Numpy

Latest version: v2.2.3

Safety actively analyzes 711993 Python packages for vulnerabilities to keep your Python projects secure.

Scan your dependencies

Page 18 of 24

1.16.4

Not secure
==========================

The NumPy 1.16.4 release fixes bugs reported against the 1.16.3 release, and
also backports several enhancements from master that seem appropriate for a
release series that is the last to support Python 2.7. The wheels on PyPI are
linked with OpenBLAS v0.3.7-dev, which should fix issues on Skylake series
cpus.

Downstream developers building this release should use Cython >= 0.29.2 and,
if using OpenBLAS, OpenBLAS > v0.3.7. The supported Python versions are 2.7 and
3.5-3.7.


New deprecations
================
Writeable flag of C-API wrapped arrays
--------------------------------------
When an array is created from the C-API to wrap a pointer to data, the only
indication we have of the read-write nature of the data is the ``writeable``
flag set during creation. It is dangerous to force the flag to writeable. In
the future it will not be possible to switch the writeable flag to ``True``
from python. This deprecation should not affect many users since arrays
created in such a manner are very rare in practice and only available through
the NumPy C-API.


Compatibility notes
===================

Potential changes to the random stream
--------------------------------------
Due to bugs in the application of log to random floating point numbers,
the stream may change when sampling from ``np.random.beta``, ``np.random.binomial``,
``np.random.laplace``, ``np.random.logistic``, ``np.random.logseries`` or
``np.random.multinomial`` if a 0 is generated in the underlying MT19937 random stream.
There is a 1 in :math:`10^{53}` chance of this occurring, and so the probability that
the stream changes for any given seed is extremely small. If a 0 is encountered in the
underlying generator, then the incorrect value produced (either ``np.inf``
or ``np.nan``) is now dropped.


Changes
=======

`numpy.lib.recfunctions.structured_to_unstructured` does not squeeze single-field views
---------------------------------------------------------------------------------------
Previously ``structured_to_unstructured(arr[['a']])`` would produce a squeezed
result inconsistent with ``structured_to_unstructured(arr[['a', b']])``. This
was accidental. The old behavior can be retained with
``structured_to_unstructured(arr[['a']]).squeeze(axis=-1)`` or far more simply,
``arr['a']``.


Contributors
============

A total of 10 people contributed to this release. People with a "+" by their
names contributed a patch for the first time.

* Charles Harris
* Eric Wieser
* Dennis Zollo +
* Hunter Damron +
* Jingbei Li +
* Kevin Sheppard
* Matti Picus
* Nicola Soranzo +
* Sebastian Berg
* Tyler Reddy


Pull requests merged
====================

A total of 16 pull requests were merged for this release.

* 13392: BUG: Some PyPy versions lack PyStructSequence_InitType2.
* 13394: MAINT, DEP: Fix deprecated ``assertEquals()``
* 13396: BUG: Fix structured_to_unstructured on single-field types (backport)
* 13549: BLD: Make CI pass again with pytest 4.5
* 13552: TST: Register markers in conftest.py.
* 13559: BUG: Removes ValueError for empty kwargs in arraymultiter_new
* 13560: BUG: Add TypeError to accepted exceptions in crackfortran.
* 13561: BUG: Handle subarrays in descr_to_dtype
* 13562: BUG: Protect generators from log(0.0)
* 13563: BUG: Always return views from structured_to_unstructured when...
* 13564: BUG: Catch stderr when checking compiler version
* 13565: BUG: longdouble(int) does not work
* 13587: BUG: distutils/system_info.py fix missing subprocess import (13523)
* 13620: BUG,DEP: Fix writeable flag setting for arrays without base
* 13641: MAINT: Prepare for the 1.16.4 release.
* 13644: BUG: special case object arrays when printing rel-, abs-error

Checksums
=========

MD5
---

a24c599ae3445d9d085e77ce4d072259 numpy-1.16.4-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
efcfb51254d83060a2af0d30aa1d1b81 numpy-1.16.4-cp27-cp27m-manylinux1_i686.whl
b62eca40cbab3e24c4962e22633d92a5 numpy-1.16.4-cp27-cp27m-manylinux1_x86_64.whl
c96618196f6dfc29f4931a2f6fea44ad numpy-1.16.4-cp27-cp27m-win32.whl
6dd36dfd23338844c1ecac8b92efd938 numpy-1.16.4-cp27-cp27m-win_amd64.whl
52c8e342f110b2fba426fca60b1c2774 numpy-1.16.4-cp27-cp27mu-manylinux1_i686.whl
038f16384a2af6bd3db61dc773ffbe10 numpy-1.16.4-cp27-cp27mu-manylinux1_x86_64.whl
32b18d06069d3d86b8e3193b2f455c15 numpy-1.16.4-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
d6550e24ff69d4a175d278f39f871d39 numpy-1.16.4-cp35-cp35m-manylinux1_i686.whl
07b33ea867cf2657e23dbf93069eff99 numpy-1.16.4-cp35-cp35m-manylinux1_x86_64.whl
cc84f9555a711a2bc867d3b941992a68 numpy-1.16.4-cp35-cp35m-win32.whl
cf671f2b0e651e701472456107c8e644 numpy-1.16.4-cp35-cp35m-win_amd64.whl
1376e801040a91f8b325e827e6d53f91 numpy-1.16.4-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
833f763fb0d69c850fae175c65f7b502 numpy-1.16.4-cp36-cp36m-manylinux1_i686.whl
255ae62cf215e647ee437d432b6511c2 numpy-1.16.4-cp36-cp36m-manylinux1_x86_64.whl
6fcb9a8f601795413ceaf06767caca2d numpy-1.16.4-cp36-cp36m-win32.whl
de4fa9f01692ec94932a289440f18255 numpy-1.16.4-cp36-cp36m-win_amd64.whl
dab4ec8a1c07a7a1a54932c461933992 numpy-1.16.4-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
c1d3c38c67396809c51f5c98aead5e13 numpy-1.16.4-cp37-cp37m-manylinux1_i686.whl
e98fc6a8d90ff7ed26d0ed7faad3aa8d numpy-1.16.4-cp37-cp37m-manylinux1_x86_64.whl
f84869efe5610e6ad6165237c012ea93 numpy-1.16.4-cp37-cp37m-win32.whl
17b46c338d04cb8b4773fb6b02919f2b numpy-1.16.4-cp37-cp37m-win_amd64.whl
6edf7334d04d8e8849ad058ccd3b3803 numpy-1.16.4.tar.gz
74f7d348c55ace4d22d7ad26c65755aa numpy-1.16.4.zip

