Numpy

Latest version: v2.2.4

Safety actively analyzes 726274 Python packages for vulnerabilities to keep your Python projects secure.

Scan your dependencies

Page 15 of 24

1.19.0rc2

1.19.0rc1

1.18.5

Not secure
==========================

This is a short release to allow pickle `protocol=5` to be used in
Python3.5. It is motivated by the recent backport of pickle5 to
Python3.5.

The Python versions supported in this release are 3.5-3.8. Downstream
developers should use Cython \>= 0.29.15 for Python 3.8 support and
OpenBLAS \>= 3.7 to avoid errors on the Skylake architecture.

Contributors
------------

A total of 3 people contributed to this release. People with a \"+\" by
their names contributed a patch for the first time.

- Charles Harris
- Matti Picus
- Siyuan Zhuang +

Pull requests merged
--------------------

A total of 2 pull requests were merged for this release.

- [\16439](https://github.com/numpy/numpy/pull/16439): ENH: enable pickle protocol 5 support for python3.5
- [\16441](https://github.com/numpy/numpy/pull/16441): BUG: relpath fails for different drives on windows

Checksums
---------

MD5

f923519347ba9f6bca59dce0583bdbd5 numpy-1.18.5-cp35-cp35m-macosx_10_9_intel.whl
79990253bda9ffa2db75152e77c318e9 numpy-1.18.5-cp35-cp35m-manylinux1_i686.whl
d5bf77d6caf4f83ed871ab9e4f9d1f72 numpy-1.18.5-cp35-cp35m-manylinux1_x86_64.whl
2cc7cc1b1640d6b50c50d96a35624698 numpy-1.18.5-cp35-cp35m-win32.whl
5a93e72e30c56462492a29315e19c0cc numpy-1.18.5-cp35-cp35m-win_amd64.whl
caef5b4785e5deb6891f118a49d48ccc numpy-1.18.5-cp36-cp36m-macosx_10_9_x86_64.whl
402be8c771c2541c7ee936ef63c9ebc0 numpy-1.18.5-cp36-cp36m-manylinux1_i686.whl
259dbb8694209921d56ffb091ae42b5b numpy-1.18.5-cp36-cp36m-manylinux1_x86_64.whl
9188a301a9640836322f2dc926640515 numpy-1.18.5-cp36-cp36m-win32.whl
acfa82d4e66601386dad19ad3a3983a5 numpy-1.18.5-cp36-cp36m-win_amd64.whl
bc1ebaa1ecf20f22b72cbb824c9cbc21 numpy-1.18.5-cp37-cp37m-macosx_10_9_x86_64.whl
97f27a6e2e6951cf8107132e7c628004 numpy-1.18.5-cp37-cp37m-manylinux1_i686.whl
f261237ab3d47b9b6e859bf240014a48 numpy-1.18.5-cp37-cp37m-manylinux1_x86_64.whl
08bdf2289600c5c728a2668b585fdd02 numpy-1.18.5-cp37-cp37m-win32.whl
8b793d97dae258d06e63c452a2684b16 numpy-1.18.5-cp37-cp37m-win_amd64.whl
2b9153362bf0e53574abc2df048a1578 numpy-1.18.5-cp38-cp38-macosx_10_9_x86_64.whl
1715c674b3070ccd90f56fa2cd48cce1 numpy-1.18.5-cp38-cp38-manylinux1_i686.whl
2347f759a1b8bc27423bb5ece6ae1c79 numpy-1.18.5-cp38-cp38-manylinux1_x86_64.whl
b66c03695208dd843b78acb32557a765 numpy-1.18.5-cp38-cp38-win32.whl
81c9e86442602529b3c52d4af7a515b7 numpy-1.18.5-cp38-cp38-win_amd64.whl
ca23173650ded5585f7030fee91005bf numpy-1.18.5.tar.gz
0d426af04e17cd480ecf3cd70743eaf4 numpy-1.18.5.zip

