Numpy

Latest version: v2.2.1

Safety actively analyzes 693883 Python packages for vulnerabilities to keep your Python projects secure.

Scan your dependencies

Page 9 of 23

1.23.0rc1

1.22.4

the 1.22.3 release. In addition, the wheels for this release are built
using the recently released Cython 0.29.30, which should fix the
reported problems with
[debugging](https://github.com/numpy/numpy/issues/21008).

The Python versions supported for this release are 3.8-3.10. Note that
the Mac wheels are now based on OS X 10.15 rather than 10.6 that was
used in previous NumPy release cycles.

Contributors

A total of 12 people contributed to this release. People with a \"+\" by
their names contributed a patch for the first time.

- Alexander Shadchin
- Bas van Beek
- Charles Harris
- Hood Chatham
- Jarrod Millman
- John-Mark Gurney +
- Junyan Ou +
- Mariusz Felisiak +
- Ross Barnowski
- Sebastian Berg
- Serge Guelton
- Stefan van der Walt

Pull requests merged

A total of 22 pull requests were merged for this release.

- [21191](https://github.com/numpy/numpy/pull/21191): TYP, BUG: Fix `np.lib.stride_tricks` re-exported under the\...
- [21192](https://github.com/numpy/numpy/pull/21192): TST: Bump mypy from 0.931 to 0.940
- [21243](https://github.com/numpy/numpy/pull/21243): MAINT: Explicitly re-export the types in `numpy._typing`
- [21245](https://github.com/numpy/numpy/pull/21245): MAINT: Specify sphinx, numpydoc versions for CI doc builds
- [21275](https://github.com/numpy/numpy/pull/21275): BUG: Fix typos
- [21277](https://github.com/numpy/numpy/pull/21277): ENH, BLD: Fix math feature detection for wasm
- [21350](https://github.com/numpy/numpy/pull/21350): MAINT: Fix failing simd and cygwin tests.
- [21438](https://github.com/numpy/numpy/pull/21438): MAINT: Fix failing Python 3.8 32-bit Windows test.
- [21444](https://github.com/numpy/numpy/pull/21444): BUG: add linux guard per #21386
- [21445](https://github.com/numpy/numpy/pull/21445): BUG: Allow legacy dtypes to cast to datetime again
- [21446](https://github.com/numpy/numpy/pull/21446): BUG: Make mmap handling safer in frombuffer
- [21447](https://github.com/numpy/numpy/pull/21447): BUG: Stop using PyBytesObject.ob_shash deprecated in Python 3.11.
- [21448](https://github.com/numpy/numpy/pull/21448): ENH: Introduce numpy.core.setup_common.NPY_CXX_FLAGS
- [21472](https://github.com/numpy/numpy/pull/21472): BUG: Ensure compile errors are raised correclty
- [21473](https://github.com/numpy/numpy/pull/21473): BUG: Fix segmentation fault
- [21474](https://github.com/numpy/numpy/pull/21474): MAINT: Update doc requirements
- [21475](https://github.com/numpy/numpy/pull/21475): MAINT: Mark `npy_memchr` with `no_sanitize("alignment")` on clang
- [21512](https://github.com/numpy/numpy/pull/21512): DOC: Proposal - make the doc landing page cards more similar\...
- [21525](https://github.com/numpy/numpy/pull/21525): MAINT: Update Cython version to 0.29.30.
- [21536](https://github.com/numpy/numpy/pull/21536): BUG: Fix GCC error during build configuration
- [21541](https://github.com/numpy/numpy/pull/21541): REL: Prepare for the NumPy 1.22.4 release.
- [21547](https://github.com/numpy/numpy/pull/21547): MAINT: Skip tests that fail on PyPy.

