1.17.5-cp36-cp36m-manylinux1_x86_64.whl
af51bc1d78ddc1588115b73a1d3824440f5cf55c498681e8ac4ab2f28f0efa99 numpy-1.17.5-cp36-cp36m-win32.whl
259b5aa0a1d2e63bbe9d985bc8249b515541b9993e1b1540563428f5db7bc389 numpy-1.17.5-cp36-cp36m-win_amd64.whl
8ba8ef37b16288dd2390cd9dea3c8470436f6cfe4c665f4640c349e98bae2908 numpy-1.17.5-cp37-cp37m-macosx_10_9_x86_64.whl
348efb76a26f9f3235e492813503639731a885aa5780579ee28d688607d188b2 numpy-1.17.5-cp37-cp37m-manylinux1_i686.whl
31db2f9604afbf897b23478942074bbbb2513467d2b4b4ac573a7b65c63c073c numpy-1.17.5-cp37-cp37m-manylinux1_x86_64.whl
68bdc37f3ccdc3e945914b3201acd8823ac9dec870ede5371cd5cfedcf5a901a numpy-1.17.5-cp37-cp37m-win32.whl
15db548aade41e32bfb6f6d3d9e91797261197622afe4102f79220d17da2a29f numpy-1.17.5-cp37-cp37m-win_amd64.whl
fc56ec046a2cc3aba91fe29e482c145c17925db1b00eafa924d9e16020a3eb88 numpy-1.17.5-cp38-cp38-macosx_10_9_x86_64.whl
73d20aebe518997dce89da356d4b8e4cf60143151c22a0ec76cb00840bb09320 numpy-1.17.5-cp38-cp38-manylinux1_i686.whl
aa3dd92c1427e032fe345f054503f45c9fc7883aa7156a60900641259dd78a78 numpy-1.17.5-cp38-cp38-manylinux1_x86_64.whl
6338f8fa99ea0b00944a256941eea406089a9c0242f594b69289edd91e2d6192 numpy-1.17.5-cp38-cp38-win32.whl
14804866e57322bf601c966e428c271b7e301b631bdfbe0522800483b802bc58 numpy-1.17.5-cp38-cp38-win_amd64.whl
ef0801b6feca0f50e56c29b02e0f3e2c8c40963d44c38484e6f47bfcfbf17d32 numpy-1.17.5.tar.gz
16507ba6617f62ae3c6ab1725ae6f550331025d4d9a369b83f6d5a470446c342 numpy-1.17.5.zip

Page 15 of 23

© 2025 Safety CLI Cybersecurity Inc. All Rights Reserved.