SHA256

e91d31b34fc7c2c8f756b4e902f901f856ae53a93399368d9a0dc7be17ed2ca0 numpy-1.18.5-cp35-cp35m-macosx_10_9_intel.whl
7d42ab8cedd175b5ebcb39b5208b25ba104842489ed59fbb29356f671ac93583 numpy-1.18.5-cp35-cp35m-manylinux1_i686.whl
a78e438db8ec26d5d9d0e584b27ef25c7afa5a182d1bf4d05e313d2d6d515271 numpy-1.18.5-cp35-cp35m-manylinux1_x86_64.whl
a87f59508c2b7ceb8631c20630118cc546f1f815e034193dc72390db038a5cb3 numpy-1.18.5-cp35-cp35m-win32.whl
965df25449305092b23d5145b9bdaeb0149b6e41a77a7d728b1644b3c99277c1 numpy-1.18.5-cp35-cp35m-win_amd64.whl
ac792b385d81151bae2a5a8adb2b88261ceb4976dbfaaad9ce3a200e036753dc numpy-1.18.5-cp36-cp36m-macosx_10_9_x86_64.whl
ef627986941b5edd1ed74ba89ca43196ed197f1a206a3f18cc9faf2fb84fd675 numpy-1.18.5-cp36-cp36m-manylinux1_i686.whl
f718a7949d1c4f622ff548c572e0c03440b49b9531ff00e4ed5738b459f011e8 numpy-1.18.5-cp36-cp36m-manylinux1_x86_64.whl
4064f53d4cce69e9ac613256dc2162e56f20a4e2d2086b1956dd2fcf77b7fac5 numpy-1.18.5-cp36-cp36m-win32.whl
b03b2c0badeb606d1232e5f78852c102c0a7989d3a534b3129e7856a52f3d161 numpy-1.18.5-cp36-cp36m-win_amd64.whl
a7acefddf994af1aeba05bbbafe4ba983a187079f125146dc5859e6d817df824 numpy-1.18.5-cp37-cp37m-macosx_10_9_x86_64.whl
cd49930af1d1e49a812d987c2620ee63965b619257bd76eaaa95870ca08837cf numpy-1.18.5-cp37-cp37m-manylinux1_i686.whl
b39321f1a74d1f9183bf1638a745b4fd6fe80efbb1f6b32b932a588b4bc7695f numpy-1.18.5-cp37-cp37m-manylinux1_x86_64.whl
cae14a01a159b1ed91a324722d746523ec757357260c6804d11d6147a9e53e3f numpy-1.18.5-cp37-cp37m-win32.whl
0172304e7d8d40e9e49553901903dc5f5a49a703363ed756796f5808a06fc233 numpy-1.18.5-cp37-cp37m-win_amd64.whl
e15b382603c58f24265c9c931c9a45eebf44fe2e6b4eaedbb0d025ab3255228b numpy-1.18.5-cp38-cp38-macosx_10_9_x86_64.whl
3676abe3d621fc467c4c1469ee11e395c82b2d6b5463a9454e37fe9da07cd0d7 numpy-1.18.5-cp38-cp38-manylinux1_i686.whl
4674f7d27a6c1c52a4d1aa5f0881f1eff840d2206989bae6acb1c7668c02ebfb numpy-1.18.5-cp38-cp38-manylinux1_x86_64.whl
9c9d6531bc1886454f44aa8f809268bc481295cf9740827254f53c30104f074a numpy-1.18.5-cp38-cp38-win32.whl
3dd6823d3e04b5f223e3e265b4a1eae15f104f4366edd409e5a5e413a98f911f numpy-1.18.5-cp38-cp38-win_amd64.whl
2c095bd1c5290966cceee8b6ef5cd66f13cd0e9d6d0e8d6fc8961abd64a8e51f numpy-1.18.5.tar.gz
34e96e9dae65c4839bd80012023aadd6ee2ccb73ce7fdf3074c62f301e63120b numpy-1.18.5.zip

1.18.4

Not secure
---
title: 'NumPy 1.18.4 Release Notes'
---

This is that last planned release in the 1.18.x series. It reverts the
`bool("0")` behavior introduced in 1.18.3 and fixes a bug in
`Generator.integers`. There is also improved help in the error message
emitted when numpy import fails due to a link to a new troubleshooting
section in the documentation that is now included.