Checksums

MD5

a19351fd3dc0b3bbc733495ed18b8f24 numpy-1.22.4-cp310-cp310-macosx_10_14_x86_64.whl
0730f9e196f70ad89f246bf95ccf05d5 numpy-1.22.4-cp310-cp310-macosx_10_15_x86_64.whl
63c74e5395a2b31d8adc5b1aa0c62471 numpy-1.22.4-cp310-cp310-macosx_11_0_arm64.whl
f99778023770c12f896768c90f7712e5 numpy-1.22.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
757d68b0cdb4e28ffce8574b6a2f3c5e numpy-1.22.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
50becf2e048e54dc5227dfe8378aae1e numpy-1.22.4-cp310-cp310-win32.whl
79dfdc29a4730e44d6df33dbea5b35b0 numpy-1.22.4-cp310-cp310-win_amd64.whl
8fd8f04d71ead55c2773d1b46668ca67 numpy-1.22.4-cp38-cp38-macosx_10_15_x86_64.whl
41a7c6240081010824cc0d5c02900fe6 numpy-1.22.4-cp38-cp38-macosx_11_0_arm64.whl
6bc066d3f61da3304c82d92f3f900a4f numpy-1.22.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
86d959605c66ccba11c6504f25fff0d7 numpy-1.22.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
ae0405894c065349a511e4575b919e2a numpy-1.22.4-cp38-cp38-win32.whl
c9a731d08081396b7a1b66977734d2ac numpy-1.22.4-cp38-cp38-win_amd64.whl
4d9b97d74799e5fc48860f0b4a3b255a numpy-1.22.4-cp39-cp39-macosx_10_14_x86_64.whl
c99fa7e04cb7cc23f1713f2023b4e489 numpy-1.22.4-cp39-cp39-macosx_10_15_x86_64.whl
dda3815df12b8a99c6c3069f69997521 numpy-1.22.4-cp39-cp39-macosx_11_0_arm64.whl
9b7c5b39d5611d92b66eb545d44b25db numpy-1.22.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
90fc45eaf8b8c4fac3f3ebd105a5a856 numpy-1.22.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
9562153d4a83d773c20eb626cbd65cde numpy-1.22.4-cp39-cp39-win32.whl
711b23acce54a18ce74fc80f48f48062 numpy-1.22.4-cp39-cp39-win_amd64.whl
ab803b24ea557452e828adba1b986af3 numpy-1.22.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
09b3a41ea0b9bc20bd1691cf88f0b0d3 numpy-1.22.4.tar.gz
b44849506fbb54cdef9dbb435b2b1987 numpy-1.22.4.zip

SHA256

ba9ead61dfb5d971d77b6c131a9dbee62294a932bf6a356e48c75ae684e635b3 numpy-1.22.4-cp310-cp310-macosx_10_14_x86_64.whl
1ce7ab2053e36c0a71e7a13a7475bd3b1f54750b4b433adc96313e127b870887 numpy-1.22.4-cp310-cp310-macosx_10_15_x86_64.whl
7228ad13744f63575b3a972d7ee4fd61815b2879998e70930d4ccf9ec721dce0 numpy-1.22.4-cp310-cp310-macosx_11_0_arm64.whl
43a8ca7391b626b4c4fe20aefe79fec683279e31e7c79716863b4b25021e0e74 numpy-1.22.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
a911e317e8c826ea632205e63ed8507e0dc877dcdc49744584dfc363df9ca08c numpy-1.22.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
9ce7df0abeabe7fbd8ccbf343dc0db72f68549856b863ae3dd580255d009648e numpy-1.22.4-cp310-cp310-win32.whl
3e1ffa4748168e1cc8d3cde93f006fe92b5421396221a02f2274aab6ac83b077 numpy-1.22.4-cp310-cp310-win_amd64.whl
59d55e634968b8f77d3fd674a3cf0b96e85147cd6556ec64ade018f27e9479e1 numpy-1.22.4-cp38-cp38-macosx_10_15_x86_64.whl
c1d937820db6e43bec43e8d016b9b3165dcb42892ea9f106c70fb13d430ffe72 numpy-1.22.4-cp38-cp38-macosx_11_0_arm64.whl
d4c5d5eb2ec8da0b4f50c9a843393971f31f1d60be87e0fb0917a49133d257d6 numpy-1.22.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
64f56fc53a2d18b1924abd15745e30d82a5782b2cab3429aceecc6875bd5add0 numpy-1.22.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
fb7a980c81dd932381f8228a426df8aeb70d59bbcda2af075b627bbc50207cba numpy-1.22.4-cp38-cp38-win32.whl
e96d7f3096a36c8754207ab89d4b3282ba7b49ea140e4973591852c77d09eb76 numpy-1.22.4-cp38-cp38-win_amd64.whl
4c6036521f11a731ce0648f10c18ae66d7143865f19f7299943c985cdc95afb5 numpy-1.22.4-cp39-cp39-macosx_10_14_x86_64.whl
b89bf9b94b3d624e7bb480344e91f68c1c6c75f026ed6755955117de00917a7c numpy-1.22.4-cp39-cp39-macosx_10_15_x86_64.whl
2d487e06ecbf1dc2f18e7efce82ded4f705f4bd0cd02677ffccfb39e5c284c7e numpy-1.22.4-cp39-cp39-macosx_11_0_arm64.whl
f3eb268dbd5cfaffd9448113539e44e2dd1c5ca9ce25576f7c04a5453edc26fa numpy-1.22.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
37431a77ceb9307c28382c9773da9f306435135fae6b80b62a11c53cfedd8802 numpy-1.22.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
cc7f00008eb7d3f2489fca6f334ec19ca63e31371be28fd5dad955b16ec285bd numpy-1.22.4-cp39-cp39-win32.whl
f0725df166cf4785c0bc4cbfb320203182b1ecd30fee6e541c8752a92df6aa32 numpy-1.22.4-cp39-cp39-win_amd64.whl
0791fbd1e43bf74b3502133207e378901272f3c156c4df4954cad833b1380207 numpy-1.22.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
b4308198d0e41efaa108e57d69973398439c7299a9d551680cdd603cf6d20709 numpy-1.22.4.tar.gz
425b390e4619f58d8526b3dcf656dde069133ae5c240229821f01b5f44ea07af numpy-1.22.4.zip