SHA256
------

b5554368e4ede1856121b0dfa35ce71768102e4aa55e526cb8de7f374ff78722 numpy-1.16.4-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
e8baab1bc7c9152715844f1faca6744f2416929de10d7639ed49555a85549f52 numpy-1.16.4-cp27-cp27m-manylinux1_i686.whl
2a04dda79606f3d2f760384c38ccd3d5b9bb79d4c8126b67aff5eb09a253763e numpy-1.16.4-cp27-cp27m-manylinux1_x86_64.whl
94f5bd885f67bbb25c82d80184abbf7ce4f6c3c3a41fbaa4182f034bba803e69 numpy-1.16.4-cp27-cp27m-win32.whl
7dc253b542bfd4b4eb88d9dbae4ca079e7bf2e2afd819ee18891a43db66c60c7 numpy-1.16.4-cp27-cp27m-win_amd64.whl
0778076e764e146d3078b17c24c4d89e0ecd4ac5401beff8e1c87879043a0633 numpy-1.16.4-cp27-cp27mu-manylinux1_i686.whl
b0348be89275fd1d4c44ffa39530c41a21062f52299b1e3ee7d1c61f060044b8 numpy-1.16.4-cp27-cp27mu-manylinux1_x86_64.whl
52c40f1a4262c896420c6ea1c6fda62cf67070e3947e3307f5562bd783a90336 numpy-1.16.4-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
141c7102f20abe6cf0d54c4ced8d565b86df4d3077ba2343b61a6db996cefec7 numpy-1.16.4-cp35-cp35m-manylinux1_i686.whl
6e4f8d9e8aa79321657079b9ac03f3cf3fd067bf31c1cca4f56d49543f4356a5 numpy-1.16.4-cp35-cp35m-manylinux1_x86_64.whl
d79f18f41751725c56eceab2a886f021d70fd70a6188fd386e29a045945ffc10 numpy-1.16.4-cp35-cp35m-win32.whl
14270a1ee8917d11e7753fb54fc7ffd1934f4d529235beec0b275e2ccf00333b numpy-1.16.4-cp35-cp35m-win_amd64.whl
a89e188daa119ffa0d03ce5123dee3f8ffd5115c896c2a9d4f0dbb3d8b95bfa3 numpy-1.16.4-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
ec31fe12668af687b99acf1567399632a7c47b0e17cfb9ae47c098644ef36797 numpy-1.16.4-cp36-cp36m-manylinux1_i686.whl
27e11c7a8ec9d5838bc59f809bfa86efc8a4fd02e58960fa9c49d998e14332d5 numpy-1.16.4-cp36-cp36m-manylinux1_x86_64.whl
dc2ca26a19ab32dc475dbad9dfe723d3a64c835f4c23f625c2b6566ca32b9f29 numpy-1.16.4-cp36-cp36m-win32.whl
ad3399da9b0ca36e2f24de72f67ab2854a62e623274607e37e0ce5f5d5fa9166 numpy-1.16.4-cp36-cp36m-win_amd64.whl
f58ac38d5ca045a377b3b377c84df8175ab992c970a53332fa8ac2373df44ff7 numpy-1.16.4-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
f12b4f7e2d8f9da3141564e6737d79016fe5336cc92de6814eba579744f65b0a numpy-1.16.4-cp37-cp37m-manylinux1_i686.whl
cbddc56b2502d3f87fda4f98d948eb5b11f36ff3902e17cb6cc44727f2200525 numpy-1.16.4-cp37-cp37m-manylinux1_x86_64.whl
3c26010c1b51e1224a3ca6b8df807de6e95128b0908c7e34f190e7775455b0ca numpy-1.16.4-cp37-cp37m-win32.whl
dd9bcd4f294eb0633bb33d1a74febdd2b9018b8b8ed325f861fffcd2c7660bb8 numpy-1.16.4-cp37-cp37m-win_amd64.whl
a3bccb70ad94091a5b9e2469fabd41ac877c140a6828c2022e35560a2ec0346c numpy-1.16.4.tar.gz
7242be12a58fec245ee9734e625964b97cf7e3f2f7d016603f9e56660ce479c7 numpy-1.16.4.zip

1.16.3

Not secure
==========================

The NumPy 1.16.3 release fixes bugs reported against the 1.16.2 release, and
also backports several enhancements from master that seem appropriate for a
release series that is the last to support Python 2.7. The wheels on PyPI are
linked with OpenBLAS v0.3.4+, which should fix the known threading issues
found in previous OpenBLAS versions.

Downstream developers building this release should use Cython >= 0.29.2 and,
if using OpenBLAS, OpenBLAS > v0.3.4.

The most noticeable change in this release is that unpickling object arrays
when loading ``*.npy`` or ``*.npz`` files now requires an explicit opt-in.
This backwards incompatible change was made in response to
`CVE-2019-6446 <https://nvd.nist.gov/vuln/detail/CVE-2019-6446>`_.


Compatibility notes
===================

Unpickling while loading requires explicit opt-in
-------------------------------------------------
The functions ``np.load``, and ``np.lib.format.read_array`` take an
`allow_pickle` keyword which now defaults to ``False`` in response to
`CVE-2019-6446 <https://nvd.nist.gov/vuln/detail/CVE-2019-6446>`_.


Improvements
============

Covariance in `random.mvnormal` cast to double
----------------------------------------------
This should make the tolerance used when checking the singular values of the
covariance matrix more meaningful.


Changes
=======

``__array_interface__`` offset now works as documented
------------------------------------------------------
The interface may use an ``offset`` value that was previously mistakenly
ignored.


Checksums
=========

MD5
---

7039dd60e2066e8882149a8b8bd6cf2f numpy-1.16.3-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
c03c7365b58deefd03e3c080660d7157 numpy-1.16.3-cp27-cp27m-manylinux1_i686.whl
91900b9172e39c039326c56cf0149e15 numpy-1.16.3-cp27-cp27m-manylinux1_x86_64.whl
b06d87509a2228c5952096cb11c8b007 numpy-1.16.3-cp27-cp27m-win32.whl
88c1e91c6bd3626278b7938f12cafbe2 numpy-1.16.3-cp27-cp27m-win_amd64.whl
98fb024d8d63f056ef7c82e772c4bfa0 numpy-1.16.3-cp27-cp27mu-manylinux1_i686.whl
d2b8da12f0855765e9cd3cc49d9885b9 numpy-1.16.3-cp27-cp27mu-manylinux1_x86_64.whl
ec4f2fd2180fd68647f38a0d4c331dcf numpy-1.16.3-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
7add5c07a1679bfc086d5575be26ccc6 numpy-1.16.3-cp35-cp35m-manylinux1_i686.whl
bd3c27deac470bce5edf6936d08966b8 numpy-1.16.3-cp35-cp35m-manylinux1_x86_64.whl
c6ab529b105181fc846a8245e5e4d048 numpy-1.16.3-cp35-cp35m-win32.whl
1854757b3e127614ae01b0b814762f5c numpy-1.16.3-cp35-cp35m-win_amd64.whl
b23b0727562be62ffd943c7828822da9 numpy-1.16.3-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
93a2a4b48f160ffd1bdd30023b842be2 numpy-1.16.3-cp36-cp36m-manylinux1_i686.whl
453f5996ac600c4085656e82005fb0e5 numpy-1.16.3-cp36-cp36m-manylinux1_x86_64.whl
773f9e76235ab5edd9ef1c083e62ea9f numpy-1.16.3-cp36-cp36m-win32.whl
9ba2467b05eb4471817509cabff1b9a6 numpy-1.16.3-cp36-cp36m-win_amd64.whl
00594b150e69d1776164ffa60d7fdc01 numpy-1.16.3-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
fe3421cbae83004e7feca4d90043e9df numpy-1.16.3-cp37-cp37m-manylinux1_i686.whl
4e907ac7d841018c0a9130ca45d099ee numpy-1.16.3-cp37-cp37m-manylinux1_x86_64.whl
c7e8e9f9ded13b1356e72cd8506df224 numpy-1.16.3-cp37-cp37m-win32.whl
370ec58a5fdfe9e7ffe90857577806c6 numpy-1.16.3-cp37-cp37m-win_amd64.whl
0886e5b5017f08f2b7a624c0b5931e61 numpy-1.16.3.tar.gz
cab84884fba39fbd352550896bf22bfd numpy-1.16.3.zip