The Python versions supported in this release are 3.5-3.8. Downstream
developers should use Cython \>= 0.29.15 for Python 3.8 support and
OpenBLAS \>= 3.7 to avoid errors on the Skylake architecture.

Contributors
============

A total of 4 people contributed to this release. People with a \"+\" by
their names contributed a patch for the first time.

- Charles Harris
- Matti Picus
- Sebastian Berg
- Warren Weckesser

Pull requests merged
====================

A total of 6 pull requests were merged for this release.

- 16055 BLD: add i686 for 1.18 builds
- 16090 BUG: random: `Generator.integers(2**32)` always returned 0.
- 16091 BLD: fix path to libgfortran on macOS
- 16109 REV: Reverts side-effect changes to casting
- 16114 BLD: put openblas library in local directory on windows
- 16132 DOC: Change import error \"howto\" to link to new troubleshooting\...

Checksums
=========

MD5
---

1fe09153c9e6da5c9e73f3ed466da50c numpy-1.18.4-cp35-cp35m-macosx_10_9_intel.whl
707b0270ece3e9a16905e756884daa48 numpy-1.18.4-cp35-cp35m-manylinux1_i686.whl
47f90c71c3df80ace2b32d011ed1c240 numpy-1.18.4-cp35-cp35m-manylinux1_x86_64.whl
e0e7d9fd9f4c8cf077ba5cda69833d38 numpy-1.18.4-cp35-cp35m-win32.whl
06e844091463932a0d4da103951ffc2c numpy-1.18.4-cp35-cp35m-win_amd64.whl
32ce3d6d266f1fbfef4a2ff917053718 numpy-1.18.4-cp36-cp36m-macosx_10_9_x86_64.whl
f5d27cca8bf9dc8f603cad5255674bb8 numpy-1.18.4-cp36-cp36m-manylinux1_i686.whl
460bd10297e582f0e061194356990afb numpy-1.18.4-cp36-cp36m-manylinux1_x86_64.whl
160c62c881a5109f3e47813dd0079ab1 numpy-1.18.4-cp36-cp36m-win32.whl
03e2d39bfaaf27993b353b98c75f27cc numpy-1.18.4-cp36-cp36m-win_amd64.whl
672cb3889e7c9285ca260f8d15c2bc9f numpy-1.18.4-cp37-cp37m-macosx_10_9_x86_64.whl
eaebca109ce5346ec1626af476e88edb numpy-1.18.4-cp37-cp37m-manylinux1_i686.whl
bdf6d9bd169e5552284dd366c12e3759 numpy-1.18.4-cp37-cp37m-manylinux1_x86_64.whl
408f8eedcfb8bee6c0d8cb13f4665edd numpy-1.18.4-cp37-cp37m-win32.whl
2d2cc2ccd5c276bde6696856609dee9f numpy-1.18.4-cp37-cp37m-win_amd64.whl
5bdfaa2daf5afd8e6db8c202f58d5ef0 numpy-1.18.4-cp38-cp38-macosx_10_9_x86_64.whl
1aad5b0c4545e206aae7848853633885 numpy-1.18.4-cp38-cp38-manylinux1_i686.whl
f7e78dcee83fb851c97804d7fb987fdb numpy-1.18.4-cp38-cp38-manylinux1_x86_64.whl
91678301ec0d6e6c20bf7c71bc8665a5 numpy-1.18.4-cp38-cp38-win32.whl
916b27fca6fb780907033067cad175fe numpy-1.18.4-cp38-cp38-win_amd64.whl
70e6c294f8dffa8d630eda1b0d42ae4d numpy-1.18.4.tar.gz
37277c5cbe5a850513fbff5ffdad1caf numpy-1.18.4.zip