1.22.3

the 1.22.2 release. The most noticeable fixes may be those for DLPack.
One that may cause some problems is disallowing strings as inputs to
logical ufuncs. It is still undecided how strings should be treated in
those functions and it was thought best to simply disallow them until a
decision was reached. That should not cause problems with older code.

The Python versions supported for this release are 3.8-3.10. Note that
the Mac wheels are now based on OS X 10.14 rather than 10.9 that was
used in previous NumPy release cycles. 10.14 is the oldest release
supported by Apple.

Contributors

A total of 9 people contributed to this release. People with a \"+\" by
their names contributed a patch for the first time.

- \GalaxySnail +
- Alexandre de Siqueira
- Bas van Beek
- Charles Harris
- Melissa Weber Mendonça
- Ross Barnowski
- Sebastian Berg
- Tirth Patel
- Matthieu Darbois

Pull requests merged

A total of 10 pull requests were merged for this release.

- [21048](https://github.com/numpy/numpy/pull/21048): MAINT: Use \"3.10\" instead of \"3.10-dev\" on travis.
- [21106](https://github.com/numpy/numpy/pull/21106): TYP,MAINT: Explicitly allow sequences of array-likes in `np.concatenate`
- [21137](https://github.com/numpy/numpy/pull/21137): BLD,DOC: skip broken ipython 8.1.0
- [21138](https://github.com/numpy/numpy/pull/21138): BUG, ENH: np.\_from_dlpack: export correct device information
- [21139](https://github.com/numpy/numpy/pull/21139): BUG: Fix numba DUFuncs added loops getting picked up
- [21140](https://github.com/numpy/numpy/pull/21140): BUG: Fix unpickling an empty ndarray with a non-zero dimension\...
- [21141](https://github.com/numpy/numpy/pull/21141): BUG: use ThreadPoolExecutor instead of ThreadPool
- [21142](https://github.com/numpy/numpy/pull/21142): API: Disallow strings in logical ufuncs
- [21143](https://github.com/numpy/numpy/pull/21143): MAINT, DOC: Fix SciPy intersphinx link
- [21148](https://github.com/numpy/numpy/pull/21148): BUG,ENH: np.\_from_dlpack: export arrays with any strided size-1\...

Checksums

MD5

14f1872bbab050b0579e5fcd8b341b81 numpy-1.22.3-cp310-cp310-macosx_10_14_x86_64.whl
c673faa3ac8745ad10ed0428a21a77aa numpy-1.22.3-cp310-cp310-macosx_11_0_arm64.whl
d925fff720561673fd7ee8ead0e94935 numpy-1.22.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
319f97f5ee26b9c3c06f7a2a3df412a3 numpy-1.22.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
866eae5dba934cad50eb38c8505c8449 numpy-1.22.3-cp310-cp310-win32.whl
e4c512437a6d4eb4a384225861067ad8 numpy-1.22.3-cp310-cp310-win_amd64.whl
a28052af37037f0d5c3b47f4a7040135 numpy-1.22.3-cp38-cp38-macosx_10_14_x86_64.whl
d22dc074bde64f6e91a2d1990345f821 numpy-1.22.3-cp38-cp38-macosx_11_0_arm64.whl
e8a01c2ca1474aff142366a0a2fe0812 numpy-1.22.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
4fe6e71e7871cb31ffc4122aa5707be7 numpy-1.22.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
1273fb3c77383ab28f2fb05192751340 numpy-1.22.3-cp38-cp38-win32.whl
001244a6bafa640d7509c85661a4e98e numpy-1.22.3-cp38-cp38-win_amd64.whl
b8694b880a1a68d1716f60a9c9e82b38 numpy-1.22.3-cp39-cp39-macosx_10_14_x86_64.whl
ba122eaa0988801e250f8674e3dd612e numpy-1.22.3-cp39-cp39-macosx_11_0_arm64.whl
3641825aca07cb26732425e52d034daf numpy-1.22.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
f92412e4273c2580abcc1b75c56e9651 numpy-1.22.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
b38604778ffd0a17931c06738c3ce9ed numpy-1.22.3-cp39-cp39-win32.whl
644e0b141fa36a1baf0338032254cc9a numpy-1.22.3-cp39-cp39-win_amd64.whl
99d2dfb943327b108b2c3b923bd42000 numpy-1.22.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
3305c27e5bdf7f19247a7eee00ac053e numpy-1.22.3.tar.gz
b56530be068796a50bf5a09105c8011e numpy-1.22.3.zip