SHA256
------

b78a1defedb0e8f6ae1eb55fa6ac74ab42acc4569c3a2eacc2a407ee5d42ebcb numpy-1.16.3-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
0e2eed77804b2a6a88741f8fcac02c5499bba3953ec9c71e8b217fad4912c56c numpy-1.16.3-cp27-cp27m-manylinux1_i686.whl
754a6be26d938e6ca91942804eb209307b73f806a1721176278a6038869a1686 numpy-1.16.3-cp27-cp27m-manylinux1_x86_64.whl
315fa1b1dfc16ae0f03f8fd1c55f23fd15368710f641d570236f3d78af55e340 numpy-1.16.3-cp27-cp27m-win32.whl
80d99399c97f646e873dd8ce87c38cfdbb668956bbc39bc1e6cac4b515bba2a0 numpy-1.16.3-cp27-cp27m-win_amd64.whl
a61255a765b3ac73ee4b110b28fccfbf758c985677f526c2b4b39c48cc4b509d numpy-1.16.3-cp27-cp27mu-manylinux1_i686.whl
88a72c1e45a0ae24d1f249a529d9f71fe82e6fa6a3fd61414b829396ec585900 numpy-1.16.3-cp27-cp27mu-manylinux1_x86_64.whl
54fe3b7ed9e7eb928bbc4318f954d133851865f062fa4bbb02ef8940bc67b5d2 numpy-1.16.3-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
abbd6b1c2ef6199f4b7ca9f818eb6b31f17b73a6110aadc4e4298c3f00fab24e numpy-1.16.3-cp35-cp35m-manylinux1_i686.whl
771147e654e8b95eea1293174a94f34e2e77d5729ad44aefb62fbf8a79747a15 numpy-1.16.3-cp35-cp35m-manylinux1_x86_64.whl
48241759b99d60aba63b0e590332c600fc4b46ad597c9b0a53f350b871ef0634 numpy-1.16.3-cp35-cp35m-win32.whl
b16d88da290334e33ea992c56492326ea3b06233a00a1855414360b77ca72f26 numpy-1.16.3-cp35-cp35m-win_amd64.whl
ab4896a8c910b9a04c0142871d8800c76c8a2e5ff44763513e1dd9d9631ce897 numpy-1.16.3-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
7fde5c2a3a682a9e101e61d97696687ebdba47637611378b4127fe7e47fdf2bf numpy-1.16.3-cp36-cp36m-manylinux1_i686.whl
4b4f2924b36d857cf302aec369caac61e43500c17eeef0d7baacad1084c0ee84 numpy-1.16.3-cp36-cp36m-manylinux1_x86_64.whl
d160e57731fcdec2beda807ebcabf39823c47e9409485b5a3a1db3a8c6ce763e numpy-1.16.3-cp36-cp36m-win32.whl
1f46532afa7b2903bfb1b79becca2954c0a04389d19e03dc73f06b039048ac40 numpy-1.16.3-cp36-cp36m-win_amd64.whl
1c666f04553ef70fda54adf097dbae7080645435fc273e2397f26bbf1d127bbb numpy-1.16.3-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
3d5fcea4f5ed40c3280791d54da3ad2ecf896f4c87c877b113576b8280c59441 numpy-1.16.3-cp37-cp37m-manylinux1_i686.whl
5a8f021c70e6206c317974c93eaaf9bc2b56295b6b1cacccf88846e44a1f33fc numpy-1.16.3-cp37-cp37m-manylinux1_x86_64.whl
cfef82c43b8b29ca436560d51b2251d5117818a8d1fb74a8384a83c096745dad numpy-1.16.3-cp37-cp37m-win32.whl
a4f4460877a16ac73302a9c077ca545498d9fe64e6a81398d8e1a67e4695e3df numpy-1.16.3-cp37-cp37m-win_amd64.whl
adf063a3f87ab89393f5eea0eb903293b112fa0a308e8c594a75ffa585d81d4f numpy-1.16.3.tar.gz
78a6f89da87eeb48014ec652a65c4ffde370c036d780a995edaeb121d3625621 numpy-1.16.3.zip

1.16.2

Not secure
==========================

NumPy 1.16.2 is a quick release fixing several problems encountered on Windows.
The Python versions supported are 2.7 and 3.5-3.7. The Windows problems
addressed are:

- DLL load problems for NumPy wheels on Windows,
- distutils command line parsing on Windows.

There is also a regression fix correcting signed zeros produced by divmod, see
below for details.

Downstream developers building this release should use Cython >= 0.29.2 and, if
using OpenBLAS, OpenBLAS > v0.3.4.

If you are installing using pip, you may encounter a problem with older
installed versions of NumPy that pip did not delete becoming mixed with the
current version, resulting in an ``ImportError``. That problem is particularly
common on Debian derived distributions due to a modified pip. The fix is to
make sure all previous NumPy versions installed by pip have been removed. See
`12736 <https://github.com/numpy/numpy/issues/12736>`__ for discussion of the
issue.


Compatibility notes
===================

Signed zero when using divmod
-----------------------------
Starting in version 1.12.0, numpy incorrectly returned a negatively signed zero
when using the ``divmod`` and ``floor_divide`` functions when the result was
zero. For example:

>>> np.zeros(10)//1
array([-0., -0., -0., -0., -0., -0., -0., -0., -0., -0.])

With this release, the result is correctly returned as a positively signed
zero:

>>> np.zeros(10)//1
array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])


Contributors
============

A total of 5 people contributed to this release. People with a "+" by their
names contributed a patch for the first time.

* Charles Harris
* Eric Wieser
* Matti Picus
* Tyler Reddy
* Tony LaTorre +


Pull requests merged
====================

A total of 7 pull requests were merged for this release.

* 12909: TST: fix vmImage dispatch in Azure
* 12923: MAINT: remove complicated test of multiarray import failure mode
* 13020: BUG: fix signed zero behavior in npy_divmod
* 13026: MAINT: Add functions to parse shell-strings in the platform-native...
* 13028: BUG: Fix regression in parsing of F90 and F77 environment variables
* 13038: BUG: parse shell escaping in extra_compile_args and extra_link_args
* 13041: BLD: Windows absolute path DLL loading

Checksums
=========

MD5
---

a166c7e850f9375552f9950ba95f3a8a numpy-1.16.2-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
cfc866763a75e7cb247c189e141e4506 numpy-1.16.2-cp27-cp27m-manylinux1_i686.whl
0756e1901d81033143ad55583118598e numpy-1.16.2-cp27-cp27m-manylinux1_x86_64.whl
1242a10df37701abe8c8afc59809e1ac numpy-1.16.2-cp27-cp27m-win32.whl
60da6aed692fc96c97efde2daca52d6f numpy-1.16.2-cp27-cp27m-win_amd64.whl
62b92da3423dd59230c9369a43299506 numpy-1.16.2-cp27-cp27mu-manylinux1_i686.whl
5125ec60d3895d89e5d6d71d9e21b349 numpy-1.16.2-cp27-cp27mu-manylinux1_x86_64.whl
15bbe3a9ac6024ac631ed420c04fde47 numpy-1.16.2-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
ca025ce06f5bc7b81627bc5bf523d589 numpy-1.16.2-cp35-cp35m-manylinux1_i686.whl
ca9953287417064b44a47a6ec92c797c numpy-1.16.2-cp35-cp35m-manylinux1_x86_64.whl
f8fa8bda14131b2714c42b775dfde349 numpy-1.16.2-cp35-cp35m-win32.whl
ce7abc3bb59c549ffe3b56984a291eaa numpy-1.16.2-cp35-cp35m-win_amd64.whl
4f26f55f35c58b4228cb3f60cb98f32d numpy-1.16.2-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
ac1e770a95ff3f8a47f74e64bd034768 numpy-1.16.2-cp36-cp36m-manylinux1_i686.whl
990a95c5f6bb34ed5588c996890bf9c7 numpy-1.16.2-cp36-cp36m-manylinux1_x86_64.whl
79bbaffa096bbbaf42c029bf85df5ac2 numpy-1.16.2-cp36-cp36m-win32.whl
83ddd33ccf7a434895ade64199424a07 numpy-1.16.2-cp36-cp36m-win_amd64.whl
ee8c8d67fa75a2c4a733fc491590419a numpy-1.16.2-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
4fce2fe91abe1e8b09232c5aaafa484a numpy-1.16.2-cp37-cp37m-manylinux1_i686.whl
9cac844e1fc29972e63cb80512379805 numpy-1.16.2-cp37-cp37m-manylinux1_x86_64.whl
38d9fccdc6ae4420c9ee5303f1298974 numpy-1.16.2-cp37-cp37m-win32.whl
a1dcfcbe4993d77357bb2213aacf9e82 numpy-1.16.2-cp37-cp37m-win_amd64.whl
4fc754be7ec3e0f80b042d907e99f4ad numpy-1.16.2.tar.gz
ec99ec2763a6be3817675f92b8847d3c numpy-1.16.2.zip