SHA256
------

efdba339fffb0e80fcc19524e4fdbda2e2b5772ea46720c44eaac28096d60720 numpy-1.18.4-cp35-cp35m-macosx_10_9_intel.whl
2b573fcf6f9863ce746e4ad00ac18a948978bb3781cffa4305134d31801f3e26 numpy-1.18.4-cp35-cp35m-manylinux1_i686.whl
3f0dae97e1126f529ebb66f3c63514a0f72a177b90d56e4bce8a0b5def34627a numpy-1.18.4-cp35-cp35m-manylinux1_x86_64.whl
dccd380d8e025c867ddcb2f84b439722cf1f23f3a319381eac45fd077dee7170 numpy-1.18.4-cp35-cp35m-win32.whl
02ec9582808c4e48be4e93cd629c855e644882faf704bc2bd6bbf58c08a2a897 numpy-1.18.4-cp35-cp35m-win_amd64.whl
904b513ab8fbcbdb062bed1ce2f794ab20208a1b01ce9bd90776c6c7e7257032 numpy-1.18.4-cp36-cp36m-macosx_10_9_x86_64.whl
e22cd0f72fc931d6abc69dc7764484ee20c6a60b0d0fee9ce0426029b1c1bdae numpy-1.18.4-cp36-cp36m-manylinux1_i686.whl
2466fbcf23711ebc5daa61d28ced319a6159b260a18839993d871096d66b93f7 numpy-1.18.4-cp36-cp36m-manylinux1_x86_64.whl
00d7b54c025601e28f468953d065b9b121ddca7fff30bed7be082d3656dd798d numpy-1.18.4-cp36-cp36m-win32.whl
7d59f21e43bbfd9a10953a7e26b35b6849d888fc5a331fa84a2d9c37bd9fe2a2 numpy-1.18.4-cp36-cp36m-win_amd64.whl
efb7ac5572c9a57159cf92c508aad9f856f1cb8e8302d7fdb99061dbe52d712c numpy-1.18.4-cp37-cp37m-macosx_10_9_x86_64.whl
0e6f72f7bb08f2f350ed4408bb7acdc0daba637e73bce9f5ea2b207039f3af88 numpy-1.18.4-cp37-cp37m-manylinux1_i686.whl
9933b81fecbe935e6a7dc89cbd2b99fea1bf362f2790daf9422a7bb1dc3c3085 numpy-1.18.4-cp37-cp37m-manylinux1_x86_64.whl
96dd36f5cdde152fd6977d1bbc0f0561bccffecfde63cd397c8e6033eb66baba numpy-1.18.4-cp37-cp37m-win32.whl
57aea170fb23b1fd54fa537359d90d383d9bf5937ee54ae8045a723caa5e0961 numpy-1.18.4-cp37-cp37m-win_amd64.whl
ed722aefb0ebffd10b32e67f48e8ac4c5c4cf5d3a785024fdf0e9eb17529cd9d numpy-1.18.4-cp38-cp38-macosx_10_9_x86_64.whl
50fb72bcbc2cf11e066579cb53c4ca8ac0227abb512b6cbc1faa02d1595a2a5d numpy-1.18.4-cp38-cp38-manylinux1_i686.whl
709c2999b6bd36cdaf85cf888d8512da7433529f14a3689d6e37ab5242e7add5 numpy-1.18.4-cp38-cp38-manylinux1_x86_64.whl
f22273dd6a403ed870207b853a856ff6327d5cbce7a835dfa0645b3fc00273ec numpy-1.18.4-cp38-cp38-win32.whl
1be2e96314a66f5f1ce7764274327fd4fb9da58584eaff00b5a5221edefee7d6 numpy-1.18.4-cp38-cp38-win_amd64.whl
e0781ec6627e85f2a618478ee278893343fb8b40577b4c74b2ec15c7a5b8f698 numpy-1.18.4.tar.gz
bbcc85aaf4cd84ba057decaead058f43191cc0e30d6bc5d44fe336dc3d3f4509 numpy-1.18.4.zip

1.18.3

Not secure
==========================

This release contains various bug/regression fixes.

The Python versions supported in this release are 3.5-3.8. Downstream
developers should use Cython \>= 0.29.15 for Python 3.8 support and
OpenBLAS \>= 3.7 to avoid errors on the Skylake architecture.