SHA256

92bfa69cfbdf7dfc3040978ad09a48091143cffb778ec3b03fa170c494118d75 numpy-1.22.3-cp310-cp310-macosx_10_14_x86_64.whl
8251ed96f38b47b4295b1ae51631de7ffa8260b5b087808ef09a39a9d66c97ab numpy-1.22.3-cp310-cp310-macosx_11_0_arm64.whl
48a3aecd3b997bf452a2dedb11f4e79bc5bfd21a1d4cc760e703c31d57c84b3e numpy-1.22.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
a3bae1a2ed00e90b3ba5f7bd0a7c7999b55d609e0c54ceb2b076a25e345fa9f4 numpy-1.22.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
f950f8845b480cffe522913d35567e29dd381b0dc7e4ce6a4a9f9156417d2430 numpy-1.22.3-cp310-cp310-win32.whl
08d9b008d0156c70dc392bb3ab3abb6e7a711383c3247b410b39962263576cd4 numpy-1.22.3-cp310-cp310-win_amd64.whl
201b4d0552831f7250a08d3b38de0d989d6f6e4658b709a02a73c524ccc6ffce numpy-1.22.3-cp38-cp38-macosx_10_14_x86_64.whl
f8c1f39caad2c896bc0018f699882b345b2a63708008be29b1f355ebf6f933fe numpy-1.22.3-cp38-cp38-macosx_11_0_arm64.whl
568dfd16224abddafb1cbcce2ff14f522abe037268514dd7e42c6776a1c3f8e5 numpy-1.22.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
3ca688e1b9b95d80250bca34b11a05e389b1420d00e87a0d12dc45f131f704a1 numpy-1.22.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e7927a589df200c5e23c57970bafbd0cd322459aa7b1ff73b7c2e84d6e3eae62 numpy-1.22.3-cp38-cp38-win32.whl
07a8c89a04997625236c5ecb7afe35a02af3896c8aa01890a849913a2309c676 numpy-1.22.3-cp38-cp38-win_amd64.whl
2c10a93606e0b4b95c9b04b77dc349b398fdfbda382d2a39ba5a822f669a0123 numpy-1.22.3-cp39-cp39-macosx_10_14_x86_64.whl
fade0d4f4d292b6f39951b6836d7a3c7ef5b2347f3c420cd9820a1d90d794802 numpy-1.22.3-cp39-cp39-macosx_11_0_arm64.whl
5bfb1bb598e8229c2d5d48db1860bcf4311337864ea3efdbe1171fb0c5da515d numpy-1.22.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
97098b95aa4e418529099c26558eeb8486e66bd1e53a6b606d684d0c3616b168 numpy-1.22.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
fdf3c08bce27132395d3c3ba1503cac12e17282358cb4bddc25cc46b0aca07aa numpy-1.22.3-cp39-cp39-win32.whl
639b54cdf6aa4f82fe37ebf70401bbb74b8508fddcf4797f9fe59615b8c5813a numpy-1.22.3-cp39-cp39-win_amd64.whl
c34ea7e9d13a70bf2ab64a2532fe149a9aced424cd05a2c4ba662fd989e3e45f numpy-1.22.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
a906c0b4301a3d62ccf66d058fe779a65c1c34f6719ef2058f96e1856f48bca5 numpy-1.22.3.tar.gz
dbc7601a3b7472d559dc7b933b18b4b66f9aa7452c120e87dfb33d02008c8a18 numpy-1.22.3.zip

1.22.2

The NumPy 1.22.2 is maintenance release that fixes bugs discovered after
the 1.22.1 release. Notable fixes are:

- Several build related fixes for downstream projects and other
platforms.
- Various Annotation fixes/additions.
- Numpy wheels for Windows will use the 1.41 tool chain, fixing
downstream link problems for projects using NumPy provided libraries
on Windows.
- Deal with CVE-2021-41495 complaint.

The Python versions supported for this release are 3.8-3.10.

Contributors

A total of 14 people contributed to this release. People with a \"+\" by
their names contributed a patch for the first time.

- Andrew J. Hesford +
- Bas van Beek
- Brénainn Woodsend +
- Charles Harris
- Hood Chatham
- Janus Heide +
- Leo Singer
- Matti Picus
- Mukulika Pahari
- Niyas Sait
- Pearu Peterson
- Ralf Gommers
- Sebastian Berg
- Serge Guelton

Pull requests merged

A total of 21 pull requests were merged for this release.