SHA256
------

972ea92f9c1b54cc1c1a3d8508e326c0114aaf0f34996772a30f3f52b73b942f numpy-1.16.2-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
1980f8d84548d74921685f68096911585fee393975f53797614b34d4f409b6da numpy-1.16.2-cp27-cp27m-manylinux1_i686.whl
560ceaa24f971ab37dede7ba030fc5d8fa173305d94365f814d9523ffd5d5916 numpy-1.16.2-cp27-cp27m-manylinux1_x86_64.whl
62be044cd58da2a947b7e7b2252a10b42920df9520fc3d39f5c4c70d5460b8ba numpy-1.16.2-cp27-cp27m-win32.whl
adab43bf657488300d3aeeb8030d7f024fcc86e3a9b8848741ea2ea903e56610 numpy-1.16.2-cp27-cp27m-win_amd64.whl
9f1d4865436f794accdabadc57a8395bd3faa755449b4f65b88b7df65ae05f89 numpy-1.16.2-cp27-cp27mu-manylinux1_i686.whl
fb3c83554f39f48f3fa3123b9c24aecf681b1c289f9334f8215c1d3c8e2f6e5b numpy-1.16.2-cp27-cp27mu-manylinux1_x86_64.whl
6f65e37b5a331df950ef6ff03bd4136b3c0bbcf44d4b8e99135d68a537711b5a numpy-1.16.2-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
d3b3ed87061d2314ff3659bb73896e622252da52558f2380f12c421fbdee3d89 numpy-1.16.2-cp35-cp35m-manylinux1_i686.whl
893f4d75255f25a7b8516feb5766c6b63c54780323b9bd4bc51cdd7efc943c73 numpy-1.16.2-cp35-cp35m-manylinux1_x86_64.whl
3a0bd1edf64f6a911427b608a894111f9fcdb25284f724016f34a84c9a3a6ea9 numpy-1.16.2-cp35-cp35m-win32.whl
2b0b118ff547fecabc247a2668f48f48b3b1f7d63676ebc5be7352a5fd9e85a5 numpy-1.16.2-cp35-cp35m-win_amd64.whl
bd2834d496ba9b1bdda3a6cf3de4dc0d4a0e7be306335940402ec95132ad063d numpy-1.16.2-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
3f25f6c7b0d000017e5ac55977a3999b0b1a74491eacb3c1aa716f0e01f6dcd1 numpy-1.16.2-cp36-cp36m-manylinux1_i686.whl
23cc40313036cffd5d1873ef3ce2e949bdee0646c5d6f375bf7ee4f368db2511 numpy-1.16.2-cp36-cp36m-manylinux1_x86_64.whl
22752cd809272671b273bb86df0f505f505a12368a3a5fc0aa811c7ece4dfd5c numpy-1.16.2-cp36-cp36m-win32.whl
d20c0360940f30003a23c0adae2fe50a0a04f3e48dc05c298493b51fd6280197 numpy-1.16.2-cp36-cp36m-win_amd64.whl
80a41edf64a3626e729a62df7dd278474fc1726836552b67a8c6396fd7e86760 numpy-1.16.2-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
7a78cc4ddb253a55971115f8320a7ce28fd23a065fc33166d601f51760eecfa9 numpy-1.16.2-cp37-cp37m-manylinux1_i686.whl
9f4cd7832b35e736b739be03b55875706c8c3e5fe334a06210f1a61e5c2c8ca5 numpy-1.16.2-cp37-cp37m-manylinux1_x86_64.whl
dc235bf29a406dfda5790d01b998a1c01d7d37f449128c0b1b7d1c89a84fae8b numpy-1.16.2-cp37-cp37m-win32.whl
4061c79ac2230594a7419151028e808239450e676c39e58302ad296232e3c2e8 numpy-1.16.2-cp37-cp37m-win_amd64.whl
8088221e6e27da8d5907729f0bfe798f526836f22cc59ae83a0f867e67416a3e numpy-1.16.2.tar.gz
6c692e3879dde0b67a9dc78f9bfb6f61c666b4562fd8619632d7043fb5b691b0 numpy-1.16.2.zip

1.16.1

Not secure
==========================

The NumPy 1.16.1 release fixes bugs reported against the 1.16.0 release, and
also backports several enhancements from master that seem appropriate for a
release series that is the last to support Python 2.7. The wheels on PyPI are
linked with OpenBLAS v0.3.4+, which should fix the known threading issues
found in previous OpenBLAS versions.

Downstream developers building this release should use Cython >= 0.29.2 and, if
using OpenBLAS, OpenBLAS > v0.3.4.

If you are installing using pip, you may encounter a problem with older
installed versions of NumPy that pip did not delete becoming mixed with the
current version, resulting in an ``ImportError``. That problem is particularly
common on Debian derived distributions due to a modified pip. The fix is to
make sure all previous NumPy versions installed by pip have been removed. See
`12736 <https://github.com/numpy/numpy/issues/12736>`__ for discussion of the
issue. Note that previously this problem resulted in an ``AttributeError``.


Contributors
============

A total of 16 people contributed to this release. People with a "+" by their
names contributed a patch for the first time.

* Antoine Pitrou
* Arcesio Castaneda Medina +
* Charles Harris
* Chris Markiewicz +
* Christoph Gohlke
* Christopher J. Markiewicz +
* Daniel Hrisca +
* EelcoPeacs +
* Eric Wieser
* Kevin Sheppard
* Matti Picus
* OBATA Akio +
* Ralf Gommers
* Sebastian Berg
* Stephan Hoyer
* Tyler Reddy


Enhancements
============

* 12767: ENH: add mm->q floordiv
* 12768: ENH: port np.core.overrides to C for speed
* 12769: ENH: Add np.ctypeslib.as_ctypes_type(dtype), improve `np.ctypeslib.as_ctypes`
* 12773: ENH: add "max difference" messages to np.testing.assert_array_equal...
* 12820: ENH: Add mm->qm divmod
* 12890: ENH: add _dtype_ctype to namespace for freeze analysis


Compatibility notes
===================

* The changed error message emited by array comparison testing functions may
affect doctests. See below for detail.

* Casting from double and single denormals to float16 has been corrected. In
some rare cases, this may result in results being rounded up instead of down,
changing the last bit (ULP) of the result.


New Features
============

divmod operation is now supported for two ``timedelta64`` operands
------------------------------------------------------------------
The divmod operator now handles two ``np.timedelta64`` operands, with
type signature ``mm->qm``.


Improvements
============

Further improvements to ``ctypes`` support in ``np.ctypeslib``
--------------------------------------------------------------
A new ``np.ctypeslib.as_ctypes_type`` function has been added, which can be
used to converts a `dtype` into a best-guess `ctypes` type. Thanks to this
new function, ``np.ctypeslib.as_ctypes`` now supports a much wider range of
array types, including structures, booleans, and integers of non-native
endianness.

Array comparison assertions include maximum differences
-------------------------------------------------------
Error messages from array comparison tests such as
`np.testing.assert_allclose` now include "max absolute difference" and
"max relative difference," in addition to the previous "mismatch" percentage.
This information makes it easier to update absolute and relative error
tolerances.


Changes
=======

``timedelta64 % 0`` behavior adjusted to return ``NaT``
-------------------------------------------------------
The modulus operation with two ``np.timedelta64`` operands now returns
``NaT`` in the case of division by zero, rather than returning zero




Checksums
=========

MD5
---

456aae0a43311da1570a53baef7f5620 numpy-1.16.1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
8f39da654cd27a96877955a2fbf3883f numpy-1.16.1-cp27-cp27m-manylinux1_i686.whl
add6fcaf9b5007dca2fc966b918d585e numpy-1.16.1-cp27-cp27m-manylinux1_x86_64.whl
b2193c7af769169229eef8d2371929c2 numpy-1.16.1-cp27-cp27m-win32.whl
3a7eba56bcebc52b223d63ab4b9bf029 numpy-1.16.1-cp27-cp27m-win_amd64.whl
3bc676163ce4d526c8305bc889f0594d numpy-1.16.1-cp27-cp27mu-manylinux1_i686.whl
55ccd6d343be1e16e70159714ac74848 numpy-1.16.1-cp27-cp27mu-manylinux1_x86_64.whl
15bebbeddc5924243a010680e184b6e8 numpy-1.16.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
86aacbea051b7542a8bd3486d2fa79cd numpy-1.16.1-cp35-cp35m-manylinux1_i686.whl
486ce91fd66ec19044d8faa7d00e619b numpy-1.16.1-cp35-cp35m-manylinux1_x86_64.whl
f2665475de0378467d88e6d80ac47f09 numpy-1.16.1-cp35-cp35m-win32.whl
42b9d99bf4b03e3e9ae7aee8cbdff97c numpy-1.16.1-cp35-cp35m-win_amd64.whl
269c80fde767b2b65abec775171aebed numpy-1.16.1-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
a9561d8a38ee7d52126dfe779429036d numpy-1.16.1-cp36-cp36m-manylinux1_i686.whl
2d146e75063ce8aaa255ea06d6647fa2 numpy-1.16.1-cp36-cp36m-manylinux1_x86_64.whl
3a422881207202055c7530d3c4a63cc0 numpy-1.16.1-cp36-cp36m-win32.whl
641af9183978922d4eb610c0df1abb4a numpy-1.16.1-cp36-cp36m-win_amd64.whl
8eca0834ffce217b61633a2ba16f9e98 numpy-1.16.1-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
df387b8e8ee398f2a6a46b18981ce7e3 numpy-1.16.1-cp37-cp37m-manylinux1_i686.whl
daaac731bf53b6f90bf381e30c0b0e35 numpy-1.16.1-cp37-cp37m-manylinux1_x86_64.whl
7443f622e549bf116ca561c1db6a4491 numpy-1.16.1-cp37-cp37m-win32.whl
18b7d994de469d38e26c75c27898fa4f numpy-1.16.1-cp37-cp37m-win_amd64.whl
ae2e65a2f2d7c80a3264fb038157895c numpy-1.16.1.tar.gz
dafda51934f645d888866f98424521ae numpy-1.16.1.zip