Highlights
----------

- Fix for the `method='eigh'` and `method='cholesky'` options in
`numpy.random.multivariate_normal`. Those were producing samples
from the wrong distribution.

Contributors
------------

A total of 6 people contributed to this release. People with a \"+\" by
their names contributed a patch for the first time.

- Charles Harris
- Max Balandat +
- \Mibu287 +
- Pan Jan +
- Sebastian Berg
- \panpiort8 +

Pull requests merged
--------------------

A total of 5 pull requests were merged for this release.

- [\15916](https://github.com/numpy/numpy/pull/15916): BUG: Fix eigh and cholesky methods of numpy.random.multivariate\_normal
- [\15929](https://github.com/numpy/numpy/pull/15929): BUG,MAINT: Remove incorrect special case in string to number\...
- [\15930](https://github.com/numpy/numpy/pull/15930): BUG: Guarantee array is in valid state after memory error occurs\...
- [\15954](https://github.com/numpy/numpy/pull/15954): BUG: Check that [pvals]{.title-ref} is 1D in `_generator.multinomial`.
- [\16017](https://github.com/numpy/numpy/pull/16017): BUG: Alpha parameter must be 1D in `_generator.dirichlet`

Checksums
---------

MD5

6582c9a045ba92cb11a7062cfabba898 numpy-1.18.3-cp35-cp35m-macosx_10_9_intel.whl
f70d5c8d4f598653ff66f640487481ce numpy-1.18.3-cp35-cp35m-manylinux1_i686.whl
5c0f1a8c94d095efd21ab4b8ffeed921 numpy-1.18.3-cp35-cp35m-manylinux1_x86_64.whl
92cab35405fe3042e7aa8504d8669cd0 numpy-1.18.3-cp35-cp35m-win32.whl
8769b5434fd08fe67d912077082b91d7 numpy-1.18.3-cp35-cp35m-win_amd64.whl
2f1f330199d95bd8e709d0e4a0eec65e numpy-1.18.3-cp36-cp36m-macosx_10_9_x86_64.whl
19892d1f036da55f8841ef121478d554 numpy-1.18.3-cp36-cp36m-manylinux1_i686.whl
676c3dd16e9d80271c31ee5f9c3b8f20 numpy-1.18.3-cp36-cp36m-manylinux1_x86_64.whl
6484099fdb78f732a758286d2eb87632 numpy-1.18.3-cp36-cp36m-win32.whl
7d99a2a4ba819b75347468c8ed5e5a9e numpy-1.18.3-cp36-cp36m-win_amd64.whl
a5672f35136ea83dfa7960859a38d6e9 numpy-1.18.3-cp37-cp37m-macosx_10_9_x86_64.whl
5b36aaaeb4203b3d26c5dc801dbc66bd numpy-1.18.3-cp37-cp37m-manylinux1_i686.whl
afc4b2445d447f1a7c338026778bd34e numpy-1.18.3-cp37-cp37m-manylinux1_x86_64.whl
2ebc3ba9945d108df75319c359190516 numpy-1.18.3-cp37-cp37m-win32.whl
a78f661b1c7bd153c8399db90fba652c numpy-1.18.3-cp37-cp37m-win_amd64.whl
8f16d580559468b7cf23a71dc9945f39 numpy-1.18.3-cp38-cp38-macosx_10_9_x86_64.whl
5ec887ba38cd99775666f3493d82ea7c numpy-1.18.3-cp38-cp38-manylinux1_i686.whl
88ce81bc31dec4c14bf835dc466308ed numpy-1.18.3-cp38-cp38-manylinux1_x86_64.whl
5afe9a5f3c21299da599210ff5b76834 numpy-1.18.3-cp38-cp38-win32.whl
205364093300906654debbe3beb13359 numpy-1.18.3-cp38-cp38-win_amd64.whl
cd631c761f141d382b4e1b31c8232fc0 numpy-1.18.3.tar.gz
91314710fe9d29d80b6ccc9629e4532b numpy-1.18.3.zip