- [20842](https://github.com/numpy/numpy/pull/20842): BLD: Add NPY_DISABLE_SVML env var to opt out of SVML
- [20843](https://github.com/numpy/numpy/pull/20843): BUG: Fix build of third party extensions with Py_LIMITED_API
- [20844](https://github.com/numpy/numpy/pull/20844): TYP: Fix pyright being unable to infer the `real` and `imag`\...
- [20845](https://github.com/numpy/numpy/pull/20845): BUG: Fix comparator function signatures
- [20906](https://github.com/numpy/numpy/pull/20906): BUG: Avoid importing `numpy.distutils` on import numpy.testing
- [20907](https://github.com/numpy/numpy/pull/20907): MAINT: remove outdated mingw32 fseek support
- [20908](https://github.com/numpy/numpy/pull/20908): TYP: Relax the return type of `np.vectorize`
- [20909](https://github.com/numpy/numpy/pull/20909): BUG: fix f2py\'s define for threading when building with Mingw
- [20910](https://github.com/numpy/numpy/pull/20910): BUG: distutils: fix building mixed C/Fortran extensions
- [20912](https://github.com/numpy/numpy/pull/20912): DOC,TST: Fix Pandas code example as per new release
- [20935](https://github.com/numpy/numpy/pull/20935): TYP, MAINT: Add annotations for `flatiter.__setitem__`
- [20936](https://github.com/numpy/numpy/pull/20936): MAINT, TYP: Added missing where typehints in `fromnumeric.pyi`
- [20937](https://github.com/numpy/numpy/pull/20937): BUG: Fix build_ext interaction with non numpy extensions
- [20938](https://github.com/numpy/numpy/pull/20938): BUG: Fix missing intrinsics for windows/arm64 target
- [20945](https://github.com/numpy/numpy/pull/20945): REL: Prepare for the NumPy 1.22.2 release.
- [20982](https://github.com/numpy/numpy/pull/20982): MAINT: f2py: don\'t generate code that triggers `-Wsometimes-uninitialized`.
- [20983](https://github.com/numpy/numpy/pull/20983): BUG: Fix incorrect return type in reduce without initial value
- [20984](https://github.com/numpy/numpy/pull/20984): ENH: review return values for PyArray_DescrNew
- [20985](https://github.com/numpy/numpy/pull/20985): MAINT: be more tolerant of setuptools >= 60
- [20986](https://github.com/numpy/numpy/pull/20986): BUG: Fix misplaced return.
- [20992](https://github.com/numpy/numpy/pull/20992): MAINT: Further small return value validation fixes

Checksums

MD5

2319f8d7c629d0ba3d3d3b1d5605d494 numpy-1.22.2-cp310-cp310-macosx_10_14_x86_64.whl
023c01a6d3aa528f8e88b0837dcab7ed numpy-1.22.2-cp310-cp310-macosx_11_0_arm64.whl
84b36e8893b811d17a19404c68db7ce6 numpy-1.22.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
744da9614e8272a384b542d129cd17a9 numpy-1.22.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
ee012ed5e7c98c6f48026dfa818b2274 numpy-1.22.2-cp310-cp310-win_amd64.whl
73e4fdcf398327bc4241dc38b6d10211 numpy-1.22.2-cp38-cp38-macosx_10_14_x86_64.whl
9fcbca2a614af3b9a37456643ab1c99d numpy-1.22.2-cp38-cp38-macosx_11_0_arm64.whl
b7e0d4a19867d33765c7187d1390eef4 numpy-1.22.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
dc8d79d75588737ea77fe85a4f05365a numpy-1.22.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
05906141c095148c53c043c381e6fabe numpy-1.22.2-cp38-cp38-win32.whl
05d3b6d34c0fa031e69ec0476e8d4c9c numpy-1.22.2-cp38-cp38-win_amd64.whl
1449889d856de0e88437fa76d3284e00 numpy-1.22.2-cp39-cp39-macosx_10_14_x86_64.whl
e25666ab6ec0692368f328b7b98c27a3 numpy-1.22.2-cp39-cp39-macosx_11_0_arm64.whl
59e3013894bcc6267054c746d9339cf8 numpy-1.22.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
7606b9898c20d2b2aa7fc7018bc9c5cd numpy-1.22.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
2686a1495c620e85842967bf8a5f1b2f numpy-1.22.2-cp39-cp39-win32.whl
54432a84807ab69ac3432e6090d5a169 numpy-1.22.2-cp39-cp39-win_amd64.whl
4dbecace42595742485b854b213341b6 numpy-1.22.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
5b506b01ef454f39272ca75de1c7f61c numpy-1.22.2.tar.gz
a903008d992b77cb68129173c0f61f60 numpy-1.22.2.zip