SHA256
------

e9c88f173d31909d881a60f08a8494e63f1aff2a4052476b24d4f50e82c47e24 numpy-1.16.1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
69c152f7c11bf3b4fc11bc4cc62eb0334371c0db6844ebace43b7c815b602805 numpy-1.16.1-cp27-cp27m-manylinux1_i686.whl
ae602ba425fb2b074e16d125cdce4f0194903da935b2e7fe284ebecca6d92e76 numpy-1.16.1-cp27-cp27m-manylinux1_x86_64.whl
4341a39fc085f31a583be505eabf00e17c619b469fef78dc7e8241385bfddaa4 numpy-1.16.1-cp27-cp27m-win32.whl
a863957192855c4c57f60a75a1ac06ce5362ad18506d362dd807e194b4baf3ce numpy-1.16.1-cp27-cp27m-win_amd64.whl
62784b35df7de7ca4d0d81c5b6af5983f48c5cdef32fc3635b445674e56e3266 numpy-1.16.1-cp27-cp27mu-manylinux1_i686.whl
6ccfdcefd287f252cf1ea7a3f1656070da330c4a5658e43ad223269165cdf977 numpy-1.16.1-cp27-cp27mu-manylinux1_x86_64.whl
8bbee788d82c0ac656536de70e817af09b7694f5326b0ef08e5c1014fcb96bb3 numpy-1.16.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
f69dde0c5a137d887676a8129373e44366055cf19d1b434e853310c7a1e68f93 numpy-1.16.1-cp35-cp35m-manylinux1_i686.whl
575cefd28d3e0da85b0864506ae26b06483ee4a906e308be5a7ad11083f9d757 numpy-1.16.1-cp35-cp35m-manylinux1_x86_64.whl
45080f065dcaa573ebecbfe13cdd86e8c0a68c4e999aa06bd365374ea7137706 numpy-1.16.1-cp35-cp35m-win32.whl
34dd4922aab246c39bf5df03ca653d6265e65971deca6784c956bf356bca6197 numpy-1.16.1-cp35-cp35m-win_amd64.whl
c2c39d69266621dd7464e2bb740d6eb5abc64ddc339cc97aa669f3bb4d75c103 numpy-1.16.1-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
392e2ea22b41a22c0289a88053204b616181288162ba78e6823e1760309d5277 numpy-1.16.1-cp36-cp36m-manylinux1_i686.whl
7298fbd73c0b3eff1d53dc9b9bdb7add8797bb55eeee38c8ccd7906755ba28af numpy-1.16.1-cp36-cp36m-manylinux1_x86_64.whl
384e2dfa03da7c8d54f8f934f61b6a5e4e1ebb56a65b287567629d6c14578003 numpy-1.16.1-cp36-cp36m-win32.whl
2b0cca1049bd39d1879fa4d598624cafe82d35529c72de1b3d528d68031cdd95 numpy-1.16.1-cp36-cp36m-win_amd64.whl
b13faa258b20fa66d29011f99fdf498641ca74a0a6d9266bc27d83c70fea4a6a numpy-1.16.1-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
485cb1eb4c9962f4cd042fed9424482ec1d83fee5dc2ef3f2552ac47852cb259 numpy-1.16.1-cp37-cp37m-manylinux1_i686.whl
0cdbbaa30ae69281b18dd995d3079c4e552ad6d5426977f66b9a2a95f11f552a numpy-1.16.1-cp37-cp37m-manylinux1_x86_64.whl
79463d918d1bf3aeb9186e3df17ddb0baca443f41371df422f99ee94f4f2bbfe numpy-1.16.1-cp37-cp37m-win32.whl
f1a29267ac29fff0913de0f11f3a9edfcd3f39595f467026c29376fad243ebe3 numpy-1.16.1-cp37-cp37m-win_amd64.whl
748369f4d5f60caf93e1d86cb22ad7fc5f82693f18804638f22bc55df27792ec numpy-1.16.1.tar.gz
31d3fe5b673e99d33d70cfee2ea8fe8dccd60f265c3ed990873a88647e3dd288 numpy-1.16.1.zip

1.16.0

Not secure
==========================

This NumPy release is the last one to support Python 2.7 and will be maintained
as a long term release with bug fixes until 2020. Support for Python 3.4 been
dropped, the supported Python versions are 2.7 and 3.5-3.7. The wheels on PyPI
are linked with OpenBLAS v0.3.4+, which should fix the known threading issues
found in previous OpenBLAS versions.

Downstream developers building this release should use Cython >= 0.29 and, if
using OpenBLAS, OpenBLAS > v0.3.4.

This release has seen a lot of refactoring and features many bug fixes, improved
code organization, and better cross platform compatibility. Not all of these
improvements will be visible to users, but they should help make maintenance
easier going forward.


Highlights
==========

* Experimental support for overriding numpy functions,
see ``__array_function__`` below.

* The ``matmul`` function is now a ufunc. This provides better
performance and allows overriding with ``__array_ufunc__``.

* Improved support for the ARM and POWER architectures.

* Improved support for AIX and PyPy.

* Improved interop with ctypes.

* Improved support for PEP 3118.



New functions
=============

* New functions added to the `numpy.lib.recfuntions` module to ease the
structured assignment changes:

* ``assign_fields_by_name``
* ``structured_to_unstructured``
* ``unstructured_to_structured``
* ``apply_along_fields``
* ``require_fields``

See the user guide at <https://docs.scipy.org/doc/numpy/user/basics.rec.html>
for more info.


New deprecations
================

* The type dictionaries `numpy.core.typeNA` and `numpy.core.sctypeNA` are
deprecated. They were buggy and not documented and will be removed in the
1.18 release. Use`numpy.sctypeDict` instead.

* The `numpy.asscalar` function is deprecated. It is an alias to the more
powerful `numpy.ndarray.item`, not tested, and fails for scalars.

* The `numpy.set_array_ops` and `numpy.get_array_ops` functions are deprecated.
As part of `NEP 15`, they have been deprecated along with the C-API functions
:c:func:`PyArray_SetNumericOps` and :c:func:`PyArray_GetNumericOps`. Users
who wish to override the inner loop functions in built-in ufuncs should use
:c:func:`PyUFunc_ReplaceLoopBySignature`.

* The `numpy.unravel_index` keyword argument ``dims`` is deprecated, use
``shape`` instead.

* The `numpy.histogram` ``normed`` argument is deprecated. It was deprecated
previously, but no warning was issued.

* The ``positive`` operator (``+``) applied to non-numerical arrays is
deprecated. See below for details.

* Passing an iterator to the stack functions is deprecated


Expired deprecations
====================

* NaT comparisons now return ``False`` without a warning, finishing a
deprecation cycle begun in NumPy 1.11.

* ``np.lib.function_base.unique`` was removed, finishing a deprecation cycle
begun in NumPy 1.4. Use `numpy.unique` instead.

* multi-field indexing now returns views instead of copies, finishing a
deprecation cycle begun in NumPy 1.7. The change was previously attempted in
NumPy 1.14 but reverted until now.

* ``np.PackageLoader`` and ``np.pkgload`` have been removed. These were
deprecated in 1.10, had no tests, and seem to no longer work in 1.15.


Future changes
==============

* NumPy 1.17 will drop support for Python 2.7.


Compatibility notes
===================

f2py script on Windows
----------------------
On Windows, the installed script for running f2py is now an ``.exe`` file
rather than a ``*.py`` file and should be run from the command line as ``f2py``
whenever the ``Scripts`` directory is in the path. Running ``f2py`` as a module
``python -m numpy.f2py [...]`` will work without path modification in any
version of NumPy.

NaT comparisons
---------------
Consistent with the behavior of NaN, all comparisons other than inequality
checks with datetime64 or timedelta64 NaT ("not-a-time") values now always
return ``False``, and inequality checks with NaT now always return ``True``.
This includes comparisons beteween NaT values. For compatibility with the
old behavior, use ``np.isnat`` to explicitly check for NaT or convert
datetime64/timedelta64 arrays with ``.astype(np.int64)`` before making
comparisons.

complex64/128 alignment has changed
-----------------------------------
The memory alignment of complex types is now the same as a C-struct composed of
two floating point values, while before it was equal to the size of the type.
For many users (for instance on x64/unix/gcc) this means that complex64 is now
4-byte aligned instead of 8-byte aligned. An important consequence is that
aligned structured dtypes may now have a different size. For instance,
``np.dtype('c8,u1', align=True)`` used to have an itemsize of 16 (on x64/gcc)
but now it is 12.