SHA256

a6bc9432c2640b008d5f29bad737714eb3e14bb8854878eacf3d7955c4e91c36 numpy-1.18.3-cp35-cp35m-macosx_10_9_intel.whl
48e15612a8357393d176638c8f68a19273676877caea983f8baf188bad430379 numpy-1.18.3-cp35-cp35m-manylinux1_i686.whl
eb2286249ebfe8fcb5b425e5ec77e4736d53ee56d3ad296f8947f67150f495e3 numpy-1.18.3-cp35-cp35m-manylinux1_x86_64.whl
1e37626bcb8895c4b3873fcfd54e9bfc5ffec8d0f525651d6985fcc5c6b6003c numpy-1.18.3-cp35-cp35m-win32.whl
163c78c04f47f26ca1b21068cea25ed7c5ecafe5f5ab2ea4895656a750582b56 numpy-1.18.3-cp35-cp35m-win_amd64.whl
3d9e1554cd9b5999070c467b18e5ae3ebd7369f02706a8850816f576a954295f numpy-1.18.3-cp36-cp36m-macosx_10_9_x86_64.whl
40c24960cd5cec55222963f255858a1c47c6fa50a65a5b03fd7de75e3700eaaa numpy-1.18.3-cp36-cp36m-manylinux1_i686.whl
a551d8cc267c634774830086da42e4ba157fa41dd3b93982bc9501b284b0c689 numpy-1.18.3-cp36-cp36m-manylinux1_x86_64.whl
0aa2b318cf81eb1693fcfcbb8007e95e231d7e1aa24288137f3b19905736c3ee numpy-1.18.3-cp36-cp36m-win32.whl
a41f303b3f9157a31ce7203e3ca757a0c40c96669e72d9b6ee1bce8507638970 numpy-1.18.3-cp36-cp36m-win_amd64.whl
e607b8cdc2ae5d5a63cd1bec30a15b5ed583ac6a39f04b7ba0f03fcfbf29c05b numpy-1.18.3-cp37-cp37m-macosx_10_9_x86_64.whl
fdee7540d12519865b423af411bd60ddb513d2eb2cd921149b732854995bbf8b numpy-1.18.3-cp37-cp37m-manylinux1_i686.whl
6725d2797c65598778409aba8cd67077bb089d5b7d3d87c2719b206dc84ec05e numpy-1.18.3-cp37-cp37m-manylinux1_x86_64.whl
4847f0c993298b82fad809ea2916d857d0073dc17b0510fbbced663b3265929d numpy-1.18.3-cp37-cp37m-win32.whl
46f404314dbec78cb342904f9596f25f9b16e7cf304030f1339e553c8e77f51c numpy-1.18.3-cp37-cp37m-win_amd64.whl
264fd15590b3f02a1fbc095e7e1f37cdac698ff3829e12ffdcffdce3772f9d44 numpy-1.18.3-cp38-cp38-macosx_10_9_x86_64.whl
e94a39d5c40fffe7696009dbd11bc14a349b377e03a384ed011e03d698787dd3 numpy-1.18.3-cp38-cp38-manylinux1_i686.whl
a4305564e93f5c4584f6758149fd446df39fd1e0a8c89ca0deb3cce56106a027 numpy-1.18.3-cp38-cp38-manylinux1_x86_64.whl
99f0ba97e369f02a21bb95faa3a0de55991fd5f0ece2e30a9e2eaebeac238921 numpy-1.18.3-cp38-cp38-win32.whl
c60175d011a2e551a2f74c84e21e7c982489b96b6a5e4b030ecdeacf2914da68 numpy-1.18.3-cp38-cp38-win_amd64.whl
93ee59ec38f3bf8f9a42d5f4301f60e6825a4a6385a145f70badcd2bf2a11134 numpy-1.18.3.tar.gz
e46e2384209c91996d5ec16744234d1c906ab79a701ce1a26155c9ec890b8dc8 numpy-1.18.3.zip

1.18.2

Not secure
==========================

This small elease contains a fix for a performance regression in
numpy/random and several bug/maintenance updates.