SHA256

515a8b6edbb904594685da6e176ac9fbea8f73a5ebae947281de6613e27f1956 numpy-1.22.2-cp310-cp310-macosx_10_14_x86_64.whl
76a4f9bce0278becc2da7da3b8ef854bed41a991f4226911a24a9711baad672c numpy-1.22.2-cp310-cp310-macosx_11_0_arm64.whl
168259b1b184aa83a514f307352c25c56af111c269ffc109d9704e81f72e764b numpy-1.22.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
3556c5550de40027d3121ebbb170f61bbe19eb639c7ad0c7b482cd9b560cd23b numpy-1.22.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
aafa46b5a39a27aca566198d3312fb3bde95ce9677085efd02c86f7ef6be4ec7 numpy-1.22.2-cp310-cp310-win_amd64.whl
55535c7c2f61e2b2fc817c5cbe1af7cb907c7f011e46ae0a52caa4be1f19afe2 numpy-1.22.2-cp38-cp38-macosx_10_14_x86_64.whl
60cb8e5933193a3cc2912ee29ca331e9c15b2da034f76159b7abc520b3d1233a numpy-1.22.2-cp38-cp38-macosx_11_0_arm64.whl
0b536b6840e84c1c6a410f3a5aa727821e6108f3454d81a5cd5900999ef04f89 numpy-1.22.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
2638389562bda1635b564490d76713695ff497242a83d9b684d27bb4a6cc9d7a numpy-1.22.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
6767ad399e9327bfdbaa40871be4254d1995f4a3ca3806127f10cec778bd9896 numpy-1.22.2-cp38-cp38-win32.whl
03ae5850619abb34a879d5f2d4bb4dcd025d6d8fb72f5e461dae84edccfe129f numpy-1.22.2-cp38-cp38-win_amd64.whl
d76a26c5118c4d96e264acc9e3242d72e1a2b92e739807b3b69d8d47684b6677 numpy-1.22.2-cp39-cp39-macosx_10_14_x86_64.whl
15efb7b93806d438e3bc590ca8ef2f953b0ce4f86f337ef4559d31ec6cf9d7dd numpy-1.22.2-cp39-cp39-macosx_11_0_arm64.whl
badca914580eb46385e7f7e4e426fea6de0a37b9e06bec252e481ae7ec287082 numpy-1.22.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
94dd11d9f13ea1be17bac39c1942f527cbf7065f94953cf62dfe805653da2f8f numpy-1.22.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
8cf33634b60c9cef346663a222d9841d3bbbc0a2f00221d6bcfd0d993d5543f6 numpy-1.22.2-cp39-cp39-win32.whl
59153979d60f5bfe9e4c00e401e24dfe0469ef8da6d68247439d3278f30a180f numpy-1.22.2-cp39-cp39-win_amd64.whl
4a176959b6e7e00b5a0d6f549a479f869829bfd8150282c590deee6d099bbb6e numpy-1.22.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
093d513a460fd94f94c16193c3ef29b2d69a33e482071e3d6d6e561a700587a6 numpy-1.22.2.tar.gz
076aee5a3763d41da6bef9565fdf3cb987606f567cd8b104aded2b38b7b47abf numpy-1.22.2.zip

1.22.1

Not secure
The NumPy 1.22.1 is maintenance release that fixes bugs discovered after
the 1.22.0 release. Notable fixes are:

- Fix f2PY docstring problems (SciPy)
- Fix reduction type problems (AstroPy)
- Fix various typing bugs.

The Python versions supported for this release are 3.8-3.10.

Contributors

A total of 14 people contributed to this release. People with a \"+\" by
their names contributed a patch for the first time.

- Arryan Singh
- Bas van Beek
- Charles Harris
- Denis Laxalde
- Isuru Fernando
- Kevin Sheppard
- Matthew Barber
- Matti Picus
- Melissa Weber Mendonça
- Mukulika Pahari
- Omid Rajaei +
- Pearu Peterson
- Ralf Gommers
- Sebastian Berg

Pull requests merged

A total of 20 pull requests were merged for this release.