More in detail, the complex64 type now has the same alignment as a C-struct
``struct {float r, i;}``, according to the compiler used to compile numpy, and
similarly for the complex128 and complex256 types.

nd_grid __len__ removal
-----------------------
``len(np.mgrid)`` and ``len(np.ogrid)`` are now considered nonsensical
and raise a ``TypeError``.

``np.unravel_index`` now accepts ``shape`` keyword argument
-----------------------------------------------------------
Previously, only the ``dims`` keyword argument was accepted
for specification of the shape of the array to be used
for unraveling. ``dims`` remains supported, but is now deprecated.

multi-field views return a view instead of a copy
-------------------------------------------------
Indexing a structured array with multiple fields, e.g., ``arr[['f1', 'f3']]``,
returns a view into the original array instead of a copy. The returned view
will often have extra padding bytes corresponding to intervening fields in the
original array, unlike before, which will affect code such as
``arr[['f1', 'f3']].view('float64')``. This change has been planned since numpy
1.7. Operations hitting this path have emitted ``FutureWarnings`` since then.
Additional ``FutureWarnings`` about this change were added in 1.12.

To help users update their code to account for these changes, a number of
functions have been added to the ``numpy.lib.recfunctions`` module which
safely allow such operations. For instance, the code above can be replaced
with ``structured_to_unstructured(arr[['f1', 'f3']], dtype='float64')``.
See the "accessing multiple fields" section of the
`user guide <https://docs.scipy.org/doc/numpy/user/basics.rec.html#accessing-multiple-fields>`__.


C API changes
=============

The :c:data:`NPY_API_VERSION` was incremented to 0x0000D, due to the addition
of:

* :c:member:`PyUFuncObject.core_dim_flags`
* :c:member:`PyUFuncObject.core_dim_sizes`
* :c:member:`PyUFuncObject.identity_value`
* :c:function:`PyUFunc_FromFuncAndDataAndSignatureAndIdentity`


New Features
============

Integrated squared error (ISE) estimator added to ``histogram``
---------------------------------------------------------------
This method (``bins='stone'``) for optimizing the bin number is a
generalization of the Scott's rule. The Scott's rule assumes the distribution
is approximately Normal, while the ISE_ is a non-parametric method based on
cross-validation.

.. _ISE: https://en.wikipedia.org/wiki/Histogram#Minimizing_cross-validation_estimated_squared_error

``max_rows`` keyword added for ``np.loadtxt``
---------------------------------------------
New keyword ``max_rows`` in `numpy.loadtxt` sets the maximum rows of the
content to be read after ``skiprows``, as in `numpy.genfromtxt`.

modulus operator support added for ``np.timedelta64`` operands
--------------------------------------------------------------
The modulus (remainder) operator is now supported for two operands
of type ``np.timedelta64``. The operands may have different units
and the return value will match the type of the operands.


Improvements
============

no-copy pickling of numpy arrays
--------------------------------
Up to protocol 4, numpy array pickling created 2 spurious copies of the data
being serialized. With pickle protocol 5, and the ``PickleBuffer`` API, a
large variety of numpy arrays can now be serialized without any copy using
out-of-band buffers, and with one less copy using in-band buffers. This
results, for large arrays, in an up to 66% drop in peak memory usage.

build shell independence
------------------------
NumPy builds should no longer interact with the host machine
shell directly. ``exec_command`` has been replaced with
``subprocess.check_output`` where appropriate.

`np.polynomial.Polynomial` classes render in LaTeX in Jupyter notebooks
-----------------------------------------------------------------------
When used in a front-end that supports it, `Polynomial` instances are now
rendered through LaTeX. The current format is experimental, and is subject to
change.

``randint`` and ``choice`` now work on empty distributions
----------------------------------------------------------
Even when no elements needed to be drawn, ``np.random.randint`` and
``np.random.choice`` raised an error when the arguments described an empty
distribution. This has been fixed so that e.g.
``np.random.choice([], 0) == np.array([], dtype=float64)``.

``linalg.lstsq``, ``linalg.qr``, and ``linalg.svd`` now work with empty arrays
------------------------------------------------------------------------------
Previously, a ``LinAlgError`` would be raised when an empty matrix/empty
matrices (with zero rows and/or columns) is/are passed in. Now outputs of
appropriate shapes are returned.

Chain exceptions to give better error messages for invalid PEP3118 format strings
---------------------------------------------------------------------------------
This should help track down problems.

Einsum optimization path updates and efficiency improvements
------------------------------------------------------------
Einsum was synchronized with the current upstream work.

`numpy.angle` and `numpy.expand_dims` now work on ``ndarray`` subclasses
------------------------------------------------------------------------
In particular, they now work for masked arrays.

``NPY_NO_DEPRECATED_API`` compiler warning suppression
------------------------------------------------------
Setting ``NPY_NO_DEPRECATED_API`` to a value of 0 will suppress the current compiler
warnings when the deprecated numpy API is used.

``np.diff`` Added kwargs prepend and append
-------------------------------------------
New kwargs ``prepend`` and ``append``, allow for values to be inserted on
either end of the differences. Similar to options for `ediff1d`. Now the
inverse of `cumsum` can be obtained easily via ``prepend=0``.

ARM support updated
-------------------
Support for ARM CPUs has been updated to accommodate 32 and 64 bit targets,
and also big and little endian byte ordering. AARCH32 memory alignment issues
have been addressed. CI testing has been expanded to include AARCH64 targets
via the services of shippable.com.

Appending to build flags
------------------------
`numpy.distutils` has always overridden rather than appended to `LDFLAGS` and
other similar such environment variables for compiling Fortran extensions.
Now, if the `NPY_DISTUTILS_APPEND_FLAGS` environment variable is set to 1, the
behavior will be appending. This applied to: `LDFLAGS`, `F77FLAGS`,
`F90FLAGS`, `FREEFLAGS`, `FOPT`, `FDEBUG`, and `FFLAGS`. See gh-11525 for more
details.

Generalized ufunc signatures now allow fixed-size dimensions
------------------------------------------------------------
By using a numerical value in the signature of a generalized ufunc, one can
indicate that the given function requires input or output to have dimensions
with the given size. E.g., the signature of a function that converts a polar
angle to a two-dimensional cartesian unit vector would be ``()->(2)``; that
for one that converts two spherical angles to a three-dimensional unit vector
would be ``(),()->(3)``; and that for the cross product of two
three-dimensional vectors would be ``(3),(3)->(3)``.

Note that to the elementary function these dimensions are not treated any
differently from variable ones indicated with a name starting with a letter;
the loop still is passed the corresponding size, but it can now count on that
size being equal to the fixed one given in the signature.

Generalized ufunc signatures now allow flexible dimensions
----------------------------------------------------------
Some functions, in particular numpy's implementation of ` as ``matmul``,
are very similar to generalized ufuncs in that they operate over core
dimensions, but one could not present them as such because they were able to
deal with inputs in which a dimension is missing. To support this, it is now
allowed to postfix a dimension name with a question mark to indicate that the
dimension does not necessarily have to be present.

With this addition, the signature for ``matmul`` can be expressed as
``(m?,n),(n,p?)->(m?,p?)``. This indicates that if, e.g., the second operand
has only one dimension, for the purposes of the elementary function it will be
treated as if that input has core shape ``(n, 1)``, and the output has the
corresponding core shape of ``(m, 1)``. The actual output array, however, has
the flexible dimension removed, i.e., it will have shape ``(..., m)``.
Similarly, if both arguments have only a single dimension, the inputs will be
presented as having shapes ``(1, n)`` and ``(n, 1)`` to the elementary
function, and the output as ``(1, 1)``, while the actual output array returned
will have shape ``()``. In this way, the signature allows one to use a
single elementary function for four related but different signatures,
``(m,n),(n,p)->(m,p)``, ``(n),(n,p)->(p)``, ``(m,n),(n)->(m)`` and
``(n),(n)->()``.

``np.clip`` and the ``clip`` method check for memory overlap
------------------------------------------------------------
The ``out`` argument to these functions is now always tested for memory overlap
to avoid corrupted results when memory overlap occurs.