The Python versions supported in this release are 3.5-3.8. Downstream
developers should use Cython \>= 0.29.15 for Python 3.8 support and
OpenBLAS \>= 3.7 to avoid errors on the Skylake architecture.

Contributors
------------

A total of 5 people contributed to this release. People with a \"+\" by
their names contributed a patch for the first time.

- Charles Harris
- Ganesh Kathiresan +
- Matti Picus
- Sebastian Berg
- przemb +

Pull requests merged
--------------------

A total of 7 pull requests were merged for this release.

- [\15675](https://github.com/numpy/numpy/pull/15675): TST: move \_no\_tracing to testing.\_private
- [\15676](https://github.com/numpy/numpy/pull/15676): MAINT: Large overhead in some random functions
- [\15677](https://github.com/numpy/numpy/pull/15677): TST: Do not create gfortran link in azure Mac testing.
- [\15679](https://github.com/numpy/numpy/pull/15679): BUG: Added missing error check in ndarray.\_\_contains\_\_
- [\15722](https://github.com/numpy/numpy/pull/15722): MAINT: use list-based APIs to call subprocesses
- [\15729](https://github.com/numpy/numpy/pull/15729): REL: Prepare for 1.18.2 release.
- [\15734](https://github.com/numpy/numpy/pull/15734): BUG: fix logic error when nm fails on 32-bit

Checksums
---------

MD5

b9efe544f2bfbbd4e226c5639f22b1d2 numpy-1.18.2-cp35-cp35m-macosx_10_9_x86_64.whl
59c0bc09053c0029e829685dcb3dafa5 numpy-1.18.2-cp35-cp35m-manylinux1_i686.whl
1783f9194ceeabb236bd46ed6cb6ed60 numpy-1.18.2-cp35-cp35m-manylinux1_x86_64.whl
8a6fa57b509e6d9e194fb43b0ac5bbc7 numpy-1.18.2-cp35-cp35m-win32.whl
3167feeb5e30445ca7beed1d55b6d73a numpy-1.18.2-cp35-cp35m-win_amd64.whl
c193d593d3b8a46c610511a69c86f879 numpy-1.18.2-cp36-cp36m-macosx_10_9_x86_64.whl
f31c65b4699b12e73b36eb268931dbdc numpy-1.18.2-cp36-cp36m-manylinux1_i686.whl
f5b0613cacaaf2179528a36b75712d65 numpy-1.18.2-cp36-cp36m-manylinux1_x86_64.whl
77e40c0481f2c1608d344032038fa969 numpy-1.18.2-cp36-cp36m-win32.whl
2c402211d77a10025b047042d191839b numpy-1.18.2-cp36-cp36m-win_amd64.whl
3adec0f3cd5946ae7a0ab67790b2d8f1 numpy-1.18.2-cp37-cp37m-macosx_10_9_x86_64.whl
baea3b06dac41d5f6f1fbb7a62114656 numpy-1.18.2-cp37-cp37m-manylinux1_i686.whl
99b3c14bfc303c662b899d1a5ca4df6a numpy-1.18.2-cp37-cp37m-manylinux1_x86_64.whl
293066cca2b3772fa3ae204f6ff98ce7 numpy-1.18.2-cp37-cp37m-win32.whl
21f3cda116631da8823a621e90c30bbb numpy-1.18.2-cp37-cp37m-win_amd64.whl
47978cedd45ded509073025c1aa60506 numpy-1.18.2-cp38-cp38-macosx_10_9_x86_64.whl
4864078352c7faa69a8f9e98e48f7d8a numpy-1.18.2-cp38-cp38-manylinux1_i686.whl
c0111a5fce4aa57004366e9d5edc5644 numpy-1.18.2-cp38-cp38-manylinux1_x86_64.whl
7f8ca4e685e607f80ad002495b603436 numpy-1.18.2-cp38-cp38-win32.whl
e8e192005a0b8045928f0ac712762a6f numpy-1.18.2-cp38-cp38-win_amd64.whl
52601ac4cfbd513218bc088b74715098 numpy-1.18.2.tar.gz
511010c9fbd2516fe5a24aabcb76a56d numpy-1.18.2.zip