- [20702](https://github.com/numpy/numpy/pull/20702): MAINT, DOC: Post 1.22.0 release fixes.
- [20703](https://github.com/numpy/numpy/pull/20703): DOC, BUG: Use pngs instead of svgs.
- [20704](https://github.com/numpy/numpy/pull/20704): DOC: Fixed the link on user-guide landing page
- [20714](https://github.com/numpy/numpy/pull/20714): BUG: Restore vc141 support
- [20724](https://github.com/numpy/numpy/pull/20724): BUG: Fix array dimensions solver for multidimensional arguments\...
- [20725](https://github.com/numpy/numpy/pull/20725): TYP: change type annotation for `__array_namespace__` to ModuleType
- [20726](https://github.com/numpy/numpy/pull/20726): TYP, MAINT: Allow `ndindex` to accept integer tuples
- [20757](https://github.com/numpy/numpy/pull/20757): BUG: Relax dtype identity check in reductions
- [20763](https://github.com/numpy/numpy/pull/20763): TYP: Allow time manipulation functions to accept `date` and `timedelta`\...
- [20768](https://github.com/numpy/numpy/pull/20768): TYP: Relax the type of `ndarray.__array_finalize__`
- [20795](https://github.com/numpy/numpy/pull/20795): MAINT: Raise RuntimeError if setuptools version is too recent.
- [20796](https://github.com/numpy/numpy/pull/20796): BUG, DOC: Fixes SciPy docs build warnings
- [20797](https://github.com/numpy/numpy/pull/20797): DOC: fix OpenBLAS version in release note
- [20798](https://github.com/numpy/numpy/pull/20798): PERF: Optimize array check for bounded 0,1 values
- [20805](https://github.com/numpy/numpy/pull/20805): BUG: Fix that reduce-likes honor out always (and live in the\...
- [20806](https://github.com/numpy/numpy/pull/20806): BUG: `array_api.argsort(descending=True)` respects relative\...
- [20807](https://github.com/numpy/numpy/pull/20807): BUG: Allow integer inputs for pow-related functions in `array_api`
- [20814](https://github.com/numpy/numpy/pull/20814): DOC: Refer to NumPy, not pandas, in main page
- [20815](https://github.com/numpy/numpy/pull/20815): DOC: Update Copyright to 2022 \[License\]
- [20819](https://github.com/numpy/numpy/pull/20819): BUG: Return correctly shaped inverse indices in array_api set\...

Checksums

MD5

8edd68c8998cb694e244ce793b2d088c numpy-1.22.1-cp310-cp310-macosx_10_9_universal2.whl
e4858aafd41cdba76cd14161bfc512c3 numpy-1.22.1-cp310-cp310-macosx_10_9_x86_64.whl
96f4fc3f321625278ca3807c7c8c789c numpy-1.22.1-cp310-cp310-macosx_11_0_arm64.whl
2ddc25b9c9d7b517610689055f9f553a numpy-1.22.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
8d40c6fd64389c05646b5ef95cded6e5 numpy-1.22.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
1a8359c6436d1bcfe84a094337903a48 numpy-1.22.1-cp310-cp310-win_amd64.whl
033f9aa72a732646f3fb4563226320ee numpy-1.22.1-cp38-cp38-macosx_10_9_universal2.whl
59e13abecdf4194f75b654f1d853b244 numpy-1.22.1-cp38-cp38-macosx_10_9_x86_64.whl
3ce885a0c10e95f5756d7c1878eaa246 numpy-1.22.1-cp38-cp38-macosx_11_0_arm64.whl
546b2a0866561673d5b7eadcc086af24 numpy-1.22.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
200c0a7bc3a24cfa6f4358d7274b5535 numpy-1.22.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
defe48b3b5f44c3991e830f7cde0a79c numpy-1.22.1-cp38-cp38-win32.whl
15557a847a78bcbf651ca6689ae37935 numpy-1.22.1-cp38-cp38-win_amd64.whl
067e734594c67d8141190b7eabb979ee numpy-1.22.1-cp39-cp39-macosx_10_9_universal2.whl
1458d42b26da341baaee134d85e3fd70 numpy-1.22.1-cp39-cp39-macosx_10_9_x86_64.whl
463b365c80efffd807194c78b4796235 numpy-1.22.1-cp39-cp39-macosx_11_0_arm64.whl
58d8dc02dd884898c1b7ee1bee1dd216 numpy-1.22.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
48e2d2905822f78a96d400c78bd16cbb numpy-1.22.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
c5059bd82d8f2c509c889fba09251307 numpy-1.22.1-cp39-cp39-win32.whl
eb9a0655d16897f0adf6ea53b9f3bda4 numpy-1.22.1-cp39-cp39-win_amd64.whl
74cb5dba2f37dc445ffd3068eb1d58fe numpy-1.22.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
90fff1ee7c7f843fc7a234addc70c71c numpy-1.22.1.tar.gz
c25dad73053350dd0278605d8ed8a5c7 numpy-1.22.1.zip