New value ``unscaled`` for option ``cov`` in ``np.polyfit''
-----------------------------------------------------------
A further possible value has been added to the ``cov`` parameter of the
``np.polyfit`` function. With ``cov='unscaled'`` the scaling of the covariance
matrix is disabled completely (similar to setting ``absolute_sigma=True'' in
``scipy.optimize.curve_fit``). This would be useful in occasions, where the
weights are given by 1/sigma with sigma being the (known) standard errors of
(Gaussian distributed) data points, in which case the unscaled matrix is
already a correct estimate for the covariance matrix.

Detailed docstrings for scalar numeric types
--------------------------------------------
The ``help`` function, when applied to numeric types such as `numpy.intc`,
`numpy.int_`, and `numpy.longlong`, now lists all of the aliased names for that
type, distinguishing between platform -dependent and -independent aliases.

``__module__`` attribute now points to public modules
-----------------------------------------------------
The ``__module__`` attribute on most NumPy functions has been updated to refer
to the preferred public module from which to access a function, rather than
the module in which the function happens to be defined. This produces more
informative displays for functions in tools such as IPython, e.g., instead of
``<function 'numpy.core.fromnumeric.sum'>`` you now see
``<function 'numpy.sum'>``.

Large allocations marked as suitable for transparent hugepages
--------------------------------------------------------------
On systems that support transparent hugepages over the madvise system call
numpy now marks that large memory allocations can be backed by hugepages which
reduces page fault overhead and can in some fault heavy cases improve
performance significantly. On Linux the setting for huge pages to be used,
`/sys/kernel/mm/transparent_hugepage/enabled`, must be at least `madvise`.
Systems which already have it set to `always` will not see much difference as
the kernel will automatically use huge pages where appropriate.

Users of very old Linux kernels (~3.x and older) should make sure that
`/sys/kernel/mm/transparent_hugepage/defrag` is not set to `always` to avoid
performance problems due concurrency issues in the memory defragmentation.

Alpine Linux (and other musl c library distros) support
-------------------------------------------------------
We now default to use `fenv.h` for floating point status error reporting.
Previously we had a broken default that sometimes would not report underflow,
overflow, and invalid floating point operations. Now we can support non-glibc
distrubutions like Alpine Linux as long as they ship `fenv.h`.

Speedup ``np.block`` for large arrays
-------------------------------------
Large arrays (greater than ``512 * 512``) now use a blocking algorithm based on
copying the data directly into the appropriate slice of the resulting array.
This results in significant speedups for these large arrays, particularly for
arrays being blocked along more than 2 dimensions.

``arr.ctypes.data_as(...)`` holds a reference to arr
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Previously the caller was responsible for keeping the array alive for the
lifetime of the pointer.

Speedup ``np.take`` for read-only arrays
----------------------------------------
The implementation of ``np.take`` no longer makes an unnecessary copy of the
source array when its ``writeable`` flag is set to ``False``.

Support path-like objects for more functions
--------------------------------------------
The ``np.core.records.fromfile`` function now supports ``pathlib.Path``
and other path-like objects in addition to a file object. Furthermore, the
``np.load`` function now also supports path-like objects when using memory
mapping (``mmap_mode`` keyword argument).

Better behaviour of ufunc identities during reductions
------------------------------------------------------
Universal functions have an ``.identity`` which is used when ``.reduce`` is
called on an empty axis.

As of this release, the logical binary ufuncs, `logical_and`, `logical_or`,
and `logical_xor`, now have ``identity`` s of type `bool`, where previously they
were of type `int`. This restores the 1.14 behavior of getting ``bool`` s when
reducing empty object arrays with these ufuncs, while also keeping the 1.15
behavior of getting ``int`` s when reducing empty object arrays with arithmetic
ufuncs like ``add`` and ``multiply``.

Additionally, `logaddexp` now has an identity of ``-inf``, allowing it to be
called on empty sequences, where previously it could not be.

This is possible thanks to the new
:c:function:`PyUFunc_FromFuncAndDataAndSignatureAndIdentity`, which allows
arbitrary values to be used as identities now.

Improved conversion from ctypes objects
---------------------------------------
Numpy has always supported taking a value or type from ``ctypes`` and
converting it into an array or dtype, but only behaved correctly for simpler
types. As of this release, this caveat is lifted - now:

* The ``_pack_`` attribute of ``ctypes.Structure``, used to emulate C's
``__attribute__((packed))``, is respected.
* Endianness of all ctypes objects is preserved
* ``ctypes.Union`` is supported
* Non-representable constructs raise exceptions, rather than producing
dangerously incorrect results:

* Bitfields are no longer interpreted as sub-arrays
* Pointers are no longer replaced with the type that they point to

A new ``ndpointer.contents`` member
-----------------------------------
This matches the ``.contents`` member of normal ctypes arrays, and can be used
to construct an ``np.array`` around the pointers contents. This replaces
``np.array(some_nd_pointer)``, which stopped working in 1.15. As a side effect
of this change, ``ndpointer`` now supports dtypes with overlapping fields and
padding.

``matmul`` is now a ``ufunc``
-----------------------------
`numpy.matmul` is now a ufunc which means that both the function and the
``__matmul__`` operator can now be overridden by ``__array_ufunc__``. Its
implementation has also changed. It uses the same BLAS routines as
`numpy.dot`, ensuring its performance is similar for large matrices.

Start and stop arrays for ``linspace``, ``logspace`` and ``geomspace``
----------------------------------------------------------------------
These functions used to be limited to scalar stop and start values, but can
now take arrays, which will be properly broadcast and result in an output
which has one axis prepended. This can be used, e.g., to obtain linearly
interpolated points between sets of points.

CI extended with additional services
------------------------------------
We now use additional free CI services, thanks to the companies that provide:

* Codecoverage testing via codecov.io
* Arm testing via shippable.com
* Additional test runs on azure pipelines

These are in addition to our continued use of travis, appveyor (for wheels) and
LGTM


Changes
=======

Comparison ufuncs will now error rather than return NotImplemented
------------------------------------------------------------------
Previously, comparison ufuncs such as ``np.equal`` would return
`NotImplemented` if their arguments had structured dtypes, to help comparison
operators such as ``__eq__`` deal with those. This is no longer needed, as the
relevant logic has moved to the comparison operators proper (which thus do
continue to return `NotImplemented` as needed). Hence, like all other ufuncs,
the comparison ufuncs will now error on structured dtypes.

Positive will now raise a deprecation warning for non-numerical arrays
----------------------------------------------------------------------
Previously, ``+array`` unconditionally returned a copy. Now, it will
raise a ``DeprecationWarning`` if the array is not numerical (i.e.,
if ``np.positive(array)`` raises a ``TypeError``. For ``ndarray``
subclasses that override the default ``__array_ufunc__`` implementation,
the ``TypeError`` is passed on.

``NDArrayOperatorsMixin`` now implements matrix multiplication
--------------------------------------------------------------
Previously, ``np.lib.mixins.NDArrayOperatorsMixin`` did not implement the
special methods for Python's matrix multiplication operator (`). This has
changed now that ``matmul`` is a ufunc and can be overridden using
``__array_ufunc__``.

The scaling of the covariance matrix in ``np.polyfit`` is different
-------------------------------------------------------------------
So far, ``np.polyfit`` used a non-standard factor in the scaling of the the
covariance matrix. Namely, rather than using the standard ``chisq/(M-N)``, it
scaled it with ``chisq/(M-N-2)`` where M is the number of data points and N is the
number of parameters. This scaling is inconsistent with other fitting programs
such as e.g. ``scipy.optimize.curve_fit`` and was changed to ``chisq/(M-N)``.

``maximum`` and ``minimum`` no longer emit warnings
---------------------------------------------------
As part of code introduced in 1.10, ``float32`` and ``float64`` set invalid
float status when a Nan is encountered in `numpy.maximum` and `numpy.minimum`,
when using SSE2 semantics. This caused a `RuntimeWarning` to sometimes be
emitted. In 1.15 we fixed the inconsistencies which caused the warnings to
become more conspicuous. Now no warnings will be emitted.

Umath and multiarray c-extension modules merged into a single module
--------------------------------------------------------------------
The two modules were merged, according to `NEP 15`_. Previously `np.core.umath`
and `np.core.multiarray` were seperate c-extension modules. They are now python
wrappers to the single `np.core/_multiarray_math` c-extension module.