SHA256

a1baa1dc8ecd88fb2d2a651671a84b9938461e8a8eed13e2f0a812a94084d1fa numpy-1.18.2-cp35-cp35m-macosx_10_9_x86_64.whl
a244f7af80dacf21054386539699ce29bcc64796ed9850c99a34b41305630286 numpy-1.18.2-cp35-cp35m-manylinux1_i686.whl
6fcc5a3990e269f86d388f165a089259893851437b904f422d301cdce4ff25c8 numpy-1.18.2-cp35-cp35m-manylinux1_x86_64.whl
b5ad0adb51b2dee7d0ee75a69e9871e2ddfb061c73ea8bc439376298141f77f5 numpy-1.18.2-cp35-cp35m-win32.whl
87902e5c03355335fc5992a74ba0247a70d937f326d852fc613b7f53516c0963 numpy-1.18.2-cp35-cp35m-win_amd64.whl
9ab21d1cb156a620d3999dd92f7d1c86824c622873841d6b080ca5495fa10fef numpy-1.18.2-cp36-cp36m-macosx_10_9_x86_64.whl
cdb3a70285e8220875e4d2bc394e49b4988bdb1298ffa4e0bd81b2f613be397c numpy-1.18.2-cp36-cp36m-manylinux1_i686.whl
6d205249a0293e62bbb3898c4c2e1ff8a22f98375a34775a259a0523111a8f6c numpy-1.18.2-cp36-cp36m-manylinux1_x86_64.whl
a35af656a7ba1d3decdd4fae5322b87277de8ac98b7d9da657d9e212ece76a61 numpy-1.18.2-cp36-cp36m-win32.whl
1598a6de323508cfeed6b7cd6c4efb43324f4692e20d1f76e1feec7f59013448 numpy-1.18.2-cp36-cp36m-win_amd64.whl
deb529c40c3f1e38d53d5ae6cd077c21f1d49e13afc7936f7f868455e16b64a0 numpy-1.18.2-cp37-cp37m-macosx_10_9_x86_64.whl
cd77d58fb2acf57c1d1ee2835567cd70e6f1835e32090538f17f8a3a99e5e34b numpy-1.18.2-cp37-cp37m-manylinux1_i686.whl
b1fe1a6f3a6f355f6c29789b5927f8bd4f134a4bd9a781099a7c4f66af8850f5 numpy-1.18.2-cp37-cp37m-manylinux1_x86_64.whl
2e40be731ad618cb4974d5ba60d373cdf4f1b8dcbf1dcf4d9dff5e212baf69c5 numpy-1.18.2-cp37-cp37m-win32.whl
4ba59db1fcc27ea31368af524dcf874d9277f21fd2e1f7f1e2e0c75ee61419ed numpy-1.18.2-cp37-cp37m-win_amd64.whl
59ca9c6592da581a03d42cc4e270732552243dc45e87248aa8d636d53812f6a5 numpy-1.18.2-cp38-cp38-macosx_10_9_x86_64.whl
1b0ece94018ae21163d1f651b527156e1f03943b986188dd81bc7e066eae9d1c numpy-1.18.2-cp38-cp38-manylinux1_i686.whl
82847f2765835c8e5308f136bc34018d09b49037ec23ecc42b246424c767056b numpy-1.18.2-cp38-cp38-manylinux1_x86_64.whl
5e0feb76849ca3e83dd396254e47c7dba65b3fa9ed3df67c2556293ae3e16de3 numpy-1.18.2-cp38-cp38-win32.whl
ba3c7a2814ec8a176bb71f91478293d633c08582119e713a0c5351c0f77698da numpy-1.18.2-cp38-cp38-win_amd64.whl
da204ce460aa4247e595b7c7189d2fb2ed5f796bc03197055de01dac61d0125e numpy-1.18.2.tar.gz
e7894793e6e8540dbeac77c87b489e331947813511108ae097f1715c018b8f3d numpy-1.18.2.zip

Page 15 of 24

© 2025 Safety CLI Cybersecurity Inc. All Rights Reserved.