SHA256

3d62d6b0870b53799204515145935608cdeb4cebb95a26800b6750e48884cc5b numpy-1.22.1-cp310-cp310-macosx_10_9_universal2.whl
831f2df87bd3afdfc77829bc94bd997a7c212663889d56518359c827d7113b1f numpy-1.22.1-cp310-cp310-macosx_10_9_x86_64.whl
8d1563060e77096367952fb44fca595f2b2f477156de389ce7c0ade3aef29e21 numpy-1.22.1-cp310-cp310-macosx_11_0_arm64.whl
69958735d5e01f7b38226a6c6e7187d72b7e4d42b6b496aca5860b611ca0c193 numpy-1.22.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
45a7dfbf9ed8d68fd39763940591db7637cf8817c5bce1a44f7b56c97cbe211e numpy-1.22.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
7e957ca8112c689b728037cea9c9567c27cf912741fabda9efc2c7d33d29dfa1 numpy-1.22.1-cp310-cp310-win_amd64.whl
800dfeaffb2219d49377da1371d710d7952c9533b57f3d51b15e61c4269a1b5b numpy-1.22.1-cp38-cp38-macosx_10_9_universal2.whl
65f5e257987601fdfc63f1d02fca4d1c44a2b85b802f03bd6abc2b0b14648dd2 numpy-1.22.1-cp38-cp38-macosx_10_9_x86_64.whl
632e062569b0fe05654b15ef0e91a53c0a95d08ffe698b66f6ba0f927ad267c2 numpy-1.22.1-cp38-cp38-macosx_11_0_arm64.whl
0d245a2bf79188d3f361137608c3cd12ed79076badd743dc660750a9f3074f7c numpy-1.22.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
26b4018a19d2ad9606ce9089f3d52206a41b23de5dfe8dc947d2ec49ce45d015 numpy-1.22.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
f8ad59e6e341f38266f1549c7c2ec70ea0e3d1effb62a44e5c3dba41c55f0187 numpy-1.22.1-cp38-cp38-win32.whl
60f19c61b589d44fbbab8ff126640ae712e163299c2dd422bfe4edc7ec51aa9b numpy-1.22.1-cp38-cp38-win_amd64.whl
2db01d9838a497ba2aa9a87515aeaf458f42351d72d4e7f3b8ddbd1eba9479f2 numpy-1.22.1-cp39-cp39-macosx_10_9_universal2.whl
bcd19dab43b852b03868796f533b5f5561e6c0e3048415e675bec8d2e9d286c1 numpy-1.22.1-cp39-cp39-macosx_10_9_x86_64.whl
78bfbdf809fc236490e7e65715bbd98377b122f329457fffde206299e163e7f3 numpy-1.22.1-cp39-cp39-macosx_11_0_arm64.whl
c51124df17f012c3b757380782ae46eee85213a3215e51477e559739f57d9bf6 numpy-1.22.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
88d54b7b516f0ca38a69590557814de2dd638d7d4ed04864826acaac5ebb8f01 numpy-1.22.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
b5ec9a5eaf391761c61fd873363ef3560a3614e9b4ead17347e4deda4358bca4 numpy-1.22.1-cp39-cp39-win32.whl
4ac4d7c9f8ea2a79d721ebfcce81705fc3cd61a10b731354f1049eb8c99521e8 numpy-1.22.1-cp39-cp39-win_amd64.whl
e60ef82c358ded965fdd3132b5738eade055f48067ac8a5a8ac75acc00cad31f numpy-1.22.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
dd1968402ae20dfd59b34acd799b494be340c774f6295e9bf1c2b9842a5e416d numpy-1.22.1.tar.gz
e348ccf5bc5235fc405ab19d53bec215bb373300e5523c7b476cc0da8a5e9973 numpy-1.22.1.zip

1.22.0

Not secure
spread over 575 pull requests. There have been many improvements,
highlights are:

- Annotations of the main namespace are essentially complete. Upstream
is a moving target, so there will likely be further improvements,
but the major work is done. This is probably the most user visible
enhancement in this release.
- A preliminary version of the proposed Array-API is provided. This is
a step in creating a standard collection of functions that can be
used across application such as CuPy and JAX.
- NumPy now has a DLPack backend. DLPack provides a common interchange
format for array (tensor) data.
- New methods for `quantile`, `percentile`, and related functions. The
new methods provide a complete set of the methods commonly found in
the literature.
- A new configurable allocator for use by downstream projects.

These are in addition to the ongoing work to provide SIMD support for
commonly used functions, improvements to F2PY, and better documentation.

The Python versions supported in this release are 3.8-3.10, Python 3.7
has been dropped. Note that 32 bit wheels are only provided for Python

Page 9 of 23

© 2025 Safety CLI Cybersecurity Inc. All Rights Reserved.