.. _`NEP 15` : http://www.numpy.org/neps/nep-0015-merge-multiarray-umath.html

``getfield`` validity checks extended
-------------------------------------
`numpy.ndarray.getfield` now checks the dtype and offset arguments to prevent
accessing invalid memory locations.

NumPy functions now support overrides with ``__array_function__``
-----------------------------------------------------------------
It is now possible to override the implementation of almost all NumPy functions
on non-NumPy arrays by defining a ``__array_function__`` method, as described
in `NEP 18`_. The sole exception are functions for explicitly casting to NumPy
arrays such as ``np.array``. As noted in the NEP, this feature remains
experimental and the details of how to implement such overrides may change in
the future.

.. _`NEP 15` : http://www.numpy.org/neps/nep-0015-merge-multiarray-umath.html
.. _`NEP 18` : http://www.numpy.org/neps/nep-0018-array-function-protocol.html

Arrays based off readonly buffers cannot be set ``writeable``
-------------------------------------------------------------
We now disallow setting the ``writeable`` flag True on arrays created
from ``fromstring(readonly-buffer)``.

Checksums
=========

MD5
---

4cfd167c553c15cbffacad828e37fa1b numpy-1.16.0rc1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
fc7acd76d8f2f5b69af7b14435ff6e5f numpy-1.16.0rc1-cp27-cp27m-manylinux1_i686.whl
d3d05c0ade6bd5ed26c0d2f045cc2545 numpy-1.16.0rc1-cp27-cp27m-manylinux1_x86_64.whl
78acdc2844f3711e670b5b0d6112fd46 numpy-1.16.0rc1-cp27-cp27m-win32.whl
e24b99a1b2584e5c89a8bb25b755a229 numpy-1.16.0rc1-cp27-cp27m-win_amd64.whl
28df62b2e4162a0be66a65b0405d2974 numpy-1.16.0rc1-cp27-cp27mu-manylinux1_i686.whl
443d09ffded8b4f52d4158e7e53d5e02 numpy-1.16.0rc1-cp27-cp27mu-manylinux1_x86_64.whl
4709d3b87b56e8d706baf998a746baa0 numpy-1.16.0rc1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
e3895e61d89db8219e01e263f342c91b numpy-1.16.0rc1-cp35-cp35m-manylinux1_i686.whl
b0e7842ece6d07568341ec8c4e850466 numpy-1.16.0rc1-cp35-cp35m-manylinux1_x86_64.whl
4f5de37348d5ab67661277a713e26317 numpy-1.16.0rc1-cp35-cp35m-win32.whl
a629f86585a6a7f22afdcc953df543b5 numpy-1.16.0rc1-cp35-cp35m-win_amd64.whl
69860375de9a74698322e9608d039e24 numpy-1.16.0rc1-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
d75b3ec49d27915ea9ee0866a45b1606 numpy-1.16.0rc1-cp36-cp36m-manylinux1_i686.whl
b103bc43115f9c5760e0f86de7191682 numpy-1.16.0rc1-cp36-cp36m-manylinux1_x86_64.whl
b3c6cbd582b502b6069b9a85a4b52d3f numpy-1.16.0rc1-cp36-cp36m-win32.whl
efde86e04767a20af7d7b671aa43a74e numpy-1.16.0rc1-cp36-cp36m-win_amd64.whl
0da1b6b0fddea9eebcc6d06c161b109d numpy-1.16.0rc1-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
439fefdac5de6e80c0213aa5dd3aed83 numpy-1.16.0rc1-cp37-cp37m-manylinux1_i686.whl
a238bdbdaece30f8bdd68cb17b8fc0f3 numpy-1.16.0rc1-cp37-cp37m-manylinux1_x86_64.whl
f27e4791cc0696451572350a64fc3509 numpy-1.16.0rc1-cp37-cp37m-win32.whl
b90d6fefb38650b5a343171dfabe1e38 numpy-1.16.0rc1-cp37-cp37m-win_amd64.whl
acfd5138cd9ba5a0ee434c112866e1d1 numpy-1.16.0rc1.tar.gz
f9a9356b066174b1375d509d7fdf03a6 numpy-1.16.0rc1.zip

SHA256
------

1d94a5649fb8412784d9edda539b266801ee87fc89b812ebf5ec0fdab96444a3 numpy-1.16.0rc1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
f901fa2232562abf9250e4a86d2b50f008b2fe0f9d91bc1ca6a3ffd17c81d2a4 numpy-1.16.0rc1-cp27-cp27m-manylinux1_i686.whl
4c725b6557eb043b963a8b4b5da560fec4500b5e2a9c4794adb408de838aeb94 numpy-1.16.0rc1-cp27-cp27m-manylinux1_x86_64.whl
867ed40b1bebb50f8b060a1b2a76c227a436a7d9fc73bf873dbc8e79862a56af numpy-1.16.0rc1-cp27-cp27m-win32.whl
70279fa434b878692c15bdb9b3376765ff63a91d5f1f6e5973eb34b0bddd7aa5 numpy-1.16.0rc1-cp27-cp27m-win_amd64.whl
c5db80fc344977d3df5435ded1a8ce05719283aeacaaf60a818a4baf63c756e4 numpy-1.16.0rc1-cp27-cp27mu-manylinux1_i686.whl
026a3b7c46e01a736bdf27853ce2a4f56a4feb3147ff879dbd463ed4da0a511b numpy-1.16.0rc1-cp27-cp27mu-manylinux1_x86_64.whl
2a17337e1980e753d4bac3dd4859bc1300e995ddf05fc09828b8d60d932ce4d3 numpy-1.16.0rc1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
0efbe5f61044e7b0ed5583380aca26995c10cd625266f09b2d6ccef243499f2e numpy-1.16.0rc1-cp35-cp35m-manylinux1_i686.whl
60dd924257899a44d55a7e548aba2a41c12e5d963b900ec138e0b15f3e6f3ef5 numpy-1.16.0rc1-cp35-cp35m-manylinux1_x86_64.whl
078efe4fc53079acb4a70f378a1fbf97f22a1f864321788ae1fd9ca4c952bb10 numpy-1.16.0rc1-cp35-cp35m-win32.whl
3dd416deba0e6b734e653961354ac2bee2888c832835304853b14299a8c3169a numpy-1.16.0rc1-cp35-cp35m-win_amd64.whl
ff9859fffc4a03b196d742fe683684921e3d3819aa97d935b92d573b7ff0bf7b numpy-1.16.0rc1-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
ad0a948011cafe20323944aea7570cea77c3659cf970ee4e94993a75fdf1bf3a numpy-1.16.0rc1-cp36-cp36m-manylinux1_i686.whl
b53714c56ee9a1f1b46f7558ca1aa005704dba35334ff61288390be01b96b3b0 numpy-1.16.0rc1-cp36-cp36m-manylinux1_x86_64.whl
e299aaed551f16c3822e261adc6d5685ad7067536ae6af00e53837b637dc1270 numpy-1.16.0rc1-cp36-cp36m-win32.whl
9c76c0f114b729606081b0e4c49d2f7887946004872576f51b8bd50461f4110b numpy-1.16.0rc1-cp36-cp36m-win_amd64.whl
bcf57e4694e32d7ebb9402cd3fcd9c4fd913a29f372fbefc8edd675a32262558 numpy-1.16.0rc1-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
c953969e4b9a65998be1d7e895613be77bd42d438b54f9ce8c2453616ca8f5c9 numpy-1.16.0rc1-cp37-cp37m-manylinux1_i686.whl
09d327e93f2b13dfbfd6a7c2534441478896a24e9521f59f1ec64c775eff0066 numpy-1.16.0rc1-cp37-cp37m-manylinux1_x86_64.whl
ff73c826d81442f00b38360e52618d94f811c8db9047546d135c0e56117f3812 numpy-1.16.0rc1-cp37-cp37m-win32.whl
f735dad0d72598ca0e19f50a0891e83e496288038628addd86c05650fab49181 numpy-1.16.0rc1-cp37-cp37m-win_amd64.whl
90aa92d9c1bf0cbde34c0eb3964b87d15f2a6de01da99af18615925e3b7d8a05 numpy-1.16.0rc1.tar.gz
6e638a8d56af542aebf625efdacdfb555943c08044795ee7550789407f5b905c numpy-1.16.0rc1.zip

1.16.0rc2

==========================

Page 18 of 24

© 2025 Safety CLI Cybersecurity Inc. All Rights Reserved.